Étiquette : signalisation cellulaire

Nouvelle Découverte sur l’Action de la Metformine dans le Cerveau

Une nouvelle étude révèle que, contrairement à de nombreux autres médicaments hypoglycémiants, la metformine est régulée par la protéine Ras1 dans un sous-ensemble spécifique de neurones. L’injection de petites doses de metformine dans le cerveau a montré des effets significatifs sur le métabolisme du glucose, ce qui remet en question les connaissances antérieures sur son mécanisme d’action. Utilisée depuis des décennies, la metformine est reconnue non seulement pour son efficacité à abaisser la glycémie, mais également pour ses effets bénéfiques sur la perte de poids et la sensibilité à l’insuline. Bien que des études précédentes aient suggéré que la metformine agissait principalement par les organes périphériques comme le foie et l’intestin, cette nouvelle recherche du Baylor College of Medicine, publiée dans « Science Advances », met en lumière le rôle du cerveau dans les effets antidiabétiques de la metformine. Les chercheurs ont constaté que la protéine Rap1 dans l’hypothalamus joue un rôle central dans la régulation du métabolisme du glucose. En créant des souris déficientes en Rap1, ils ont observé que la metformine ne parvenait pas à abaisser significativement la glycémie, contrairement aux autres médicaments. Ceci suggère que Rap1 influence un cheminement spécifique à la metformine. Les chercheurs ont également injecté directement la metformine dans le cerveau, où de faibles doses ont produit un effet notoire, confirmant que le cerveau est un site d’action essentiel pour ce médicament. En activant ou en supprimant Rap1 dans des neurones spécifiques, ils ont prouvé que l’inhibition de cette protéine était cruciale pour les effets de la metformine. Cette découverte pourrait mener à de nouveaux traitements diabétiques ciblant directement le cerveau. De plus, les chercheurs envisagent d’explorer comment la signalisation de Rap1 dans le cerveau pourrait également être responsable des effets anti-vieillissement de la metformine. Source : https://www.lifespan.io/news/study-finds-metformins-action-is-regulated-by-the-brain/?utm_source=rss&utm_medium=rss&utm_campaign=study-finds-metformins-action-is-regulated-by-the-brain

Les Transfusions de Sang Jeune : Vers des Thérapies Innovantes contre le Vieillissement et l’Inflammation

La recherche sur les transfusions de fractions sanguines provenant de jeunes vers des individus âgés a montré des résultats variables chez les animaux et des résultats décevants dans les essais cliniques humains. Cependant, les chercheurs continuent à explorer les molécules présentes dans le sang jeune qui pourraient servir de base à des thérapies. Bien que les transfusions n’aient pas produit les effets escomptés, cela n’exclut pas l’existence de molécules spécifiques qui pourraient être administrées en quantités plus importantes pour obtenir des bénéfices. Les thérapies par cellules souches, qui offrent des avantages grâce aux signaux sécrétés par les cellules transplantées, mettent en lumière l’importance de la signalisation cellulaire pour modifier favorablement le comportement des cellules natives afin de réduire l’inflammation et d’améliorer la fonction des tissus. La recherche se concentre donc sur l’identification des bons signaux et des doses appropriées.

Des publications continuent d’émerger, comme l’article d’accès libre d’aujourd’hui, où les chercheurs rapportent la découverte de molécules spécifiques issues du sang jeune qui semblent produire des bénéfices chez des animaux âgés. Bien qu’il soit prématuré de prédire si ces découvertes mèneront à de nouvelles thérapies et à des entreprises biotechnologiques, certaines démonstrations précoces de bénéfices chez les souris sont intéressantes, avec la réduction de l’inflammation étant l’issue la plus commune.

Il est bien connu qu’il y a un déclin progressif de la fonction physiologique avec l’âge, et que le vieillissement est associé à une susceptibilité accrue aux blessures et aux infections. Plusieurs études ont montré que l’agilité de la jeunesse est caractérisée par des facteurs moléculaires de rajeunissement transférables, comme l’ont démontré les expériences de parabiose hétérochronique. Ces expériences ont révélé un effet rajeunissant du sang jeune sur les animaux âgés.

Il existe plusieurs efforts pour caractériser ces facteurs associés à la jeunesse dans le sang des jeunes. Dans ce rapport, nous montrons la résilience des jeunes souris, avant ou à l’âge de la puberté, face à une sepsie polymicrobienne, et nous démontrons un effet dépendant de l’âge des petites vésicules extracellulaires (EVs) provenant du plasma sur les résultats après une sepsie. Les EVs des jeunes souris ont montré un effet cytoprotecteur, anti-inflammatoire et ont réduit les marqueurs de sénescence cellulaire.

L’analyse par séquençage des microARN des EVs a révélé une signature associée à l’âge et identifié les microARN miR-296-5p et miR-541-5p dont les niveaux diminuent progressivement dans le plasma sanguin avec l’âge. Nous avons également montré que les niveaux de ces microARN diminuent avec l’âge dans plusieurs organes. Les microARN miR-296-5p et miR-541-5p ont montré un effet réparateur dans un modèle de cicatrisation in vitro, et le miR-296-5p, administré par injection intrapéritonéale, a réduit la mortalité dans le modèle murin de sepsie.

En résumé, nos études démontrent que les EVs provenant de très jeunes souris ont un effet réparateur sur la sepsie, et que les facteurs réparateurs sont probablement dépendants de la maturation. Notre observation que les miR-296-5p et miR-541-5p sont des constituants des EVs plasmatiques qui diminuent significativement avec l’âge et peuvent réduire l’inflammation suggère un potentiel thérapeutique pour ces microARN dans les maladies inflammatoires et liées à l’âge. Source : https://www.fightaging.org/archives/2025/07/identifying-anti-inflammatory-micrornas-in-extracellular-vesicles-from-young-mouse-blood/

Rôle des Microglies Sénescentes dans la Maladie d’Alzheimer et l’Efficacité de la Delphinidine

Les microglies sont des cellules immunitaires innées du cerveau, comparables aux macrophages dans le reste du corps. Des recherches récentes montrent que le comportement inflammatoire maladaptatif des microglies dans le cerveau vieillissant joue un rôle crucial dans l’apparition et la progression de maladies neurodégénératives comme la maladie d’Alzheimer. Certaines microglies deviennent inflammatoires en réponse à un environnement endommagé dans le tissu cérébral âgé, tandis que d’autres deviennent sénescentes, cessant de se répliquer et se concentrant sur la sécrétion de signaux inflammatoires perturbateurs, nocifs pour la structure et la fonction des tissus à long terme. De plus, des preuves émergentes suggèrent que les microglies sénescentes contribuent à la pathologie des β-amyloïdes et à la neuroinflammation dans la maladie d’Alzheimer. Cibler les cellules sénescentes avec des composés d’origine naturelle présentant une cytotoxicité minimale est une stratégie thérapeutique prometteuse. Cette étude visait à examiner si la delphinidine, un anthocyanine naturelle, peut atténuer les pathologies liées à la maladie d’Alzheimer en réduisant la sénescence microgliale et en élucidant les mécanismes moléculaires sous-jacents. Des souris APP/PS1 et des souris âgées naturellement ont été utilisées pour l’étude. Le traitement à la delphinidine a significativement amélioré les déficits cognitifs, la perte de synapses, et les plaques de peptides amyloïdes-β chez les souris APP/PS1, en régulant à la baisse la signature génique des microglies sénescentes, empêchant la sénescence cellulaire, y compris l’activité de la β-galactosidase associée à la sénescence, le phénotype sécrétoire associé à la sénescence (SASP), le stress oxydatif, et les marqueurs p21 et p16. De plus, le traitement à la delphinidine a également prévenu la sénescence microgliale chez les souris âgées naturellement. Des recherches supplémentaires ont indiqué que le traitement à la delphinidine améliore la voie de signalisation AMPK/SIRT1, et il a été constaté que la delphinidine interagissait directement avec SIRT1. Il est à noter que l’inhibiteur d’AMPK, le composé C, inversait l’effet protecteur de la delphinidine contre la sénescence microgliale. Ces résultats soulignent la delphinidine comme un agent anti-âge naturel prometteur contre le développement du vieillissement et des maladies liées à l’âge. Source : https://www.fightaging.org/archives/2025/07/reducing-microglial-senescence-slows-pathology-in-an-alzheimers-disease-mouse-model/

Effets de la Prostaglandine E2 sur la Régénération Musculaire et le Rajeunissement des Cellules Souches

Une étude récente a examiné l’effet d’un traitement unique de prostaglandine E2 (PGE2) sur l’amélioration de la force musculaire et le rajeunissement des cellules souches musculaires chez des souris. Les chercheurs ont exploré les aspects moléculaires et épigénétiques sous-jacents à ce rajeunissement. La sarcopénie, une perte de masse et de force musculaire liée à l’âge, augmente les risques d’autres conditions telles que l’ostéoporose et le déclin cognitif. Cette perte est attribuée à une diminution significative du nombre et de la fonction des cellules souches musculaires, nécessaires à la régénération des muscles squelettiques. Le vieillissement entraîne également des modifications de l’environnement microbien des cellules souches musculaires, perturbant la signalisation et aboutissant à une réduction de l’auto-renouvellement et une augmentation de la sénescence. Trouver des moyens d’inverser ces processus pourrait être une avenue prometteuse pour atténuer la sarcopénie et accélérer la récupération après une blessure. Dans une étude précédente, les chercheurs avaient rapporté que PGE2, un métabolite dérivé des lipides, est essentiel pour la régénération musculaire, et que son niveau diminue avec l’âge en raison d’une augmentation de l’enzyme 15-hydroxylprostaglandin déshydrogénase (15-PGDH). Lors d’une expérience, des souris jeunes et âgées génétiquement modifiées, dépourvues de récepteurs EP4, ont montré une réduction de 20 % de la force musculaire et de la masse musculaire. Des souris âgées ont été traitées pendant cinq jours avec un analogue de PGE2 non hydrolysable, associé à un exercice de course en descente. Deux semaines après le début de l’expérience, une augmentation de la force musculaire a été observée, indiquant que même un traitement bref avec PGE2, combiné à l’exercice, peut partiellement surmonter la sarcopénie. En simulant une blessure musculaire chez des souris âgées avec une toxine, les chercheurs ont constaté qu’une seule injection de PGE2 augmentait la régénération musculaire et la force. Ce traitement a également révélé un effet positif à long terme sur la capacité régénérative des cellules souches musculaires. Les cellules souches musculaires traitées avec PGE2 ont montré une augmentation de 60 % de leur prolifération et une réduction de trois fois de la mortalité cellulaire. Les chercheurs ont découvert que PGE2 agit comme un ‘réveil’ pour les cellules souches, mais que le vieillissement affaiblit ce signal. Des analyses ont montré que le traitement à PGE2 réactive des gènes impliqués dans la régénération, suggérant des changements épigénétiques responsables d’une ‘mémoire moléculaire’ de la régénération. Les effets régénérateurs du traitement PGE2 persistent bien après l’injection, et les résultats sont prometteurs pour le traitement de la sarcopénie chez les humains. Les auteurs croient que le potentiel thérapeutique de PGE2 pourrait également s’étendre à d’autres tissus vieillissants, visant à améliorer la qualité de vie en inversant les effets du vieillissement. Source : https://www.lifespan.io/news/lipid-metabolite-rejuvenates-muscle-stem-cells-in-mice/?utm_source=rss&utm_medium=rss&utm_campaign=lipid-metabolite-rejuvenates-muscle-stem-cells-in-mice

Rétablir la fonction des cellules souches musculaires vieillissantes grâce à la prostaglandine E2

Les chercheurs se concentrent sur un mécanisme de signalisation qui diminue avec l’âge, notamment l’interaction entre la prostaglandine E2 (PGE2) circulante et son récepteur EP4 sur les cellules souches musculaires. Il a été observé que les niveaux de PGE2 et de son récepteur diminuent avec l’âge, ce qui semble altérer de manière générale la fonction des cellules souches musculaires. Des études antérieures ont établi que PGE2 joue un rôle crucial dans la régénération des muscles après une blessure, en signalant aux cellules souches musculaires de se mobiliser pour réparer les tissus endommagés, particulièrement chez les jeunes souris. Cependant, chez les souris âgées, l’expression du récepteur EP4 sur les cellules souches musculaires est soit absente, soit réduite de moitié par rapport aux jeunes cellules souches. Les chercheurs notent que la diminution des niveaux de PGE2 et de son récepteur entraîne une signalisation affaiblie, comparant cela à un réveil qui ne sonne plus assez fort pour activer les cellules souches. Cependant, il est possible de surmonter les effets du vieillissement et de réinitialiser l’intensité de ce signal cellulaire. Dans leurs études, ils ont administré une forme stable de PGE2 à des souris âgées après une blessure musculaire, en association avec un exercice physique. Les souris traitées ont gagné plus de masse musculaire et étaient plus fortes que les souris non traitées. Cette recherche a révélé que le traitement par PGE2 restaure la fonction des cellules souches en modulant l’activité de facteurs de transcription clés, inversant ainsi de nombreux changements liés à l’âge. Les preuves suggèrent que PGE2 n’agit pas uniquement sur un mécanisme ; il peut également bénéficier aux fibres musculaires et aux neurones qui innervent le muscle. De plus, la PGE2 a été impliquée dans le processus de régénération et la signalisation pour d’autres tissus comme l’intestin et le foie, ouvrant ainsi la voie à des approches qui pourraient restaurer la capacité de renouvellement d’autres tissus âgés. Source : https://www.fightaging.org/archives/2025/06/prostaglandin-e2-delivery-improves-stem-cell-function-in-aged-muscle/

Les Approches Compensatoires dans le Traitement de la Maladie d’Alzheimer : Le Rôle de la Caveoline-1

La recherche sur la maladie d’Alzheimer (MA) se concentre sur les approches compensatoires visant à améliorer la capacité des cellules à fonctionner en dépit des dommages plutôt que de traiter directement ces dommages. Cela peut ralentir inévitablement la progression de la maladie, mais ne constitue pas une voie vers une thérapie curative. Les avancées majeures dans le traitement du vieillissement et des maladies associées nécessitent une amélioration de cette approche. La MA est un trouble neurodégénératif dévastateur, caractérisé par une perte synaptique progressive et un déclin cognitif. La thérapie génique qui augmente les voies neuroprotectrices intrinsèques offre une stratégie prometteuse pour atténuer la neurodégénérescence et prévenir une perte cognitive supplémentaire. La caveoline-1 (Cav-1), une protéine de structure des radeaux lipidiques, régule plusieurs voies de signalisation pro-croissance et pro-survie au sein des microdomaines plasmatiques. Des études précédentes ont montré que l’administration de Cav-1 (SynCav1) chez des souris présymptomatiques préservait les fonctions cognitives et le signalement neurotrophique associé aux radeaux lipidiques. Cependant, le potentiel thérapeutique de SynCav1 administré à un stade symptomatique n’avait pas été testé. Cette étude actuelle a donc examiné l’effet de l’administration de SynCav1 au niveau de l’hippocampe chez des souris présentant des modèles précliniques distincts de pathologie amyloïde : les souris PSAPP et APPKI. Les résultats ont montré que l’administration de SynCav1 aux souris PSAPP et APPKI à un âge symptomatique préservait de manière cohérente la mémoire dépendante de l’hippocampe. Le profil transcriptomique a révélé que les souris PSAPP-SynCav1 avaient un profil transcriptomique similaire à celui des souris sauvages appariées par âge. L’analyse d’enrichissement de l’ontologie génétique a indiqué une régulation à la baisse des voies spécifiques de neurodégénérescence et une régulation à la hausse des voies liées aux synapses et à la cognition chez les souris PSAPP-SynCav1. In vitro, les neurones corticaux primaires de souris transfectées avec SynCav1 ont montré une augmentation de l’expression des protéines p-CaMKII et p-CREB, suggérant que SynCav1 pourrait protéger le système nerveux central en améliorant l’activité neuronale et synaptique. De plus, une protéine neuroprotectrice dépendante de l’activité (ADNP) a été identifiée comme un candidat potentiel médiant les effets neuroprotecteurs de SynCav1 sur la cognition. La fractionnement membranaire subcellulaire a révélé que SynCav1 préservait le récepteur de polypeptide activant l’adénylate cyclase de l’hypophyse de type I (PAC1R), un régulateur bien connu de l’expression d’ADNP. Ensemble, ces résultats mettent en lumière SynCav1 comme un candidat prometteur pour la thérapie génique dans le traitement de la MA. Source : https://www.fightaging.org/archives/2025/06/caveolin-1-gene-therapy-reduces-cognitive-decline-in-an-alzheimers-mouse-model/

Le rôle du facteur de transcription EB dans la sénescence cellulaire et la survie des cellules stressées

Dans cet article publié dans Aging Cell, les chercheurs explorent le rôle du facteur de transcription EB (TFEB) dans la sénescence cellulaire, en mettant en lumière son interaction avec le mécanisme de l’autophagie et le fonctionnement des lysosomes. Ils soulignent que le TFEB, lorsqu’il est inactivé par la voie de signalisation mTOR, a un impact significatif sur la survie des cellules stressées. Lorsque mTOR est actif, TFEB est phosphorylé et devient inactif dans le cytosol, mais en cas de stress nutritionnel ou lorsque les lysosomes sont sollicités, TFEB est activé, modifiant ainsi le fonctionnement lysosomal. Les chercheurs ont observé que lors d’une phase de stress, induite chimiquement chez des fibroblastes dermiques humains, TFEB était localisé dans le noyau, ce qui indique son activation, tandis que mTOR était inactif. Une fois les cellules devenues sénescentes, TFEB était inactivé dans le cytosol. L’étude met également en avant le paradoxe de la signalisation de mTOR durant la sénescence : bien qu’il active des composants du phénotype sécrétoire associé à la sénescence (SASP), il est inactif en raison du stress, ce qui permet à TFEB de jouer un rôle protecteur. En expérimentant avec des cellules sur-exprimant TFEB, les chercheurs ont constaté que ces cellules avaient un taux de survie plus élevé face à la sénescence, bien qu’elles progressent tout de même vers cet état. Cela suggère que TFEB n’est pas directement responsable de la sénescence, mais qu’il est un mécanisme de survie cellulaire, permettant aux cellules de persister malgré le stress. Les implications de cette recherche pourraient mener à l’utilisation d’inhibiteurs de TFEB comme des agents pré-sénolytiques, pour cibler les cellules stressées et éviter qu’elles ne sécrètent des substances inflammatoires nuisibles. Source : https://www.lifespan.io/news/tfeb-lets-cells-live-long-enough-to-become-senescent/?utm_source=rss&utm_medium=rss&utm_campaign=tfeb-lets-cells-live-long-enough-to-become-senescent

Le Gène Klotho : Mécanismes Moléculaires et Potentiel Thérapeutique dans le Vieillissement

Le gène klotho, en particulier l’α-klotho, est largement reconnu pour son association avec la longévité. Il code pour une protéine transmembranaire qui est exprimée dans plusieurs organes, libérant une partie de sa structure dans le sang et les tissus, où elle interagit avec d’autres cellules. Des études sur des modèles animaux montrent qu’une expression augmentée du klotho améliore la santé et la durée de vie à un âge avancé, tandis qu’une diminution de cette expression a l’effet inverse. De plus, des niveaux accrus de klotho peuvent améliorer les fonctions cognitives, même chez les jeunes animaux. Chez les humains, il existe également une corrélation entre les niveaux circulants de klotho et la santé liée à l’âge. Les mécanismes par lesquels le klotho affecte la santé ne sont pas complètement compris, notamment en ce qui concerne son impact sur le cerveau, mais il est particulièrement bien étudié dans les reins, où il protège contre les dommages et la diminution de la fonction liée à l’âge. Un hypothèse suggère que ses effets sont secondaires à la fonction rénale, la perte de celle-ci contribuant à des problèmes liés à l’âge dans l’ensemble du corps. Toutefois, il semble également avoir des effets directs sur d’autres organes. Les défis liés aux mécanismes du vieillissement réside dans le fait que plusieurs processus interagissent simultanément, rendant difficile l’évaluation de l’impact relatif de chaque facteur sur la pathologie et la maladie. L’aging est un processus dynamique qui se déroule tout au long de la vie, entraînant une perte progressive de force et de fonction biologique, ce qui augmente la vulnérabilité physiologique aux maladies. Le klotho agit comme une protéine anti-vieillissement, jouant un rôle thérapeutique dans la physiopathologie de divers organes, notamment les reins et les muscles squelettiques. Il régule plusieurs voies biochimiques impliquées dans le vieillissement, comme la signalisation Wnt et la signalisation de l’insuline. De plus, l’expression et les niveaux circulants de klotho diminuent avec l’âge. Des études montrent que les niveaux sériques de klotho sont négativement corrélés avec l’âge et avec la mortalité toutes causes confondues, suggérant que des niveaux inférieurs de klotho peuvent accroître le risque de décès. Des recherches précliniques indiquent que la surexpression du gène klotho dans des souris transgéniques peut retarder ou inverser le vieillissement. Par conséquent, augmenter les niveaux de klotho apparaît comme une stratégie prometteuse pour traiter les maladies rénales diabétiques, la maladie rénale chronique et les troubles liés à l’âge. Source : https://www.fightaging.org/archives/2025/04/reviewing-the-role-of-klotho-in-aging-and-kidney-disease/

L’Héritage de Mikhail Blagosklonny : La Théorie de l’Hyperfonction et le Vieillissement

Mikhail Blagosklonny, un éminent scientifique, a profondément influencé le débat moderne sur les causes de l’âge, notamment par sa théorie de l’hyperfonction. Après sa mort, il est pertinent de réfléchir à ses contributions et à son dialogue avec d’autres chercheurs, tels qu’Aubrey de Grey. Blagosklonny a affirmé que l’hyperfonction, plutôt que l’accumulation de dommages, est à la base du vieillissement. Il a soutenu que l’hyperfonction des voies de signalisation entraîne des dommages organiques, plutôt qu’une accumulation de dommages moléculaires. Cette perspective remet en question les théories traditionnelles basées sur les dommages, qui considèrent que le vieillissement est principalement causé par des dommages génétiques et oxydatifs. Au cours d’un échange en 2021 avec de Grey, il a mis en avant que les dommages moléculaires, bien qu’ils s’accumulent, ne limitent pas nécessairement la durée de vie dans des conditions normales. Cependant, il a reconnu que si des interventions prolongent significativement la durée de vie, ces dommages peuvent devenir plus contraignants. De Grey, en réponse, a convenu que la théorie de l’hyperfonction offre des perspectives précieuses mais a insisté sur l’importance de la réparation des dommages pour traiter le vieillissement. Blagosklonny a également proposé que cibler les voies de croissance hyperactives pourrait atténuer le vieillissement et ses maladies associées, en se basant sur l’utilisation de la rapamycine, un inhibiteur du mTOR. Sa théorie a également inspiré l’émergence d’autres théories et modèles sur le vieillissement et la santé, tels que l’hypofonction, les programmes coûteux, la théorie des contraintes et la mort adaptative. En somme, le débat entre l’hyperfonction et les théories basées sur les dommages reste un sujet de recherche crucial pour l’avenir des interventions contre le vieillissement. Source : https://www.fightaging.org/archives/2025/01/a-snapshot-of-one-portion-of-the-ongoing-debate-over-causes-and-processes-of-aging/

Les Contributions de Mikhail Blagosklonny à la Théorie du Vieillissement : Une Analyse de l’Hypofonction

Mikhail Blagosklonny, un chercheur influent dans le domaine du vieillissement, a proposé la théorie de l’hyperfonction, qui soutient que le vieillissement est causé par une hyperactivité des voies de signalisation, plutôt que par l’accumulation de dommages moléculaires. Cette théorie a été discutée lors d’un échange avec Aubrey de Grey, un défenseur des théories basées sur les dommages, où Blagosklonny a affirmé que le vieillissement n’est pas seulement le résultat de dommages, mais d’une hyperfonction qui peut engendrer des dommages aux organes. Par exemple, il a comparé cela à une voiture qui roule vite dans une allée, entraînant des dommages non pas par rouille, mais par d’autres formes de dégradation. De Grey, tout en reconnaissant la validité de la théorie de l’hyperfonction, a fait valoir que la réparation des dommages reste essentielle pour traiter le vieillissement, soulignant que l’accumulation de dommages oxydatifs et génétiques joue également un rôle crucial. Ce débat met en évidence les paradigmes contrastés dans la recherche sur le vieillissement, mais renforce l’idée centrale de Blagosklonny selon laquelle les interventions sur le vieillissement devraient se concentrer sur la cible de l’hyperfonction. En s’appuyant sur cette théorie, Blagosklonny a proposé que cibler les voies de croissance suractives pourrait aider à atténuer le vieillissement et les maladies associées. Cela a conduit à l’exploration de la rapamycine, un inhibiteur de mTOR, comme agent thérapeutique potentiel. La théorie de l’hyperfonction, ainsi que le modèle de développement connexe de João Pedro de Magalhães, a inspiré un éventail croissant de théories programmatique, y compris l’hypofonction, les programmes coûteux, la théorie des contraintes et la mort adaptative. Source : https://www.fightaging.org/archives/2025/01/a-snapshot-of-one-portion-of-the-ongoing-debate-over-causes-and-processes-of-aging/