Étiquette : remyélinisation

Les avancées de la remyélinisation : thérapies par cellules souches neurales et sclérose en plaques

Les connexions axonales entre les neurones sont entourées de myéline, qui agit comme un isolant pour permettre la propagation des impulsions électriques le long de l’axone. Comme toutes les structures moléculaires dans le corps et le cerveau, le gainage de myéline subit des dommages continus et doit être maintenu en permanence pour prévenir les dysfonctionnements du système nerveux. Un groupe de cellules connu sous le nom d’oligodendrocytes est chargé de cette tâche. Des conditions, telles que la sclérose en plaques, où une perte excessive de myéline se produit, sont particulièrement débilitantes. Cependant, un degré de dommage myélinique moindre survient chez tout le monde avec l’âge, en partie en raison de la réduction de la fonction des oligodendrocytes, ce qui contribue à l’altération cognitive. Il est donc intéressant de suivre les recherches sur les conditions démyélinisantes comme la sclérose en plaques. Il est plausible que des thérapies futures capables d’atteindre un certain degré de remyélinisation chez les patients souffrant de démyélinisation sévère pourraient également aider à restaurer la perte de myéline chez les individus âgés. Tout dépend des détails fins. Les thérapies qui compensent les dommages et les dysfonctionnements en augmentant l’activité des oligodendrocytes seront probablement efficaces à la fois chez les personnes âgées et chez les patients atteints de sclérose en plaques, tandis que les thérapies curatives qui s’attaquent directement aux causes auto-immunes de la sclérose en plaques seront probablement peu utiles chez les personnes âgées. L’administration de cellules souches neurales dans le cerveau a été testée comme thérapie pour de nombreuses formes de neurodégénérescence, du moins dans des modèles animaux. Le passage de ce type de thérapie aux essais humains a progressé très lentement au cours des dernières décennies, avec des programmes de recherche et de développement principalement axés sur la maladie de Parkinson. L’article d’accès libre d’aujourd’hui est un exemple de l’application plus large des cellules souches neurales dans des modèles animaux, où les cellules transplantées induisent la remyélinisation pour réparer de graves dommages au gainage de myéline dans le cerveau. La capacité limitée des cellules progénitrices du système nerveux central à se différencier en oligodendrocytes limite la réparation des lésions démyélinisantes et contribue aux incapacités des personnes atteintes de sclérose en plaques progressive. La transplantation de cellules souches neurales (CSN) a émergé comme une approche thérapeutique sûre chez les personnes atteintes de sclérose en plaques progressive, où elle promet de guérir le système nerveux central blessé. Cependant, il est nécessaire d’évaluer soigneusement les mécanismes par lesquels les greffes de CSN pourraient promouvoir la remyélinisation du système nerveux central avant leur adoption clinique généralisée. Dans cette étude, nous avons utilisé des CSN directement induites comme source de transplantation novatrice pour stimuler la remyélinisation dans le système nerveux central. En utilisant un modèle murin de démyélinisation induite par le lysophosphatidylcholine (LPC), nous avons découvert que les CSN murines favorisent la remyélinisation en améliorant la différenciation des cellules progénitrices oligodendrocytaires endogènes et en se différenciant directement en oligodendrocytes matures. La transplantation de CSN murines chez des souris Olig1 knockout, qui présentent une remyélinisation altérée, a confirmé la capacité remyélinisante directe des greffes et la formation de nouvelles gaines de myéline exogènes. Nous avons également démontré que la xénotransplantation de CSN humaines est sûre chez les souris, les CSN humaines persistant à long terme dans les lésions démyélinisantes où elles peuvent produire de la myéline dérivée de greffes humaines. Nos résultats soutiennent l’utilisation des thérapies par CSN pour améliorer la remyélinisation dans les maladies démyélinisantes chroniques telles que la sclérose en plaques progressive. Source : https://www.fightaging.org/archives/2025/07/transplanted-neural-stem-cells-induce-remyelination-in-the-brains-of-mice/

FibroBiologics : Une avancée majeure dans la remyélinisation des fibres nerveuses

La société de biotechnologie FibroBiologics a annoncé une avancée dans le domaine de la recherche sur les maladies neurodégénératives, en démontrant que l’administration intraveineuse de fibroblastes peut favoriser la remyélinisation dans le cerveau des souris. La myéline est une couche isolante essentielle qui entoure les fibres nerveuses, permettant une communication efficace entre les neurones. Les dommages à la gaine de myéline sont caractéristiques de la sclérose en plaques et d’autres maladies neurodégénératives, entraînant une altération de la fonction nerveuse et une dégradation des capacités cognitives et motrices. La capacité à restaurer cette couche protectrice a des implications pour l’amélioration de la fonction neurologique et le ralentissement de la progression de la maladie. La remyélinisation est un mécanisme de réparation naturel qui, lorsqu’il fonctionne de manière optimale, peut aider à contrer les effets de la démyélinisation. Cependant, son efficacité diminue avec l’âge, rendant son échec un facteur majeur dans des conditions telles que la sclérose en plaques. Des recherches ont également démontré que la démyélinisation peut entraîner des déficits cognitifs et des changements structurels dans le cerveau similaires à ceux observés dans la maladie d’Alzheimer. FibroBiologics possède un large portefeuille de brevets concernant des thérapies pour les maladies chroniques basées sur les fibroblastes. La société a mené des études sur le modèle animal de cuprizone, qui permet d’étudier les mécanismes de démyélinisation et de remyélinisation. Les résultats ont montré une augmentation « statistiquement significative » de l’expression de myéline dans les semaines suivant les traitements aux fibroblastes. Le Dr Hamid Khoja, directeur scientifique de FibroBiologics, a déclaré que cette confirmation démontre que les fibroblastes peuvent soutenir la régénération de la gaine de myéline, marquant une avancée potentiellement significative dans l’utilisation d’une thérapie cellulaire en médecine régénérative. Au lieu de se concentrer sur des thérapies basées sur des cellules souches, FibroBiologics exploite le potentiel régénérateur des fibroblastes, qui sont des cellules de tissu conjonctif responsables de diverses fonctions biologiques. La société vise à optimiser le potentiel thérapeutique des traitements basés sur les fibroblastes pour les maladies chroniques et les conditions liées à l’âge. Le PDG de FibroBiologics, Pete O’Heeron, a ajouté que la confirmation de la remyélinisation dans un second modèle animal validé est une étape importante dans leurs efforts de recherche et développement, offrant un nouvel espoir aux patients atteints de maladies démyélinisantes. En plus de ses recherches sur la remyélinisation, FibroBiologics explore les implications plus larges de la thérapie par fibroblastes sur la modulation immunitaire et la longévité, notamment son rôle potentiel dans l’atténuation de l’involution thymique, le déclin lié à l’âge de la glande thymus. Le Dr Khoja a souligné que le vieillissement est caractérisé par une inflammation systémique et chronique, accompagnée de sénescence cellulaire et immunitaire, conduisant à un éventail d’autres maladies chroniques au cours de la vie. L’objectif de FibroBiologics est d’utiliser les caractéristiques clés des fibroblastes pour développer des produits qui pourraient potentiellement aider à guérir ou traiter des maladies chroniques liées à l’âge. Source : https://longevity.technology/news/fibrobiologics-hails-brain-tissue-repair-breakthrough/

Les Avancées de la Recherche sur le Vieillissement et la Longévité

Fight Aging! est une plateforme dédiée à la publication de nouvelles et de commentaires sur les avancées visant à éradiquer les maladies liées à l’âge, en utilisant les mécanismes du vieillissement contrôlés par la médecine moderne. Cette newsletter hebdomadaire est envoyée à des milliers d’abonnés intéressés par le sujet. Le fondateur de Fight Aging!, Reason, propose également des services de conseil stratégique pour les investisseurs et entrepreneurs dans l’industrie de la longévité. Plusieurs articles récents explorent des sujets variés, tels que le rôle de la production d’amyloïde-β dans la maladie d’Alzheimer, les médicaments qui pourraient être repositionnés pour stimuler la remyélinisation, et l’implication de l’intestin dans le développement des synucléinopathies, notamment la maladie de Parkinson. Des recherches sont également en cours pour reprogrammer les cellules cancéreuses du côlon en cellules normales et pour réduire la métastase du cancer par des stratégies ciblées sur la famille des Rho-GTPases. D’autres études soulignent l’importance du métabolisme lipidique dans la maladie d’Alzheimer et l’impact du stress oxydatif sur les changements épigénétiques dans le cerveau vieillissant. La recherche sur les cellules souches hématopoïétiques montre que la production de sélénoprotéines antioxydantes diminue avec l’âge, tandis que les efforts pour développer des tissus musculaires cardiaques bio-ingénierés continuent de progresser. D’autres articles examinent les effets de régimes alimentaires végétaux sur la mortalité, les avantages de l’exposition au froid pour ralentir le vieillissement, et les changements épigénétiques liés à l’âge qui affectent la mémoire. Enfin, des recherches sur les signaux inflammatoires contribuant à la fibrillation auriculaire et des progrès dans la croissance de dents bio-ingénierés chez de grands mammifères sont également abordés. Source : https://www.fightaging.org/archives/2025/02/fight-aging-newsletter-february-17th-2025/

La Myéline et les Défis de la Remyélinisation : Vers de Nouvelles Thérapies

La myéline est une structure essentielle qui forme une gaine isolante autour des axones reliant les neurones, jouant un rôle crucial dans la conduction des impulsions nerveuses. La perte dramatique de myéline, comme c’est le cas dans des conditions telles que la sclérose en plaques, entraîne des symptômes graves et peut mener à la mort. Une perte moins importante de myéline se produit également avec l’âge et est associée à un déclin des fonctions cognitives et à des troubles tels que le déficit cognitif léger. Les mécanismes exacts par lesquels cette perte de myéline se produit restent peu compris. Les oligodendrocytes, responsables du maintien de la myéline, montrent des changements dans leur taille et leur activité, mais établir des connexions avec la biochimie moléculaire spécifique reste un défi. Actuellement, il n’existe pas de thérapie approuvée par la FDA pour améliorer la remyélinisation, malgré les efforts dans le développement de petites molécules. L’une des petites molécules examinées, la clémastine, a été arrêtée en raison d’effets secondaires inflammatoires préoccupants. Une autre molécule, le LL-341070, est en essai clinique pour le traitement de la dépression. L’étude se concentre sur la manière dont une démyélinisation légère stimule une réponse des oligodendrocytes pour réparer le problème, et sur le seuil à partir duquel cette réponse devient insuffisante. Des médicaments qui augmentent l’activité des oligodendrocytes pourraient théoriquement compenser les conditions de démyélinisation en déplaçant ce seuil. Même des médicaments ayant un effet trop faible pour être pertinents dans la sclérose en plaques pourraient être utiles pour le traitement de la démyélinisation liée à l’âge, bien qu’ils soient peu susceptibles d’être rigoureusement testés pour cette utilisation dans l’environnement réglementaire actuel. La remyélinisation est souvent incomplète, entraînant une démyélinisation chronique et une récupération fonctionnelle limitée. Comprendre les moteurs et les limites de la remyélinisation endogène ainsi que développer des méthodes pour l’améliorer sont des impératifs cliniques pour de nombreuses conditions démyélinisantes. L’étude a utilisé l’imagerie à deux photons et des enregistrements électriques pour examiner la dynamique de la remyélinisation endogène et induite par des thérapies. Un traitement par cuprizone a induit une perte d’oligodendrocytes et une augmentation de la latence de réponse visuelle. Une réponse de remyélinisation endogène a été observée après la perte d’oligodendrocytes, mais elle a échoué à restaurer la population d’oligodendrocytes après une démyélinisation modérée ou sévère. Le traitement par LL-341070 a considérablement augmenté l’oligodendrogénèse pendant la remyélinisation et a accéléré la récupération fonctionnelle neuronale, en éliminant le déficit de remyélinisation endogène. Bien que la restauration complète des oligodendrocytes et de la myéline ne soit pas nécessaire pour récupérer la fonction neuronale, le LL-341070 a restauré les niveaux d’oligodendrocytes et de myéline à ceux des souris saines du même âge. Source : https://www.fightaging.org/archives/2025/02/evaluating-drugs-that-might-be-repurposed-to-boost-remyelination/