Étiquette : souris

L’acide lithocholique : un mimétique de la restriction calorique pour améliorer la longévité

Cette étude récente révèle que l’acide lithocholique, un métabolite présent dans le sérum de souris soumises à une restriction calorique, peut imiter les effets bénéfiques de cette restriction. La restriction calorique, qui améliore la durée de vie et la santé des organismes modèles, y compris les humains, active des voies métaboliques essentielles, notamment la kinase activée par l’AMP (AMPK), un régulateur clé des processus liés au vieillissement. Les chercheurs ont administré à des souris pendant quatre mois une restriction calorique, puis ont traité des lignées cellulaires avec du sérum de ces souris. Cela a activé AMPK dans les cellules, suggérant que le sérum imite les effets de la restriction calorique. Toutefois, l’utilisation de sérum entier n’est pas pratique, car un ou quelques molécules spécifiques en sont probablement responsables. Grâce à la spectrométrie de masse, les chercheurs ont identifié plus de mille métabolites, dont près de sept cents modifiés par la restriction calorique. Ils ont mis en évidence six métabolites actifs, mais seuls l’acide lithocholique (LCA) a montré une activation significative d’AMPK à des concentrations physiologiques. Lors des tests ultérieurs, l’administration de LCA à des souris âgées a entraîné des améliorations notables de la performance physique et des marqueurs moléculaires liés à la santé. Bien que l’effet de LCA sur la durée de vie soit modeste chez les souris, il a montré des prolongements significatifs de la durée de vie chez d’autres organismes modèles comme C. elegans et D. melanogaster. De plus, l’étude souligne le rôle des microbes intestinaux dans le métabolisme du LCA, qui augmentent pendant la restriction calorique, et suggère que le LCA pourrait être un mimétique de la restriction calorique, reproduisant ses effets bénéfiques sur la santé et le vieillissement. Ces résultats ouvrent des perspectives sur l’utilisation de LCA dans la promotion de la longévité et l’amélioration de la santé sans nécessiter de restriction calorique. Source : https://www.lifespan.io/news/receiving-the-benefits-of-caloric-restriction-without-practicing-it/?utm_source=rss&utm_medium=rss&utm_campaign=receiving-the-benefits-of-caloric-restriction-without-practicing-it

Évaluation de la Fonction Mitochondriale : Déclin et Adaptations Liés à l’Âge

La mesure en biologie est souvent complexe et sujette à débat, en particulier en ce qui concerne la fonction mitochondriale qui est connue pour décliner avec l’âge. Les mitochondries, considérées comme les centrales énergétiques des cellules, produisent l’ATP, une molécule essentielle pour le fonctionnement cellulaire. Historiquement, mesurer la fonction mitochondriale nécessitait l’utilisation de mitochondries vivantes, ce qui posait des défis en termes de coûts, de révisions, de biais et d’erreurs dans la collecte de ces mitochondries à partir d’animaux ou de personnes. Cependant, une méthode robuste pour l’évaluation des échantillons congelés a été récemment développée, permettant aux chercheurs de vérifier le consensus actuel sur le déclin mitochondrial lié à l’âge. Un dispositif appelé respiromètre est utilisé pour mesurer l’activité mitochondriale en détectant la consommation d’oxygène par les organelles. Auparavant, cette méthode ne pouvait être appliquée qu’à des mitochondries fraîchement isolées, rendant difficile l’étude de ces dernières en grand nombre. Grâce à un nouveau protocole d’analyse respiratoire, des chercheurs ont maintenant mesuré une indication de la respiration mitochondriale dans plus de 1 000 échantillons provenant d’une grande cohorte de souris jeunes et âgées, de deux sexes. Ces échantillons incluaient des tissus connus pour leur activité mitochondriale élevée, tels que certaines régions du cerveau, plusieurs muscles squelettiques, le cœur et les reins, ainsi que des tissus métaboliques comme le foie et le pancréas. En raison du processus de congélation et de décongélation, les mitochondries des échantillons n’étaient pas intactes et ne pouvaient donc pas être isolées. Les chercheurs ont mesuré la respiration mitochondriale à trois sites différents de la chaîne de transport d’électrons dans des extraits cellulaires enrichis en membranes mitochondriales. Les protéines de cette chaîne restent relativement stables même lorsque l’intégrité de la membrane mitochondriale est perdue, permettant ainsi de prendre des mesures indiquant la capacité maximale des mitochondries à produire de l’ATP. L’analyse des différences entre les animaux jeunes et âgés a révélé un déclin net de l’activité mitochondriale dans la plupart des tissus avec l’âge, notamment dans le cerveau et les tissus métaboliques. Ces résultats confirment notre compréhension actuelle des besoins énergétiques des différents tissus et de leur déclin au fil du temps. Fait intéressant, chez les animaux plus âgés, la respiration a augmenté dans certains tissus à forte demande énergétique, comme le cœur et les muscles squelettiques, ce qui est potentiellement en contradiction avec l’observation que ces organes fonctionnent moins bien avec l’âge. L’analyse des différences entre les échantillons mâles et femelles a également révélé que l’âge a un effet beaucoup plus important sur l’activité mitochondriale dans tous les tissus que le sexe. Source : https://www.fightaging.org/archives/2025/01/assessing-mitochondrial-decline-with-age-using-frozen-tissue-samples/

L’impact de l’acide lithocholique sur le vieillissement et la santé : Une étude prometteuse

Les chercheurs soutiennent que l’acide lithocholique, un acide biliaire produit lorsque le microbiome traite la bile, pourrait jouer un rôle dans la capacité de la restriction calorique à ralentir le vieillissement et à prolonger la vie des espèces à courte . Des études antérieures ont montré que l’administration d’acide lithocholique à des levures ralentit le , tandis que les centenaires présentent un qui produit plus d’acide lithocholique. Bien que les mécanismes impliqués soient réels, il est difficile de déterminer dans quelle mesure les bienfaits de la restriction calorique ou d’un microbiome intestinal modifié proviennent de voies impliquant l’acide lithocholique. Les thérapies ciblant cette substance pourraient être intéressantes, mais il est difficile de dire sans essais. En général, la bile est moins fascinante que la longévité, mais cela pourrait bientôt changer. La bile, composée principalement d’eau, de bilirubine, de cholestérol et d’acides biliaires, est synthétisée dans le foie, stockée dans la vésicule biliaire et libérée dans l’intestin grêle pour émulsifier les graisses alimentaires et améliorer l’absorption des vitamines liposolubles. Les bactéries résidentes de l’intestin convertissent les acides biliaires primaires en acides biliaires secondaires, dont certains sont réabsorbés dans la circulation sanguine. Des études antérieures ont identifié les acides biliaires comme des composés bénéfiques pour la santé. Les acides dafachroniques, qui sont structurellement liés à l’acide lithocholique, prolongent la durée de vie des vers nématodes, et l’acide lithocholique prolonge la durée de vie des levures et des des fruits. Chez les mammifères, l’acide lithocholique ne prolonge pas la durée de vie, mais il modifie la physiologie de manière bénéfique, notamment en abaissant les niveaux de hépatiques, de glucose sanguin et d’ systémique, en activant le récepteur des acides biliaires TGR5. L’acide lithocholique est également impliqué dans les effets de prolongation de la durée de vie de la de intestinal de jeunes vers des souris âgées, bien que les mécanismes de ces bénéfices restent flous. Dans une étude récente, des chercheurs ont administré de l’acide lithocholique à des souris âgées pendant un mois, et ces souris ont montré des bénéfices pour la santé similaires à ceux induits par la restriction calorique, tels qu’une amélioration de la régénération musculaire, de la force de préhension et de la sensibilité à l’insuline. Ces effets dépendaient de l’AMPK. Fait intéressant, l’acide lithocholique a augmenté les niveaux de l’hormone GLP-1 sans provoquer de perte musculaire, contrairement aux médicaments populaires pour la perte de poids qui se lient au récepteur GLP-1. Chez les nématodes et les mouches, l’acide lithocholique active l’AMPK, augmente la résistance au stress et prolonge la durée de vie, mais ces bénéfices étaient annulés lorsque le gène codant l’AMPK était supprimé dans les animaux. Après avoir écarté le TGR5 comme médiateur des effets de l’acide lithocholique, les chercheurs se sont concentrés sur l’enzyme SIRT1 et ont démontré que l’acide lithocholique stimule SIRT1 pour réguler à la hausse l’AMPK. L’implication du microbiote intestinal dans la production d’acide lithocholique et les bénéfices de la restriction calorique pourraient expliquer pourquoi les transplantations fécales d’animaux jeunes améliorent la santé et augmentent la durée de vie des animaux âgés, et pourquoi certaines souris ne répondent pas à la restriction calorique.