Étiquette : tissu cardiaque

Avancées dans la bioprinting 3D : Vers des traitements innovants pour les maladies cardiaques

Des chercheurs de l’Université de Galway ont réalisé une avancée significative dans le domaine de la bioprinting 3D en fabriquant avec succès des tissus cardiaques humains fonctionnels. Leur étude, publiée dans ‘Advanced Functional Materials’, décrit le développement d’hydrogels bioprintés qui imitent l’environnement mécanique, électrique et biochimique du cœur, une étape essentielle pour créer des tissus viables pour des applications régénératives et le développement de médicaments. La maladie cardiaque reste l’une des principales causes de mortalité dans le monde, et avec une pénurie significative de cœurs donneurs, la création de tissus cardiaques fonctionnels pourrait répondre à ce besoin pressant, tout en avançant dans la recherche sur les pathologies cardiaques et en offrant une future source d’options thérapeutiques. L’approche de l’équipe reposait sur l’utilisation de techniques de bioprinting par extrusion pour créer des hydrogels structurés favorisant la croissance des cellules cardiaques. Les bioinks utilisés imitaient de près les propriétés de la matrice extracellulaire, permettant la création de constructions tissulaires démontrant à la fois intégrité mécanique et fonction biologique. Les tissus bioprintés ont montré des contractions synchronisées ainsi qu’une compatibilité avec la survie cellulaire à long terme, suggérant que la bioprinting pourrait éventuellement mener à des thérapies spécifiques aux patients pour les maladies cardiovasculaires. Le véritable exploit réside non seulement dans la capacité à reproduire les structures tissulaires du cœur, mais aussi dans l’assurance de leur fonctionnalité. Les approches conventionnelles de bioprinting se concentrent souvent sur la reproduction de la forme finale des organes, sans tenir compte des transformations dynamiques qui se produisent lors du développement embryonnaire. Par exemple, alors que le cœur commence comme un simple tube, au fil du temps, il se plie et se tord pour devenir une structure complexe à quatre chambres, ces changements de forme dynamiques jouant un rôle crucial dans la croissance et la spécialisation des cellules cardiaques. Pour améliorer les méthodes existantes, les chercheurs de Galway ont introduit une méthode de bioprinting innovante qui incorpore ces comportements essentiels de changement de forme. La Pr. Ankita Pramanick, auteur principal de l’étude et candidate au doctorat à CÚRAM, a déclaré que leur travail introduit une nouvelle plateforme, utilisant le bioprinting intégré pour bioprinter des tissus subissant des changements de forme programmables et prévisibles en 4D, entraînés par des forces générées par les cellules. Grâce à ce nouveau processus, ils ont constaté que le morphing de forme améliorait la maturité structurelle et fonctionnelle des tissus cardiaques bioprintés. Les constructions bioprintées ont été évaluées pour leur comportement contractile, leur viabilité cellulaire et leur expression moléculaire ; les résultats ont démontré que les constructions tissulaires pouvaient se contracter de manière synchrone, un signe distinctif du tissu cardiaque fonctionnel, et cette capacité est essentielle pour des applications en médecine régénérative et pour créer des modèles précis pour étudier des maladies comme les cardiomyopathies. L’étude a également montré que les forces générées par les cellules pouvaient entraîner le morphing des tissus bioprintés, l’étendue de ces transformations de forme étant influencée par des facteurs tels que la géométrie d’impression initiale et la rigidité du bioink. De plus, l’équipe de recherche a créé un modèle computationnel capable de prédire le comportement de morphing des tissus. Le Pr. Andrew Daly, professeur associé en ingénierie biomédicale et chercheur financé par CÚRAM, a déclaré que leurs recherches montrent qu’en permettant aux tissus cardiaques bioprintés de subir des changements de forme, ils commencent à battre plus fort et plus vite. La maturité limitée des tissus bioprintés a été un défi majeur dans le domaine, donc c’était un résultat passionnant pour eux. Cela leur permet de créer des tissus cardiaques bioprintés plus avancés, avec la capacité de mûrir dans un environnement de laboratoire, reproduisant mieux la structure du cœur humain adulte. Ils sont impatients de développer cette approche de morphing de forme dans leur projet de recherche en cours financé par le Conseil européen de la recherche, qui se concentre sur le bioprinting inspiré du développement. Une des applications immédiates du tissu cardiaque bioprinté est son potentiel d’utilisation dans le dépistage de médicaments. Les modèles actuels pour tester les médicaments cardiaques reposent souvent sur des tissus animaux, qui ne reproduisent pas complètement la biologie cardiaque humaine ; la capacité de produire des constructions tissulaires humaines offre une alternative plus précise et éthique, permettant aux entreprises pharmaceutiques de tester la sécurité et l’efficacité des traitements avec une plus grande précision. À long terme, cette technologie pourrait contribuer à résoudre la crise de pénurie d’organes. Bien que la bioprinting d’organes entiers reste un objectif lointain, les avancées dans la fabrication de tissus fonctionnels comme ceux-ci sont un précurseur vital. Les chercheurs soulignent que l’évolutivité et la reproductibilité seront des défis clés à mesure qu’ils avanceront, en particulier dans l’adaptation de la technologie aux applications cliniques. Malgré les résultats prometteurs, il reste des obstacles importants à surmonter avant que les tissus cardiaques bioprintés puissent être utilisés dans un cadre thérapeutique. Garantir l’intégration des constructions bioprintées avec les tissus natifs, augmenter la production pour répondre à la demande clinique et surmonter les obstacles réglementaires nécessiteront toutes des recherches et un développement supplémentaires. Le Pr. Daly a déclaré qu’ils sont encore loin de bioprinter des tissus fonctionnels qui pourraient être implantés chez l’humain, et que des travaux futurs devront explorer comment ils peuvent adapter leur approche de bioprinting à des cœurs de taille humaine. Ils devront intégrer des vaisseaux sanguins pour maintenir en vie de telles constructions larges dans le laboratoire, mais en fin de compte, cette percée les rapproche de la génération d’organes bioprintés fonctionnels, qui auraient des applications larges en médecine cardiovasculaire. En plus de développer une nouvelle plateforme de bioprinting, l’équipe a pu simuler des comportements de changement de forme à la fois au niveau cellulaire et tissulaire en utilisant des modèles qui imitent comment les fibres au sein du tissu se réarrangent. Cette capacité à concevoir, prédire et programmer le morphing de forme en 4D dans les tissus bioprintés a le potentiel de transformer l’ingénierie des organes. Au lieu de se concentrer uniquement sur la recréation de la forme finale d’un organe, cette approche met l’accent sur l’imitation des processus de développement naturel qui guident sa forme, sa structure et sa fonction. Ce changement ouvre de nouvelles possibilités passionnantes dans le bioprinting d’organes. Bien que cette étude se concentre sur le tissu cardiaque, les techniques développées ont des implications plus larges pour le domaine de la médecine régénérative. Des approches similaires pourraient être appliquées pour créer des tissus fonctionnels pour d’autres organes, ouvrant la voie à des avancées dans le traitement de maladies allant de l’insuffisance hépatique au diabète. La nature interdisciplinaire de ce travail, combinant des matériaux de pointe et des sciences biologiques, souligne le potentiel du bioprinting 3D en tant que technologie transformative dans le domaine médical. Source : https://longevity.technology/news/researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue

Avancées dans la bioprinting 3D : Vers de nouvelles approches pour le traitement des maladies cardiaques

Des chercheurs de l’Université de Galway ont réalisé une avancée significative dans le domaine de la bioprinting 3D en fabriquant avec succès un tissu cardiaque humain fonctionnel. Leur étude, publiée dans ‘Advanced Functional Materials’, présente le développement d’hydrogels bioprintés qui imitent l’environnement mécanique, électrique et biochimique du cœur, étape essentielle pour créer des tissus viables pour des applications régénératives et le développement de médicaments. La création de tissus cardiaques fonctionnels pourrait répondre à la pénurie de cœurs donneurs et offrir de nouvelles solutions pour le traitement des maladies cardiaques, qui demeurent l’une des principales causes de mortalité dans le monde. L’approche de l’équipe repose sur des techniques de bioprinting par extrusion, permettant de créer des hydrogels structurés favorisant la croissance des cellules cardiaques. Les tissus bioprintés ont montré des contractions synchronisées et une compatibilité avec la survie cellulaire à long terme, ce qui suggère que la bioprinting pourrait mener à des thérapies spécifiques aux patients pour les maladies cardiovasculaires.

Le succès ne réside pas seulement dans la capacité à reproduire les structures du tissu cardiaque, mais également à garantir leur fonctionnalité. Les méthodes de bioprinting conventionnelles se concentrent souvent sur la forme finale des organes sans tenir compte des transformations dynamiques qui se produisent au cours du développement embryonnaire. Les chercheurs de Galway ont introduit une méthode innovante de bioprinting qui intègre ces comportements de changement de forme essentiels. Cette méthode permet aux tissus bioprintés de subir des morphologies programmables et prévisibles, conduites par les forces générées par les cellules, améliorant ainsi la maturité structurelle et fonctionnelle des tissus cardiaques.

La recherche a démontré que les forces cellulaires pouvaient entraîner la morphologie des tissus bioprintés, influencée par des facteurs tels que la géométrie d’impression initiale et la rigidité du bioencre. De plus, l’équipe a développé un modèle informatique capable de prédire le comportement de morphing des tissus. Bien que la bioprinting de tissus cardiaques offre des applications immédiates, notamment pour le dépistage de médicaments, des défis importants demeurent avant que ces tissus puissent être utilisés dans un contexte thérapeutique. Les chercheurs doivent encore surmonter des obstacles tels que l’intégration des constructions bioprintées avec les tissus natifs, l’augmentation de la production pour répondre à la demande clinique et les défis réglementaires.

Les implications de cette recherche vont au-delà de la cardiologie. Les techniques développées peuvent également révolutionner l’ingénierie des organes en permettant de simuler des comportements de changement de forme au niveau cellulaire et tissulaire, ouvrant ainsi des possibilités passionnantes pour la bioprinting d’autres tissus fonctionnels, ce qui pourrait avoir des applications dans le traitement de maladies allant de l’insuffisance hépatique au diabète. Cette recherche, alliant matériaux de pointe et sciences biologiques, souligne le potentiel transformateur de la bioprinting 3D en médecine. Source : https://longevity.technology/news/researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue

Avancées dans l’impression bioprinting 3D pour le traitement des maladies cardiaques

Des chercheurs de l’Université de Galway ont réalisé une avancée significative dans le domaine de l’impression bioprinting 3D en fabriquant avec succès des tissus cardiaques humains fonctionnels. Leur recherche, publiée dans ‘Advanced Functional Materials’, met en avant le développement d’hydrogels bioprintés qui imitent l’environnement mécanique, électrique et biochimique du cœur. Cette avancée est cruciale pour créer des tissus viables à des fins régénératives et pour le développement de médicaments, et elle ouvre la voie à des thérapies cardiaques spécifiques à chaque patient. La maladie cardiaque étant l’une des principales causes de mortalité au niveau mondial, le besoin de solutions alternatives est pressant étant donné la pénurie de cœurs donneurs. La création de tissus cardiaques fonctionnels pourrait répondre à ce besoin non satisfait, offrant à la fois un moyen d’avancer dans la recherche sur les affections cardiaques et une future source d’options thérapeutiques. L’équipe a utilisé des techniques d’impression bioprinting basées sur l’extrusion pour créer des hydrogels structurés qui soutiennent la croissance des cellules cardiaques. Les bioinks utilisés imitent de près les propriétés de la matrice extracellulaire, permettant la création de constructions tissulaires présentant à la fois intégrité mécanique et fonction biologique. Les tissus bioprintés ont montré des contractions synchronisées ainsi qu’une compatibilité avec la survie cellulaire à long terme, ce qui suggère que l’impression bioprinting pourrait éventuellement mener à des thérapies spécifiques aux patients pour les maladies cardiovasculaires. L’innovation majeure réside non seulement dans la capacité à reproduire les structures tissulaires cardiaques, mais aussi à garantir leur fonctionnalité. Les approches conventionnelles d’impression bioprinting se concentrent souvent sur la reproduction de la forme finale des organes, comme le cœur, sans tenir compte des transformations dynamiques qui se produisent durant le développement embryonnaire. Par exemple, le cœur commence comme un simple tube, puis se plie et se tord pour devenir une structure complexe à quatre chambres. Ces changements morphologiques dynamiques jouent un rôle essentiel dans la croissance et la spécialisation des cellules cardiaques. Pour améliorer les méthodes conventionnelles, les chercheurs de Galway ont introduit une nouvelle méthode d’impression bioprinting qui intègre ces comportements de changement de forme essentiels. Ankita Pramanick, auteur principal de l’étude et candidate au doctorat à CÚRAM à l’Université de Galway, a déclaré que leur travail introduit une plateforme novatrice, utilisant l’impression bioprinting intégrée pour créer des tissus soumis à des changements de forme programmables et prévisibles en raison des forces générées par les cellules. Grâce à ce nouveau procédé, ils ont constaté que les changements de forme amélioraient la maturité structurelle et fonctionnelle des tissus cardiaques bioprintés. Les constructions bioprintées ont été évaluées pour leur comportement contractile, leur viabilité cellulaire et leur expression moléculaire ; les résultats ont montré que les constructions tissulaires pouvaient se contracter de manière synchrone, un signe distinctif du tissu cardiaque fonctionnel, et cette capacité est cruciale pour les applications en médecine régénérative et pour créer des modèles précis pour étudier des maladies telles que les cardiomyopathies. De plus, les chercheurs ont créé un modèle computationnel capable de prédire le comportement de morphing des tissus. Le professeur Andrew Daly, professeur associé en génie biomédical et chercheur principal financé par CÚRAM, a déclaré que leur recherche montre qu’en permettant aux tissus cardiaques bioprintés de subir des changements de forme, ils commencent à battre plus fort et plus vite. La maturité limitée des tissus bioprintés a été un défi majeur dans le domaine, donc ce résultat a été excitant pour eux. Cela permet de créer des tissus cardiaques bioprintés plus avancés, capables de mûrir dans un environnement de laboratoire, répliquant mieux la structure du cœur humain adulte. Ils sont impatients de continuer à développer cette approche de morphing de forme dans leur projet de recherche financé par le Conseil européen de la recherche, axé sur l’impression bioprinting inspirée du développement. L’un des usages immédiats des tissus cardiaques bioprintés est leur potentiel pour le dépistage de médicaments. Les modèles actuels pour tester les médicaments cardiaques reposent souvent sur des tissus animaux, qui ne répliquent pas entièrement la biologie cardiaque humaine. La capacité de produire des constructions tissulaires humaines offre une alternative plus précise et éthique, permettant aux entreprises pharmaceutiques de tester la sécurité et l’efficacité des traitements avec plus de précision. À long terme, cette technologie pourrait contribuer à résoudre la crise de pénurie d’organes. Bien que l’impression bioprinting d’organes complets reste un objectif lointain, les progrès dans la fabrication de tissus fonctionnels comme ceux-ci sont un précurseur essentiel. Les chercheurs soulignent que la scalabilité et la reproductibilité seront des défis clés à relever alors qu’ils avancent, notamment pour adapter la technologie aux applications cliniques. Malgré ces résultats prometteurs, il reste des obstacles significatifs à surmonter avant que les tissus cardiaques bioprintés ne puissent être utilisés dans un cadre thérapeutique. Assurer l’intégration des constructions bioprintées avec les tissus natifs, augmenter la production pour répondre aux demandes cliniques et faire face aux obstacles réglementaires nécessiteront toutes des recherches et développements supplémentaires. Le professeur Daly a noté qu’il reste encore un long chemin à parcourir avant que des tissus fonctionnels bioprintés puissent être implantés chez les humains. Il faudra intégrer des vaisseaux sanguins pour maintenir de grands constructs en vie dans le laboratoire, mais en fin de compte, cette avancée nous rapproche de la génération d’organes bioprintés fonctionnels, qui auraient des applications larges en médecine cardiovasculaire. En plus de développer une plateforme d’impression bioprinting novatrice, l’équipe a pu simuler des comportements de changement de forme à la fois au niveau cellulaire et tissulaire en utilisant des modèles qui imitent la façon dont les fibres au sein du tissu se réorganisent. Cette capacité à concevoir, prédire et programmer des changements de forme en 4D dans les tissus bioprintés pourrait transformer l’ingénierie des organes. Plutôt que de se concentrer uniquement sur la recréation de la forme finale d’un organe, cette approche met l’accent sur l’imitation des processus de développement naturel qui guident sa forme, sa structure et sa fonction. Ce changement ouvre des possibilités passionnantes dans le domaine de l’impression bioprinting d’organes. Bien que cette étude se concentre sur le tissu cardiaque, les techniques développées ont des implications plus larges pour le domaine de la médecine régénérative. Des approches similaires pourraient être appliquées pour créer des tissus fonctionnels pour d’autres organes, ouvrant la voie à des avancées dans le traitement de maladies allant de l’insuffisance hépatique au diabète. La nature interdisciplinaire de ce travail, combinant des matériaux de pointe et des sciences biologiques, souligne le potentiel de l’impression bioprinting 3D comme technologie transformative en médecine. Source : https://longevity.technology/news/researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue

Avancées dans l’impression 3D de tissus cardiaques fonctionnels : une nouvelle ère pour le traitement des maladies cardiaques

Les chercheurs de l’Université de Galway ont réalisé une avancée significative dans le domaine de l’impression 3D de tissus biologiques en fabriquant avec succès des tissus cardiaques humains fonctionnels. Leur étude, publiée dans la revue Advanced Functional Materials, présente le développement de hydrogels bioprintés qui imitent l’environnement mécanique, électrique et biochimique du cœur. Cette avancée est cruciale pour la création de tissus viables destinés à des applications régénératives et au développement de médicaments, et pourrait ouvrir la voie à des thérapies cardiaques spécifiques aux patients. La maladie cardiaque étant l’une des principales causes de mortalité dans le monde, la création de tissus cardiaques fonctionnels répond à un besoin pressant, en offrant des options de recherche avancées sur les conditions cardiaques et une future source de traitements. L’équipe a utilisé des techniques d’impression basées sur l’extrusion pour créer des hydrogels structurés destinés à soutenir la croissance des cellules cardiaques. Le bio-ink utilisé a été conçu pour reproduire les propriétés de la matrice extracellulaire, permettant la création de constructions tissulaires montrant à la fois intégrité mécanique et fonction biologique. Les tissus bioprintés ont démontré des contractions synchronisées ainsi qu’une compatibilité avec la survie cellulaire à long terme, ce qui suggère que l’impression 3D pourrait mener à des thérapies spécifiques pour les maladies cardiovasculaires. Cette percée repose non seulement sur la capacité à reproduire les structures tissulaires cardiaques, mais aussi sur l’assurance de leur fonctionnalité. Contrairement aux approches bioprintées conventionnelles qui se concentrent sur la forme finale des organes, les chercheurs de Galway ont introduit une méthode innovante qui intègre des comportements de changement de forme essentiels. En utilisant une impression 3D intégrée, ils ont pu créer des tissus qui subissent des transformations de forme programmables et prévisibles, entraînées par des forces générées par les cellules. Les résultats ont montré que ces transformations de forme améliorent la maturité structurelle et fonctionnelle des tissus cardiaques bioprintés. Les constructions bioprintées ont été évaluées pour leur comportement contractile, leur viabilité cellulaire et leur expression moléculaire, les résultats montrant que les constructions tissulaires pouvaient se contracter de manière synchrone, une caractéristique essentielle des tissus cardiaques fonctionnels. L’étude a montré que les forces générées par les cellules pouvaient conduire à la morphologie des tissus bioprintés, la mesure de ces transformations étant influencée par des facteurs tels que la géométrie d’impression initiale et la rigidité du bio-ink. L’équipe de recherche a également créé un modèle computationnel capable de prédire le comportement de morphologie des tissus. Bien que cette recherche offre des perspectives prometteuses, des défis significatifs subsistent avant que les tissus cardiaques bioprintés puissent être utilisés dans un cadre thérapeutique. Assurer l’intégration des constructions bioprintées avec les tissus natifs, augmenter la production pour répondre aux besoins cliniques et surmonter les obstacles réglementaires nécessiteront des recherches et un développement supplémentaires. Malgré ces défis, cette avancée nous rapproche de la génération d’organes bioprintés fonctionnels, qui auraient des applications larges en médecine cardiovasculaire. En outre, bien que l’étude se concentre sur les tissus cardiaques, les techniques développées pourraient avoir des implications plus larges pour le domaine de la médecine régénérative, ouvrant la voie à la création de tissus fonctionnels pour d’autres organes et au traitement de maladies telles que l’insuffisance hépatique ou le diabète. Source : https://longevity.technology/news/researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue

Avancées dans l’impression 3D de tissus cardiaques : une révolution pour le traitement des maladies cardiaques

Des chercheurs de l’Université de Galway ont réalisé une avancée significative dans le domaine de l’impression 3D de tissus biologiques en réussissant à fabriquer des tissus cardiaques humains fonctionnels. Leur étude, publiée dans ‘Advanced Functional Materials’, met en avant le développement d’hydrogels bioprintés qui imitent l’environnement mécanique, électrique et biochimique du cœur, une étape essentielle pour créer des tissus viables destinés à des applications régénératives et au développement de médicaments. Cette avancée est particulièrement pertinente dans le contexte de la maladie cardiaque, qui demeure l’une des principales causes de mortalité dans le monde, exacerbée par une pénurie de cœurs donneurs. La création de tissus cardiaques fonctionnels pourrait répondre à ce besoin non satisfait et ouvrir la voie à de nouvelles options thérapeutiques.

L’approche de l’équipe reposait sur des techniques d’impression bioprintée par extrusion pour créer des hydrogels structurés capables de soutenir la croissance des cellules cardiaques. Le bioencre utilisé reproduisait étroitement les propriétés de la matrice extracellulaire, permettant ainsi la création de constructions tissulaires démontrant à la fois une intégrité mécanique et une fonction biologique. Les tissus bioprintés ont montré des contractions synchronisées et une compatibilité avec la survie cellulaire à long terme, ce qui suggère que l’impression bioprintée pourrait éventuellement mener à des thérapies spécifiques aux patients pour les maladies cardiovasculaires.

L’innovation majeure réside non seulement dans la capacité à répliquer les structures tissulaires du cœur, mais aussi à garantir leur fonctionnalité. Les méthodes conventionnelles d’impression bioprintée se concentrent souvent sur la réplique de la forme finale des organes, sans prendre en compte les transformations dynamiques qui se produisent au cours du développement embryonnaire. Les chercheurs de Galway ont introduit une méthode d’impression bioprintée innovante qui intègre ces comportements essentiels de changement de forme. Ils ont découvert que l’intégration de comportements de morphing programmable et prévisible des tissus améliorait leur maturité structurelle et fonctionnelle.

Ankita Pramanick, auteur principal de l’étude, a expliqué que leur travail introduit une plateforme novatrice utilisant l’impression bioprintée pour produire des tissus capables de morphing 4D, entraîné par des forces générées par les cellules. Les constructions bioprintées ont été évaluées selon leur comportement contractile, leur viabilité cellulaire et leur expression moléculaire, démontrant que les tissus pouvaient se contracter de manière synchrone, caractéristique des tissus cardiaques fonctionnels, ce qui est crucial pour la médecine régénérative et pour la création de modèles précis d’étude de maladies comme les cardiomyopathies.

Cependant, malgré les résultats prometteurs, des défis significatifs restent à surmonter avant que les tissus cardiaques bioprintés puissent être utilisés dans un cadre thérapeutique. L’intégration des constructions bioprintées avec les tissus natifs, l’augmentation de la production pour répondre aux besoins cliniques et les obstacles réglementaires nécessiteront encore des recherches et des développements. Les chercheurs soulignent également que bien que l’impression complète d’organes reste un objectif lointain, les avancées dans la fabrication de tissus fonctionnels constituent un préalable vital. La possibilité d’utiliser les tissus cardiaques bioprintés pour le dépistage de médicaments est une application immédiate, offrant une alternative plus précise et éthique aux modèles actuels basés sur des tissus animaux.

En somme, cette recherche ouvre de nouvelles voies non seulement pour la cardiologie, mais également pour d’autres domaines de la médecine régénérative. Les techniques développées pourraient potentiellement être appliquées à la création de tissus fonctionnels pour d’autres organes, ouvrant ainsi des perspectives pour le traitement de maladies allant de l’insuffisance hépatique au diabète. Ce travail interdisciplinaire, combinant des matériaux de pointe et des sciences biologiques, souligne le potentiel de l’impression 3D de tissus comme technologie transformative en médecine. Source : https://longevity.technology/news/researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue

Avancées dans l’impression 3D de tissus cardiaques : vers de nouvelles thérapies pour les maladies cardiovasculaires

Les chercheurs de l’Université de Galway ont récemment fait une avancée majeure dans le domaine de l’impression 3D de tissus biologiques, en réussissant à fabriquer un tissu cardiaque humain fonctionnel. Cette recherche, publiée dans Advanced Functional Materials, présente le développement d’hydrogels bioprintés qui imitent l’environnement mécanique, électrique et biochimique du cœur. Cette avancée est essentielle pour créer des tissus viables destinés aux applications régénératives et au développement de médicaments, et représente un pas important vers des thérapies cardiaques spécifiques aux patients. La maladie cardiaque est une des principales causes de mortalité dans le monde, et le manque de cœurs donneurs souligne l’urgence de solutions alternatives. La création de tissus cardiaques fonctionnels pourrait non seulement faire progresser la recherche sur les affections cardiaques, mais aussi offrir de futures options thérapeutiques. L’équipe a utilisé des techniques d’impression biographique par extrusion pour créer des hydrogels structurés destinés à soutenir la croissance des cellules cardiaques. Le bioencre utilisé mime de près les propriétés de la matrice extracellulaire, permettant la création de constructions tissulaires présentant à la fois une intégrité mécanique et une fonction biologique. Les résultats montrent que le tissu bioprinté présente des contractions synchronisées ainsi qu’une compatibilité avec la survie cellulaire à long terme, suggérant que l’impression biographique pourrait éventuellement mener à des thérapies spécifiques aux patients pour les maladies cardiovasculaires. L’innovation réside non seulement dans la capacité à répliquer les structures du tissu cardiaque, mais aussi à garantir leur fonctionnalité. Les approches conventionnelles d’impression biographique se concentrent souvent sur la reproduction de la forme finale des organes, sans tenir compte des transformations dynamiques survenant durant le développement embryonnaire. Les chercheurs de Galway ont introduit une méthode d’impression biographique innovante qui intègre ces comportements de changement de forme essentiels. L’étude, dirigée par Ankita Pramanick, candidate au doctorat à l’Université de Galway, a utilisé une plateforme nouvelle permettant d’imprimer des tissus capables de morphing de forme programmable, influencé par les forces générées par les cellules. Les résultats ont montré que l’amélioration du morphing de forme augmentait la maturité structurelle et fonctionnelle des tissus cardiaques bioprintés. Les constructions bioprintées ont été évaluées pour leur comportement contractile, leur viabilité cellulaire et leur expression moléculaire, montrant que les tissus pouvaient se contracter de manière synchronisée, un aspect essentiel du tissu cardiaque fonctionnel. L’étude a également démontré que les forces générées par les cellules pouvaient influencer le morphing des tissus bioprintés, ce qui a des implications importantes pour la recherche et la thérapie cardiaque. Les résultats suggèrent que des approches similaires pourraient être appliquées à d’autres organes, ouvrant ainsi la voie à des avancées dans le traitement de maladies variées. Cependant, malgré ces résultats prometteurs, des défis subsistent avant que les tissus cardiaques bioprintés ne puissent être utilisés dans un cadre thérapeutique. L’intégration avec les tissus natifs, la montée en échelle de la production pour répondre aux demandes cliniques et les obstacles réglementaires nécessiteront des recherches et des développements supplémentaires. Les chercheurs soulignent que, même s’ils sont encore loin d’imprimer des tissus fonctionnels pouvant être implantés chez l’humain, cette avancée les rapproche de la génération d’organes bioprintés fonctionnels, avec des applications potentielles larges en médecine cardiovasculaire. En somme, cette étude illustre le potentiel transformateur de l’impression 3D dans le domaine médical et ouvre des perspectives passionnantes pour le futur de la médecine régénérative. Source : https://longevity.technology/news/researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue

Avancées dans la bio-impression 3D : Vers de nouvelles approches pour le traitement des maladies cardiaques

Les chercheurs de l’Université de Galway ont réalisé une avancée majeure dans le domaine de la bio-impression 3D en fabriquant avec succès des tissus cardiaques humains fonctionnels. Leur recherche, publiée dans ‘Advanced Functional Materials’, décrit le développement d’hydrogels bio-imprimés qui imitent l’environnement mécanique, électrique et biochimique du cœur. Cela représente une étape essentielle pour créer des tissus viables pour des applications régénératives et le développement de médicaments, en offrant des thérapies cardiaques spécifiques aux patients. La maladie cardiaque étant l’une des principales causes de mortalité dans le monde et avec une pénurie significative de cœurs donneurs, la création de tissus cardiaques fonctionnels répond à un besoin pressant, permettant d’avancer la recherche sur les conditions cardiaques tout en offrant de futures options thérapeutiques. L’approche des chercheurs repose sur des techniques de bio-impression par extrusion, créant des hydrogels structurés soutenant la croissance cellulaire cardiaque, et le bio-encre utilisé imitant étroitement les propriétés de la matrice extracellulaire. Les tissus bio-imprimés ont démontré des contractions synchronisées et une compatibilité avec la survie cellulaire à long terme, suggérant un potentiel pour des thérapies spécifiques aux patients. La percée se situe non seulement dans la capacité à reproduire les structures des tissus cardiaques, mais aussi à assurer leur fonctionnalité. Contrairement aux approches conventionnelles qui se concentrent sur la forme finale des organes, les chercheurs de Galway ont introduit une méthode d’impression qui intègre des comportements de transformation de forme essentiels. Ankita Pramanick, auteur principal de l’étude, a déclaré que leur travail introduit une nouvelle plateforme utilisant l’impression biographique intégrée pour produire des tissus capables de morphing de forme programmable et prévisible, ce qui améliore la maturité structurelle et fonctionnelle des tissus cardiaques imprimés. Les constructions bio-imprimées ont été évaluées pour leur comportement contractile, leur viabilité cellulaire et leur expression moléculaire, montrant que ces tissus peuvent se contracter de manière synchrone, une caractéristique essentielle des tissus cardiaques fonctionnels. Les résultats indiquent également que les forces générées par les cellules peuvent conduire à la morphologie des tissus bio-imprimés, influencée par des facteurs tels que la géométrie d’impression initiale et la rigidité de la bio-encre. Le professeur Andrew Daly a affirmé que cette recherche montre que permettre aux tissus cardiaques bio-imprimés de subir des changements de forme améliore leur force et leur rapidité de battement, un résultat prometteur pour surmonter le défi de la maturité limitée des tissus bio-imprimés. L’une des applications immédiates des tissus cardiaques bio-imprimés est leur utilisation potentielle dans le dépistage de médicaments, offrant une alternative plus précise et éthique aux modèles actuels basés sur des tissus animaux. À long terme, cette technologie pourrait contribuer à résoudre la crise de pénurie d’organes, bien que l’impression d’organes complets reste un objectif lointain. Les chercheurs soulignent que la scalabilité et la reproductibilité seront des défis clés à surmonter pour adapter la technologie aux applications cliniques. Malgré des résultats prometteurs, des obstacles importants subsistent avant que les tissus cardiaques bio-imprimés puissent être utilisés en thérapie, notamment l’intégration avec des tissus natifs et la montée en échelle de la production. Les implications de cette recherche vont au-delà de la cardiologie, car les techniques développées pourraient être appliquées pour créer des tissus fonctionnels pour d’autres organes, ouvrant la voie à des avancées dans le traitement de maladies variées. L’interdisciplinarité de ce travail, combinant des matériaux de pointe et des sciences biologiques, souligne le potentiel de la bio-impression 3D en tant que technologie transformative en médecine. Source : https://longevity.technology/news/researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue