Étiquette : survie cellulaire

Nanostructures Ingénierées pour Prévenir la Toxicité des Protéines Amyloïdes dans la Maladie d’Alzheimer

Des scientifiques ont créé des nanostructures conçues qui se lient aux monomères et oligomères de la protéine amyloïde bêta (Aβ), empêchant leur entrée dans les neurones et augmentant considérablement la survie cellulaire in vitro. Les protéines mal repliées sont considérées comme responsables de maladies telles que la maladie d’Alzheimer et la sclérose latérale amyotrophique (SLA). La maladie d’Alzheimer est caractérisée par l’agrégation de plaques amyloïdes entre les cellules cérébrales, mais l’élimination de ces plaques a un impact limité sur la maladie. Des recherches récentes indiquent que les fibrilles et oligomères solubles de l’Aβ, qui peuvent entrer dans les cellules, sont plus dommageables que les plaques et sont plus étroitement liés au déclin cognitif. Les scientifiques cherchent des outils chimiques meilleurs pour cibler ces protéines nuisibles, et une étude de l’Université Northwestern propose l’utilisation d’amphiphiles peptidiques (TPA) qui s’auto-assemblent en longues nanofibres. Les chercheurs ont combiné plusieurs éléments pour créer des fibres personnalisées destinées à se lier à l’Aβ, y compris des chaînes courtes d’acides aminés et un sucre naturel appelé tréhalose, connu pour sa capacité à stabiliser les protéines mal repliées. Malgré des attentes initiales, le tréhalose a en fait destabilisé les nanofibres, rendant ces assemblages plus réactifs et capables de piéger les peptides Aβ42, une sous-catégorie particulièrement nocive. En co-culture avec des neurones humains dérivés de cellules souches pluripotentes induites (iPSCs), les chercheurs ont observé que, en présence de TPA, l’Aβ42 ne s’accumulait pas dans les lysosomes neuronaux, ce qui a amélioré la survie des neurones. Leur étude met en lumière le potentiel des nanomatériaux conçus pour traiter les causes sous-jacentes des maladies neurodégénératives. Cependant, des questions subsistent, telles que la possibilité de livrer les structures TPA au système nerveux central et si le nettoyage des conjugats TPA-Aβ42 serait nécessaire. Ces résultats ouvrent la voie à une révolution potentielle dans le traitement de la maladie d’Alzheimer, en particulier à un stade précoce. Source : https://www.lifespan.io/news/nanostructures-trap-amyloid-beta-rescuing-neurons/?utm_source=rss&utm_medium=rss&utm_campaign=nanostructures-trap-amyloid-beta-rescuing-neurons

Le rôle du facteur de transcription EB dans la sénescence cellulaire et la survie des cellules stressées

Dans cet article publié dans Aging Cell, les chercheurs explorent le rôle du facteur de transcription EB (TFEB) dans la sénescence cellulaire, en mettant en lumière son interaction avec le mécanisme de l’autophagie et le fonctionnement des lysosomes. Ils soulignent que le TFEB, lorsqu’il est inactivé par la voie de signalisation mTOR, a un impact significatif sur la survie des cellules stressées. Lorsque mTOR est actif, TFEB est phosphorylé et devient inactif dans le cytosol, mais en cas de stress nutritionnel ou lorsque les lysosomes sont sollicités, TFEB est activé, modifiant ainsi le fonctionnement lysosomal. Les chercheurs ont observé que lors d’une phase de stress, induite chimiquement chez des fibroblastes dermiques humains, TFEB était localisé dans le noyau, ce qui indique son activation, tandis que mTOR était inactif. Une fois les cellules devenues sénescentes, TFEB était inactivé dans le cytosol. L’étude met également en avant le paradoxe de la signalisation de mTOR durant la sénescence : bien qu’il active des composants du phénotype sécrétoire associé à la sénescence (SASP), il est inactif en raison du stress, ce qui permet à TFEB de jouer un rôle protecteur. En expérimentant avec des cellules sur-exprimant TFEB, les chercheurs ont constaté que ces cellules avaient un taux de survie plus élevé face à la sénescence, bien qu’elles progressent tout de même vers cet état. Cela suggère que TFEB n’est pas directement responsable de la sénescence, mais qu’il est un mécanisme de survie cellulaire, permettant aux cellules de persister malgré le stress. Les implications de cette recherche pourraient mener à l’utilisation d’inhibiteurs de TFEB comme des agents pré-sénolytiques, pour cibler les cellules stressées et éviter qu’elles ne sécrètent des substances inflammatoires nuisibles. Source : https://www.lifespan.io/news/tfeb-lets-cells-live-long-enough-to-become-senescent/?utm_source=rss&utm_medium=rss&utm_campaign=tfeb-lets-cells-live-long-enough-to-become-senescent