Étiquette : Thérapies ciblées

Rôle du STING dans l’inflammation cérébrale et la maladie d’Alzheimer

Les conditions neurodégénératives sont étroitement liées à l’inflammation chronique associée au vieillissement, ce qui nuit à la structure et à la fonction des tissus. De nombreuses preuves indiquent que la fonctionnalité dysrégulée des cellules immunitaires dans le cerveau contribue de manière significative à la pathologie. Cependant, le signalement inflammatoire est complexe, et il est difficile de trouver des moyens d’intervenir dans les réactions inflammatoires soutenues indésirables sans compromettre les réactions inflammatoires nécessaires à court terme. Dans cette étude, les chercheurs se sont concentrés sur un régulateur de l’inflammation bien étudié, le STING (Stimulateur des gènes de l’interféron), et ont démontré que sa désactivation peut réduire à la fois l’inflammation cérébrale et la progression de la pathologie d’Alzheimer dans un modèle murin de la maladie. Bien que la dysfonction immunitaire soit de plus en plus liée à la progression de la maladie d’Alzheimer (MA), de nombreuses molécules de signalisation immunitaire innées majeures n’ont pas encore été explorées dans la pathogénie de la MA en utilisant des approches de ciblage génétique. Pour examiner le rôle de la molécule clé d’adaptateur immunitaire inné, le STING, dans la MA, les chercheurs ont supprimé STING dans le modèle murin 5xFAD lié à l’amyloïdose de la MA et ont évalué les effets sur la pathologie, la neuroinflammation, l’expression génique et la cognition. L’ablation génétique de STING chez les souris 5xFAD a conduit à un meilleur contrôle des plaques d’amyloïde bêta, à des modifications du statut d’activation des microglies, à une diminution des niveaux de dystrophie neuritique et à une protection contre le déclin cognitif. De plus, la récupération de la maladie neurologique chez les souris 5xFAD déficientes en STING était caractérisée par une réduction de l’expression des gènes de signalisation de l’interféron de type I à la fois dans les microglies et dans les neurones excitateurs. Ces résultats révèlent des rôles critiques pour STING dans la maladie neurologique induite par l’Aβ (amyloïde bêta) et suggèrent que des thérapies ciblant STING pourraient offrir des stratégies prometteuses pour traiter la maladie d’Alzheimer. Source : https://www.fightaging.org/archives/2025/06/a-role-for-sting-mediated-inflammation-in-neurodegenerative-conditions/

HAYA Therapeutics : Une Révolution dans la Médecine de Précision grâce au Génome Sombre

HAYA Therapeutics, une start-up de biotechnologie spécialisée dans la médecine de précision, a récemment levé 65 millions de dollars lors d’un financement de série A pour faire avancer le développement de médicaments guidés par l’ARN, ciblant les maladies chroniques et liées à l’âge en modulant le génome régulateur. Ce financement permettra à l’entreprise d’accélérer les essais cliniques de son candidat thérapeutique principal pour l’insuffisance cardiaque et d’élargir son pipeline de thérapies ciblant les ARN longs non codants (lncARN) dans divers contextes pathologiques. L’approche de HAYA repose sur sa capacité à exploiter le génome régulateur, surnommé le ‘génome sombre’ car il ne code pas de protéines et est relativement inexploré. HAYA affirme que ce segment du génome joue un rôle clé dans le contrôle de l’expression génique et de l’identité cellulaire. En combinant des génomiques fonctionnelles multimodales avec des outils d’apprentissage automatique propriétaires, l’entreprise a créé un atlas complet du génome régulateur, permettant le développement de thérapies hautement ciblées et guidées par l’ARN qui peuvent reprogrammer des états cellulaires pathologiques dans un large éventail de maladies. HAYA, fondée par Samir Ounzain, est basée à Lausanne, en Suisse, et à San Diego, et est motivée par la vision que le génome est le code source de la vie, où les lncARN agissent comme des unités critiques de traitement de l’information. Le candidat principal de l’entreprise, HTX-001, cible un lncARN spécifique au cœur impliqué dans la cardiomyopathie hypertrophique non obstructive (nHCM), une condition où le remodelage fibreux persistant altère la fonction cardiaque. HAYA cherche à éviter les effets hors cible en ciblant spécifiquement les ARN régulateurs qui provoquent la fibrose de manière spécifique à la cellule et au tissu. En plus de la fibrose cardiaque, la plateforme de HAYA a démontré sa pertinence dans d’autres conditions chroniques telles que la fibrose pulmonaire, l’obésité et le carcinome épidermoïde. Récemment, HAYA a établi un partenariat stratégique avec Eli Lilly pour développer des thérapies basées sur l’ARN pour l’obésité et les troubles métaboliques. Le tour de financement a été co-dirigé par Sofinnova Partners et Earlybird Venture Capital, avec la participation d’Eli Lilly and Company et d’autres investisseurs. Selon Sofinnova, la plateforme de HAYA libère le potentiel thérapeutique du génome sombre en ciblant les états cellulaires responsables des maladies via les lncARN, ouvrant ainsi une nouvelle frontière dans la médecine de précision. Source : https://longevity.technology/news/haya-therapeutics-harnesses-the-dark-genome-against-age-related-diseases/

L’impact de l’agrégation des protéines sur les maladies neurodégénératives et les avancées thérapeutiques

Ce texte traite des protéines dans le corps qui peuvent se malplier et former des agrégats, ce qui nuit au fonctionnement normal des cellules. Ces agrégats peuvent causer des dommages directs ou induire une réponse inflammatoire néfaste. La recherche sur ces agrégats protéiques se concentre principalement sur le cerveau vieillissant et les maladies neurodégénératives, qui se caractérisent par la formation de divers types d’agrégats protéiques, tels que l’amyloïde-β, la protéine tau et l’α-synucléine. Un ajout récent à cette liste est la TDP-43, associée à une condition ressemblant à la maladie d’Alzheimer, appelée encéphalopathie liée à l’âge prédominante du TDP-43 (LATE). Les recherches montrent que l’agrégation de TDP-43 est courante chez les personnes âgées et souvent mal diagnostiquée comme maladie d’Alzheimer. Cette agrégation est également liée à la sclérose latérale amyotrophique (SLA) et potentiellement à d’autres conditions. Les formes d’agrégation protéique dans le cerveau vieillissant sont inévitables, et des pathologies évidentes se développent lorsque ces agrégats atteignent un certain seuil de dommages. Dans la SLA, les agrégats de protéines mal solubles, comprenant la TDP-43, s’accumulent dans les neurones moteurs, entraînant la perte de fonctionnalité et la mort cellulaire. Les chercheurs ont découvert qu’en exposant les cellules à un stress, la TDP-43 peut être libérée du noyau cellulaire dans le cytosol, où elle forme des granules de stress. Les granules de stress servent de protection temporaire pour les protéines, mais si la TDP-43 est mutée, ces granules persistent et causent des dommages. Une avancée récente a permis d’empêcher la TDP-43 de quitter le noyau en l’associant à une protéine appelée SUMO, dirigeant la TDP-43 vers des corps nucléaires qui aident à la dégradation des formes nocives. La recherche continue pour développer des candidats médicamenteux qui favorisent cette interaction. L’étude démontre également que l’attachement de SUMO2 à la TDP-43 permet de la compartimenter dans les corps nucléaires, limitant ainsi son agrégation en réponse au stress protéotoxique. L’exploitation de cette voie pourrait offrir une nouvelle approche thérapeutique pour contrer l’agrégation des protéines. Source : https://www.fightaging.org/archives/2025/05/a-possible-approach-to-the-development-of-therapies-targeting-tdp-43-aggregation/

Le rôle des macrophages cardiaques dans les maladies cardiovasculaires et la régénération tissulaire

Les macrophages, des cellules essentielles du système immunitaire inné, se trouvent dans divers tissus du corps, y compris le cœur, et remplissent de nombreuses fonctions vitales. Ils ne se contentent pas de détecter et d’éliminer les agents pathogènes et les cellules potentiellement nuisibles, mais ils jouent également un rôle crucial dans la régénération après une blessure. Les macrophages peuvent adopter des états pro-inflammatoires ou anti-inflammatoires selon les circonstances, ce qui en fait des cibles d’intérêt pour la recherche visant à réduire l’inflammation et à favoriser la régénération, notamment dans des organes tels que le cœur qui présentent une capacité régénératrice relativement faible après une lésion. Ces macrophages cardiaques sont hétérogènes et plastiques, avec plusieurs sous-ensembles ayant des phénotypes et des fonctions différents, impliqués dans divers processus pathophysiologiques. Des études récentes montrent que les populations de macrophages résidents dans le cœur jouent un rôle essentiel dans le développement cardiaque, la conduction électrique et les processus de remodelage ventriculaire. Les mécanismes utilisés par ces macrophages pour influencer les maladies cardiovasculaires (MCV) varient et incluent des interactions directes et indirectes avec d’autres cellules cardiaques. L’identification de cibles spécifiques pour les macrophages résidents cardiaques est cruciale pour la régulation des MCV. Bien que des méthodes exogènes et génétiques aient été développées pour cibler spécifiquement ces populations de macrophages, relativement peu d’études ont exploré des thérapies ciblant les macrophages résidents cardiaques chez les patients atteints de MCV, malgré l’accumulation de connaissances mécanistiques sur leur contribution au risque cardiovasculaire. Source : https://www.fightaging.org/archives/2025/03/tissue-resident-macrophages-in-the-heart-in-cardiovascular-disease/

Nouvelles Perspectives sur la Dégénérescence des Disques Intervertébraux : Rôle de BRD4 et MAP2K7

Les problèmes de dos chez les personnes âgées sont largement reconnus comme étant causés par une détérioration de la colonne vertébrale, notamment la dégénérescence des disques intervertébraux (IDD). Cette affection rend les disques moins élastiques, diminuant leur capacité à supporter des charges et à maintenir la colonne vertébrale. Les chercheurs ont découvert que la sénescence cellulaire joue un rôle majeur dans la dégénérescence des disques, notamment à travers le phénomène du phénotype sécrétoire associé à la sénescence (SASP), qui dégrade les cellules responsables de l’entretien des disques. Alors que certaines recherches précédentes ont mis en avant la voie STING comme étant impliquée dans l’IDD, cette étude se concentre sur BRD4, un régulateur de l’expression génique. Des travaux antérieurs avaient déjà lié BRD4 à la dégradation des cellules des disques chez des patients diabétiques, et inhiber BRD4 avait montré un effet protecteur sur l’IDD chez des rats. Dans cette étude, les chercheurs ont confirmé que BRD4 induit la sénescence dans les cellules des disques intervertébraux, de manière corrélée à la sévérité de l’IDD. En utilisant des rats Sprague-Dawley, ils ont observé que BRD4 était directement lié à l’augmentation des biomarqueurs de sénescence. Des analyses biochimiques ont révélé que le gène MAP2K7 est exprimé en tandem avec BRD4, et en manipulant l’expression de ces gènes, les chercheurs ont pu démontrer un axe de signalisation qui régule la sénescence et l’entretien de la matrice extracellulaire (MEC) dans les cellules des disques. L’inhibition de BRD4 a montré des résultats prometteurs en réduisant la sénescence et en améliorant la guérison des disques, suggérant que ces cibles pourraient être exploitées pour développer de nouvelles thérapies contre les douleurs dorsales liées à l’âge et la dégénérescence des disques. Source : https://www.lifespan.io/news/researchers-find-new-target-for-spinal-disc-degeneration/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-find-new-target-for-spinal-disc-degeneration

Le rôle des macrophages SPP1+ dans l’inflammation chronique liée au vieillissement

Les macrophages, cellules essentielles du système immunitaire inné, sont présents dans tout le corps, excepté dans le cerveau où des cellules analogues, les microglies, se trouvent. Une population de monocytes réside dans la rate et circule dans le sang, capable de se différencier en macrophages et d’entrer dans les tissus selon les besoins. Les macrophages, qui incluent des macrophages résidents dans les tissus, jouent plusieurs rôles cruciaux, tels que la destruction des agents pathogènes, des cellules sénescentes et cancéreuses, la coordination de la régénération tissulaire après une blessure, et l’élimination des déchets métaboliques. Leur diversité leur permet d’adopter différents comportements en réponse à leur environnement. Cependant, avec l’âge, certains de ces comportements peuvent devenir inadaptés, particulièrement dans un environnement tissulaire endommagé.

Un des aspects discutés dans l’article concerne les macrophages SPP1+, une sous-population spécifique de macrophages qui sont préoccupés par la signalisation inflammatoire au cours du vieillissement. L’inflammation chronique est une caractéristique du vieillissement, causée par divers facteurs, et lorsque cette inflammation devient persistante, elle perturbe la structure et la fonction des tissus, contribuant à l’apparition de maladies liées à l’âge. Pour résoudre ce problème, il semble que la solution la plus efficace soit de retirer les dommages moléculaires qui provoquent l’inflammation et de modifier les populations de cellules immunitaires qui génèrent le plus de signaux inflammatoires.

Les macrophages SPP1+, qui expriment un niveau élevé d’ostéopontine, ont été initialement identifiés dans le contexte des tumeurs, mais sont maintenant reconnus pour leur rôle dans diverses conditions pathologiques, y compris les troubles inflammatoires chroniques, les maladies neurodégénératives et le remodelage tissulaire. Des études de séquençage d’ARN à cellule unique ont montré leur abondance dans le muscle squelettique de souris âgées, où ils présentent des caractéristiques de sénescence et d’activité métabolique lipidique accrue. De plus, dans la maladie d’Alzheimer, une augmentation des microglies positives au SPP1 est corrélée à l’inflammation et à la perte synaptique, suggérant que les macrophages SPP1+ peuvent influencer à la fois l’inflammation et la neurodégénérescence.

Ces cellules sont également impliquées dans la promotion de la fibrose, le remodelage de la matrice extracellulaire et la modulation des réponses immunitaires, ce qui les place au centre des états inflammatoires chroniques et des dysfonctionnements tissulaires. Leur présence est souvent associée à de mauvais résultats cliniques, mettant en évidence leur potentiel en tant que cibles thérapeutiques. Bien que les macrophages SPP1+ partagent des caractéristiques fonctionnelles à travers différents contextes pathologiques, leur capacité d’adaptabilité soulève des questions sur leur classification. L’article propose donc de reconsidérer leur classification en tant que sous-type distinct de macrophages, et non pas spécifiquement lié aux tumeurs, ce qui pourrait améliorer notre compréhension de la biologie des macrophages et ouvrir de nouvelles voies pour des interventions thérapeutiques ciblées. Source : https://www.fightaging.org/archives/2025/03/spp1-macrophages-are-implicated-in-numerous-age-related-conditions/

La Déplétion de TDP-43 dans les Vaisseaux Sanguins : Un Lien avec les Maladies Neurodégénératives

La recherche récente menée par des chercheurs de l’Université du Connecticut met en lumière l’importance de la barrière hémato-encéphalique (BHE) dans la progression des maladies neurodégénératives telles que la maladie d’Alzheimer (MA), la sclérose latérale amyotrophique (SLA) et la démence frontotemporale (DFT). Traditionnellement, les études se concentraient sur la dysfonction neuronale et l’agrégation des protéines. Cependant, cette nouvelle étude souligne le rôle critique de la protéine TDP-43, un facteur de liaison de l’ARN, dans le maintien de la fonction des cellules endothéliales et l’intégrité de la BHE. La déplétion de TDP-43 dans ces cellules est corrélée à une dysfonction vasculaire et à une rupture de la BHE dans plusieurs conditions neurodégénératives. En utilisant des techniques de séquençage à noyau unique sur des échantillons de cerveau humain post-mortem, les chercheurs ont identifié un sous-ensemble de cellules endothéliales capillaires associées à la maladie, montrant une réduction du β-caténine et une élévation des marqueurs de l’inflammation, ce qui indique que la perte de TDP-43 pourrait être un facteur commun dans la dégradation de la BHE à travers différentes maladies. Les résultats suggèrent que la santé cérébrovasculaire est non seulement une conséquence, mais peut également être un moteur de la neurodégénérescence. En mettant l’accent sur la nécessité d’interventions précoces ciblant la santé endothéliale, l’étude ouvre la voie à des thérapies visant à stabiliser les niveaux de TDP-43 dans les cellules endothéliales, ce qui pourrait potentiellement retarder la progression de ces maladies. En conclusion, cette recherche appelle à une reconsidération du rôle des vaisseaux sanguins dans les maladies neurodégénératives, en soulignant leur participation active dans la progression de la maladie et en suggérant que la préservation de l’intégrité vasculaire est cruciale pour prolonger la santé cognitive et la longévité. Source : https://longevity.technology/news/research-links-tdp-43-loss-in-blood-vessels-to-neurodegeneration/

Trimtech lève 31 millions de dollars pour combattre les maladies neurodégénératives avec la dégradation ciblée des protéines

Trimtech Therapeutics, une biotech britannique, a récemment levé 31 millions de dollars en financement de démarrage pour développer des thérapies ciblées de dégradation des protéines destinées aux maladies neurodégénératives et inflammatoires. Cet investissement permettra à Trimtech de perfectionner ses dégradants sélectifs des agrégats, une classe de thérapeutiques capables de pénétrer le système nerveux central (CNS) et de traiter des maladies telles qu’Alzheimer et Huntington. L’entreprise se concentre sur l’exploitation des propriétés uniques de TRIM21, une ligase ubiquitine E3 exprimée dans la plupart des tissus, pour dégrader sélectivement les agrégats de protéines responsables de maladies tout en préservant les formes fonctionnelles natives de ces protéines. Ce mécanisme vise à surmonter les limites des technologies existantes de dégradation ciblée des protéines, qui peinent souvent à faire la différence entre les agrégats nocifs et les monomères essentiels. L’activation de TRIM21 est déclenchée par le regroupement induit par le substrat, ce qui signifie qu’il ne devient actif qu’en présence de cibles multimériques telles que les oligomères et les agrégats. Une fois engagé, TRIM21 marque ces cibles pour leur dégradation via le système ubiquitine-protéasome. Trimtech a conçu deux plateformes de dégradants, TRIMTACs et TRIMGLUEs, qui exploitent ce mécanisme. Les TRIMTACs sont des molécules bispécifiques qui recrutent directement TRIM21 vers une protéine cible spécifique pour sa dégradation, tandis que les TRIMGLUEs facilitent l’interaction entre TRIM21 et sa cible en exploitant des interactions de liaison mutuelle cryptiques, utiles dans les cas où aucun ligand connu n’existe pour la protéine cible. Le tour de financement a été dirigé par Cambridge Innovation Capital et le Dementia Discovery Fund de SV Health Investors, auxquels se sont joints d’autres investisseurs comme Eli Lilly et Company et Pfizer Ventures. Le PDG de Trimtech, Nicola Thompson, a salué cet investissement comme une validation de l’approche unique de l’entreprise pour cibler l’élimination sélective des protéines agrégées, qui sont à l’origine de nombreuses maladies du SNC. Avec plus de 55 millions de personnes touchées par la maladie d’Alzheimer et des millions d’autres souffrant de troubles neurodégénératifs, cette innovation pourrait transformer le traitement de ces patients. Source : https://longevity.technology/news/trimtech-lands-31m-to-combat-neurodegenerative-diseases-with-targeted-protein-degradation/

Le Rôle de la Protéine PINK1 dans la Maladie de Parkinson et son Impact sur les Hommes

La maladie de Parkinson est une affection neurodégénérative qui affecte les neurones moteurs du cerveau et se manifeste souvent par des tremblements, une rigidité musculaire et des problèmes de coordination. Elle est deux fois plus fréquente chez les hommes que chez les femmes, et les raisons de cette disparité demeurent floues. Des recherches récentes ont mis en lumière un facteur potentiel : une réaction auto-immune ciblant la protéine PINK1, qui est plus prononcée chez les patients masculins atteints de Parkinson. PINK1 joue un rôle crucial dans la fonction mitochondriale, essentielle pour la production d’énergie et la régulation des cellules cérébrales. Les mutations de PINK1 sont également associées à une forme familiale précoce de la maladie. Cette découverte pourrait servir de biomarqueur pour des traitements ciblant spécifiquement la pathologie chez les hommes. En effet, une étude a révélé que les hommes atteints de Parkinson présentent un nombre de cellules T spécifiques à PINK1 six fois plus élevé que les participants sains, tandis que les femmes n’affichent qu’une augmentation de 0,7 fois. Ces cellules T semblent voir PINK1 comme une menace, provoquant une inflammation et la mort cellulaire dans le cerveau. Par ailleurs, les chercheurs ont noté que les patients atteints de Parkinson peuvent également avoir des réponses T cellulaire dirigées contre une autre protéine, l’alpha-synucléine, qui est également liée à l’inflammation cérébrale. Cependant, tous les patients ne montrent pas cette réponse, ce qui pousse à rechercher d’autres antigènes pouvant déclencher des réponses T cellulaires nuisibles. Les résultats récents suggèrent que PINK1 pourrait être un de ces antigènes, ouvrant la voie à des diagnostics plus précoces et à une meilleure compréhension de la maladie de Parkinson, en particulier chez les hommes. Source : https://www.fightaging.org/archives/2025/03/t-cells-targeting-pink1-may-explain-the-greater-incidence-of-parkinsons-in-men/

L’Intégration de l’IA et de la Médecine de Précision pour Prolonger la Durée de Vie en Bonne Santé

Le Dr Fady Hannah-Shmouni, un expert en endocrinologie et médecine de la longévité, se positionne à l’avant-garde de l’intégration des technologies avancées dans la science de la santé. En tant que fondateur de Healthspan Digital Inc, il développe des outils innovants tels que des miroirs intelligents alimentés par l’IA et des plateformes d’analyse multi-omiques modulaires, visant à redéfinir la manière dont nous surveillons et optimisons la santé hormonale pour prolonger la vitalité et la longévité. Son travail s’étend à la génétique endocrinienne, à la santé métabolique et aux interventions permettant de réduire le fossé entre la durée de vie et la durée de santé. Le Sommet Mondial sur la Santé, qui se déroule à Riyad, réunit des leaders du monde scientifique, de l’investissement et de la politique pour discuter de l’application des avancées dans la recherche sur le vieillissement. Parmi les panels, la session ‘Technologie dans l’échange sur la santé’ mettra en avant les dernières technologies de longévité. Hannah-Shmouni souligne que les technologies de santé numériques, comme les diagnostics alimentés par l’IA et les dispositifs de suivi de la santé, redéfinissent les soins proactifs et favorisent un écosystème de santé connecté. Il est également impliqué dans des recherches sur les thérapies ciblant les cellules sénescentes et sur l’utilisation d’outils pilotés par l’IA pour personnaliser les interventions de santé. De plus, il explique comment les facteurs génétiques influencent le vieillissement et comment les choix de mode de vie peuvent modifier cette trajectoire. Les avancées en reprogrammation épigénétique visent également à inverser le vieillissement cellulaire. Hannah-Shmouni et son équipe utilisent des logiciels d’analyse multi-omiques pour fournir des recommandations personnalisées. En regardant vers l’avenir, Healthspan Digital vise à démocratiser les avancées en matière de santé, rendant ces outils de longévité accessibles à tous, notamment par le biais de Hubs de santé qui combinent installations médicales et centres de bien-être. Source : https://longevity.technology/news/harnessing-ai-and-precision-medicine-to-extend-healthspan/