Étiquette : régénération

Avancées Récentes en Biotechnologie de la Régénération et Longévité

Le mois de mai a été marqué par des avancées significatives dans le domaine de la biotechnologie de la régénération, notamment des progrès en nanomédecine, l’utilisation de cellules T pour lutter contre la sénescence, et la découverte de facteurs de transcription aux multiples applications potentielles. Le laboratoire des Hallmarks of Aging a également discuté de deux nouvelles caractéristiques du vieillissement. Le Longevity Investor Network (LIN) a été créé pour unir des entreprises prometteuses de technologie de longévité avec des investisseurs, dans le but de développer des technologies pour combattre les maladies liées à l’âge et maintenir une jeunesse biologique. Michael Levin, professeur à l’Université de Tufts, a souligné l’importance des motifs bioélectriques dans le développement et le vieillissement. Dans un éditorial, Peter Fedichev a évoqué la nécessité de nouvelles approches pour une extension radicale de la vie, tandis qu’une équipe de chercheurs a publié une revue sur les traitements personnalisés contre le vieillissement. Parmi les recherches, un article a exploré le rôle du facteur de transcription EB (TFEB) dans la promotion de la protéostasie. D’autres études ont montré que le transfert de microbiote de jeunes souris à des souris âgées peut améliorer divers aspects liés au vieillissement. Des découvertes récentes ont également mis en lumière des approches innovantes pour traiter des problèmes de peau liés au vieillissement, ainsi que l’identification de cellules T gamma delta efficaces contre la sénescence cellulaire. Des composés naturels comme l’apigénine montrent des propriétés de réduction de la sénescence et de lutte contre le cancer. Des essais cliniques ont révélé que des combinaisons thérapeutiques, comme celle du dasatinib et de la quercétine, peuvent avoir des effets bénéfiques sur la maladie d’Alzheimer. D’autres découvertes incluent l’utilisation de nanostructures pour piéger la protéine amyloïde bêta, des résultats prometteurs concernant des restrictions alimentaires sur la longévité chez des souris, et l’impact de la vitamine D sur l’attrition des télomères. Le forum de longévité 2060, qui se tiendra dans le sud de la France, vise à faire de la longévité une opportunité d’investissement majeure. Les investissements dans le secteur de la longévité ont plus que doublé en 2024, atteignant 8,5 milliards de dollars. Plusieurs autres études en cours visent à comprendre les dynamiques du vieillissement sanguin, les implications des restrictions caloriques, et la découverte de composés anti-vieillissement. Le paysage de la recherche sur le vieillissement continue d’évoluer rapidement, avec des implications potentielles pour la santé et la longévité humaine. Source : https://www.lifespan.io/news/rejuvenation-roundup-may-2025/?utm_source=rss&utm_medium=rss&utm_campaign=rejuvenation-roundup-may-2025

Les Révolutions Bioélectriques : Vers une Nouvelle Compréhension de la Biologie et du Vieillissement

Michael Levin, professeur à l’Université Tufts et directeur du Allen Discovery Center, a consacré de nombreuses années à l’étude des motifs bioélectriques et leur impact sur le développement et le vieillissement. Ses recherches montrent que cette facette souvent négligée de la biologie est d’une importance capitale et que maîtriser ses mécanismes pourrait un jour révolutionner la santé humaine et la longévité. En manipulant les canaux ioniques dans des cellules autres que les neurones, l’équipe de Levin a réussi à faire croître de nouveaux membres et organes, à supprimer le cancer et à créer des formes de vie qui semblent entièrement nouvelles. Ce travail soulève également des questions philosophiques profondes.

Levin a commencé sa carrière comme ingénieur logiciel, mais son intérêt pour la biologie et l’ingénierie électrique a été éveillé dès son enfance, notamment à cause de son asthme. En grandissant, il a été fasciné par la biologie, en particulier le développement des insectes. Lorsqu’il est arrivé aux États-Unis, il a découvert les ordinateurs et a réalisé que la biologie était une clé essentielle pour comprendre l’intelligence artificielle, puisque la biologie montre comment la chimie et la physique peuvent donner vie à des êtres avec des préférences et des compétences comportementales.

Il a terminé deux diplômes en sciences, l’un en informatique et l’autre en biologie, en mettant l’accent sur la biologie du développement. Levin considère que l’informatique et l’ingénierie l’ont aidé à aborder la biologie avec une nouvelle perspective, en lui permettant de réduire la complexité de la biologie en éléments significatifs. Sa recherche sur la bioélectricité est fascinante car elle cherche à comprendre comment l’intelligence émerge dans des systèmes biologiques complexes. Levin s’intéresse particulièrement à la manière dont les cellules forment une intelligence collective qui leur permet de naviguer dans un espace morphologique.

Levin explique que les processus de développement et de régénération ne se limitent pas à une séquence d’étapes chimiques, mais impliquent une navigation dans un espace complexe de problèmes. Il s’interroge sur la manière dont les cellules s’alignent pour atteindre un objectif commun lors du développement embryonnaire. Cette recherche l’a amené à explorer des concepts tels que la cognition et l’intelligence non seulement dans les neurones, mais également dans d’autres types de cellules. Il utilise une définition d’intelligence de William James, qui est la capacité de naviguer dans un espace de problèmes pour atteindre un objectif.

Levin souligne que la bioélectricité pourrait jouer un rôle essentiel dans le développement et la régénération, en expliquant comment les motifs bioélectriques peuvent influencer le développement d’organismes. Par exemple, il a réussi à manipuler les motifs bioélectriques de planaires pour influencer le nombre de têtes qu’elles développent après une régénération. Il affirme également que les cellules cancéreuses perdent leur capacité à communiquer avec leurs voisines, ce qui les amène à agir de manière autonome et à former des tumeurs. En reconnectant ces cellules, il espère pouvoir rediriger leur comportement vers des objectifs plus sains.

Levin évoque aussi la question philosophique de l’origine de l’information dans les cellules et comment celle-ci est stockée et interprétée. Il propose une vision où l’évolution, la physique et un espace de motifs préétabli jouent ensemble dans le développement des organismes et des intelligences. Il considère que les planaires, qui sont immortelles et capables de régénération, nous offrent des pistes sur la possibilité de vaincre le vieillissement. Il montre que le vieillissement n’est pas inévitable et que même les organismes avec des génomes apparemment désordonnés peuvent afficher une régénération exceptionnelle.

Actuellement, Levin travaille sur plusieurs entreprises visant à appliquer ses découvertes. Morphoceuticals se concentre sur la régénération des membres chez les mammifères, Fauna Systems sur la création de machines vivantes synthétiques, et Astonishing Labs sur l’étude du vieillissement. Levin imagine un avenir où la biologie pourrait être reprogrammée pour permettre aux humains de choisir leur forme corporelle et prolonger leur vie, en utilisant des interfaces bioélectriques pour rappeler aux cellules leurs objectifs morphologiques. En fin de compte, il aspire à un monde où les individus pourraient concevoir leur propre corps et vivre sans les limitations imposées par l’évolution. Source : https://www.lifespan.io/news/michael-levin-on-bioelectricity-in-development-and-aging/?utm_source=rss&utm_medium=rss&utm_campaign=michael-levin-on-bioelectricity-in-development-and-aging

Ossium Health : Révolutionner la Médecine de Longévité par la Transplantation de Moelle Osseuse

Ossium Health, une entreprise de bio-ingénierie basée aux États-Unis, est à l’avant-garde d’un nouveau domaine dans la biobanque avec le développement de la première banque de moelle osseuse au monde, provenant de donneurs d’organes décédés. Fondée dans le but d’améliorer la vitalité humaine et d’étendre la durée de vie en bonne santé, Ossium a sécurisé 52 millions de dollars lors de son financement de Série C en 2023 pour faire avancer ses capacités de cryopréservation et de thérapie cellulaire. L’entreprise cherche à redéfinir la transplantation de moelle osseuse, en la considérant non pas comme une intervention de dernier recours mais comme une plateforme de médecine préventive pour la longévité. En remplaçant le système immunitaire d’un individu âgé par celui d’un donneur plus jeune, Ossium espère offrir une ‘réinitialisation immunitaire’ pour prévenir les maladies liées à l’âge. Kevin Caldwell, le PDG et co-fondateur d’Ossium, s’exprime sur l’importance de rendre ces thérapies régénératives accessibles et évolutives, tout en participant à des discussions interdisciplinaires sur la longévité lors du Vitalist Bay Summit à San Francisco. Le modèle d’Ossium vise également à surmonter les inégalités en matière de santé, en fournissant une diversité de donneurs pour les patients ayant besoin de greffes de cellules souches. Caldwell affirme que la transplantation de moelle osseuse pourrait traiter pratiquement toute maladie sanguine et immunitaire, et pourrait servir de thérapie préventive contre les maladies liées à l’âge causées par la sénescence immunitaire. Ossium cherche à établir des preuves cliniques solides pour soutenir ses méthodes, avec des études de cas prometteuses qui augmentent l’intérêt pour ses traitements. En fin de compte, Caldwell aspire à un avenir où le vieillissement ne rime plus avec déclin de la santé, mais où les individus auront la possibilité de redéfinir leur santé et leur longévité grâce à des interventions proactives. Source : https://longevity.technology/news/from-transplant-to-healthspan-ossium-is-banking-on-bone-marrow/

Médecine régénérative : Approches R3 pour lutter contre le vieillissement et les maladies neurodégénératives

La médecine régénérative se concentre sur le contrôle des cellules pour favoriser la régénération et le remplacement des tissus, en particulier dans le contexte de maladies liées à l’âge. Le paradigme R3, qui se compose de la réjuvénation, de la régénération et du remplacement, constitue un cadre essentiel pour comprendre les thérapies actuelles. La réjuvénation vise à restaurer la capacité fonctionnelle des cellules existantes, tandis que la régénération implique l’utilisation de cellules souches pour réparer ou faire repousser des tissus. Le remplacement, quant à lui, consiste à substituer des cellules perdues ou endommagées par des cellules fonctionnelles. Cette revue examine en profondeur la sénescence cellulaire et son rôle dans les troubles neurodégénératifs, en mettant en lumière comment elle contribue à l’apparition et à l’aggravation des maladies, tout en limitant l’efficacité des traitements traditionnels. Les stratégies basées sur les cellules, telles que la thérapie par cellules souches, le reprogrammation directe de lignées et la reprogrammation partielle, sont également explorées pour évaluer leur potentiel dans le traitement des maladies neurodégénératives. En ciblant les mécanismes sous-jacents du vieillissement et en développant des approches thérapeutiques innovantes, l’objectif est d’améliorer la qualité de vie des patients et de retarder, voire de renverser, le processus de vieillissement. Source : https://www.fightaging.org/archives/2025/04/cell-and-rejuvenation-therapies-as-a-basis-to-treat-neurodegenerative-conditions/

Régénération et Rajeunissement : Les Secrets des Planaires Immortelles

Certain espèces animales inférieures, telles que les planaires, sont capables de régénération exceptionnelle, pouvant régénérer un corps entier après avoir été coupées en deux. Ces espèces illustrent la frontière entre croissance développementale et régénération, car elles continuent d’utiliser des processus de développement à l’âge adulte, contrairement à la plupart des animaux supérieurs. De plus, les cellules germinales adultes subissent un rajeunissement, éliminant les changements liés à l’âge dans l’expression génétique. Des recherches ont montré que les planaires adultes s’engagent dans un processus de rajeunissement tout en régénérant des parties du corps perdues. Les espèces à longue durée de vie, comme les planaires d’eau douce, offrent des opportunités uniques pour découvrir des mécanismes évolutifs de prolongation de la santé et de la vie. Les planaires sont souvent qualifiées d’immortelles en raison de leur longue durée de vie et de leurs capacités uniques de régénération des tissus. On a observé que les télomères se raccourcissent, que les yeux changent, et que la descendance viable diminue chez les planaires plus âgées. Cependant, il n’a pas été systématiquement examiné si les planaires subissent un vieillissement et présentent un déclin dépendant de l’âge dans leurs fonctions physiologiques, cellulaires et moléculaires, en partie à cause des difficultés à mesurer la durée de vie dans un animal à longue durée de vie et à définir l’âge chez des planaires asexuées qui se reproduisent de manière végétative. Des lignées consanguines de la lignée sexuelle de S. mediterranea ont été établies pour étudier les variations génétiques et la biologie des chromosomes. Cette ressource offre une occasion unique d’examiner le vieillissement dans ce modèle à longue durée de vie et de démêler le contrôle génétique des effets environnementaux. Dans cette recherche, nous définissons l’âge chronologique comme le temps écoulé depuis la fécondation, ce qui nous permet de surmonter les défis liés aux lignées qui reposent sur la reproduction végétative. Nous rapportons que la lignée sexuelle de S. mediterranea présente un déclin physiologique dans les 18 mois suivant la naissance, incluant une architecture tissulaire altérée, une fertilité et une motilité réduites, et une augmentation du stress oxydatif. Le profilage monocellulaire des têtes de planaires jeunes et plus âgées a révélé une perte de neurones et de muscles, une augmentation de la glie, et a montré des changements minimes dans les cellules souches pluripotentes, ainsi que des signatures moléculaires du vieillissement à travers les tissus. Fait remarquable, l’amputation suivie de la régénération des tissus perdus chez les planaires plus âgées a conduit à une inversion de ces changements liés à l’âge dans les tissus, tant proximalement que distalement à la blessure, à des niveaux physiologiques, cellulaires et moléculaires. Notre travail suggère des mécanismes de rajeunissement dans les tissus neufs et anciens, qui coïncident avec la régénération des planaires, ce qui pourrait fournir des idées précieuses pour des interventions anti-vieillissement. Source : https://www.fightaging.org/archives/2025/04/planarians-undergo-rejuvenation-when-regrowing-lost-tissues/

Les avancées de la reprogrammation cellulaire pour des thérapies de rajeunissement

Le reprogrammation cellulaire complète se produit dans les premiers stades de l’embryon, entraînée par l’expression des facteurs de Yamanaka, souvent abrégés en OSKM. Ce processus transforme les cellules germinales adultes en cellules souches embryonnaires, réinitialisant les motifs épigénétiques et restaurant la fonction mitochondriale. Les chercheurs ont réussi à reproduire ce processus pour produire des cellules souches pluripotentes induites à partir de n’importe quel échantillon de cellule adulte. La reprogrammation partielle vise à exposer les cellules à l’expression des facteurs de Yamanaka suffisamment longtemps pour produire une réinitialisation des motifs épigénétiques et une amélioration de la fonction mitochondriale, mais pas trop longtemps pour ne pas changer l’état cellulaire d’autres manières. Cela est considéré comme une voie prometteuse pour la production de thérapies de rajeunissement, bien qu’il existe de nombreux défis à surmonter pour atteindre cet objectif clinique. Un des principaux défis est que différents types de cellules dans un tissu donné peuvent avoir des exigences très différentes en termes de durée d’exposition ou de niveau d’exposition pour produire une reprogrammation bénéfique avec un risque minimal de générer des cellules pluripotentes potentiellement cancéreuses.

La reprogrammation partielle et complète peut partiellement inverser les changements transcriptomiques et épigénétiques liés à l’âge. Cependant, il n’est pas clair dans quelle mesure les horloges de vieillissement mesurent l’âge biologique ou la santé cellulaire/organismique. Quoi qu’il en soit, d’autres biomarqueurs de rajeunissement peuvent être mesurés dans les expériences de reprogrammation partielle. Par exemple, si des cycles d’expression des facteurs de reprogrammation de courte durée sont suivis d’une phase de récupération, des effets de rajeunissement phénotypique peuvent être observés. Par défaut, les marqueurs de rajeunissement doivent être évalués sur une base tissu par tissu.

Un exemple intrigant est le cerveau, où la cyclicité des OSKM sans phase de récupération restaure la proportion de neuroblastes et améliore la production de neurones in vivo. De plus, des études in vivo réalisées sur des neurones de souris et des cellules du gyrus denté de rats suggèrent que les OSKM peuvent inverser le déclin neurologique associé à l’âge et améliorer la mémoire. D’autres études in vivo sur des souris ont montré que la reprogrammation améliore la régénération du foie, favorise la réparation des nerfs optiques écrasés et atténue la perte de l’acuité visuelle liée à l’âge, permet la régénération des fibres musculaires, améliore la cicatrisation des plaies cutanées chez des souris âgées et favorise le rajeunissement cardiaque après un infarctus du myocarde.

Le mécanisme de rajeunissement semble dépendre en partie de la façon dont les cellules sont reprogrammées. En effet, il a été constaté que le mécanisme de reprogrammation des cellules somatiques par des régimes de petites molécules est distinct de la reprogrammation médiée par des facteurs de transcription. En construisant des paysages de chromatine, les chercheurs ont identifié des modifications hiérarchiques des histones et une réaffectation séquentielle des enhancers qui sous-tendent les programmes de régénération suite à une reprogrammation chimique ; ce programme de régénération semble inverser la perte de potentiel régénératif dans le vieillissement des organismes mais ne semble pas être activé dans la reprogrammation OSKM.

La reprogrammation de cellules spécifiques in vivo affecte les tissus environnants. Par exemple, il a été constaté que l’activation in vivo des OSKM dans les myofibres entraînait la prolifération des cellules satellites dans le niche des cellules souches des myofibres, sans induire de dédifférenciation des myofibres ; ces changements sont probablement modulés en partie par des modifications de la matrice extracellulaire (ECM). En fait, l’ECM et ses constituants sont fréquemment affectés par la reprogrammation partielle. À mesure que les souris vieillissent, les niveaux de transcrits associés au collagène diminuent dans le pancréas, mais augmentent à nouveau, du moins partiellement, après un traitement par OSKM avec une période de récupération de deux semaines. De plus, dans des expériences sur des cellules mésenchymateuses de fibroblastes et d’adipocytes sans période de récupération, certains processus associés à l’ECM sont régulés à la hausse par la reprogrammation partielle, y compris les voies liées au collagène. Source : https://www.fightaging.org/archives/2025/04/reviewing-what-is-known-of-the-effects-of-partial-reprogramming/

Les cellules sénescentes : Cibles prometteuses pour les interventions anti-âge

Les cellules sénescentes sont des cellules qui cessent de se répliquer et commencent à sécréter un mélange puissant de facteurs de croissance et de signaux inflammatoires. Dans la jeunesse, ces cellules sont rapidement éliminées par le système immunitaire ou par des mécanismes de mort cellulaire programmée. Elles se forment continuellement à mesure que les cellules atteignent la limite de Hayflick, mais aussi en réponse à des dommages à l’ADN ou à des blessures. Leur présence temporaire est utile pour attirer l’attention du système immunitaire, coordonnant la régénération et l’élimination des cellules endommagées. Malheureusement, avec l’âge, le système immunitaire perd son efficacité à éliminer ces cellules, entraînant une accumulation de cellules sénescentes. Les signaux inflammatoires qu’elles émettent deviennent alors nuisibles et contribuent à la dégénérescence liée à l’âge. Des études sur des souris ont montré que l’élimination ciblée des cellules sénescentes peut conduire à un renouvellement significatif. Les médicaments sénothérapeutiques visent ces cellules, notamment les sénolytiques, qui exploitent des caractéristiques biochimiques spécifiques pour les détruire tout en minimisant les dommages aux cellules normales. D’autres stratégies incluent l’inhibition de l’entrée dans l’état sénescent, la suppression des signaux des cellules sénescentes et l’amélioration de la capacité du système immunitaire à les éliminer. Les auteurs d’un article récent suggèrent que toute thérapie qui favorise l’autophagie peut être considérée comme sénothérapeutique. Ils souhaitent voir des résultats de rajeunissement plus rapides et plus profonds grâce à des recherches améliorées sur les sénolytiques. Le développement de médicaments ciblant les cellules sénescentes est prometteur. Bien que certains médicaments aient déjà été identifiés comme candidats, leur sécurité doit encore être validée. Des traitements immunothérapeutiques offrent une approche plus ciblée, mais la représentativité des antigènes identifiés reste à prouver. Par ailleurs, bien que l’élimination des cellules sénescentes puisse avoir des effets bénéfiques, il est également important de reconnaître leur rôle dans des processus tels que la régénération tissulaire. Des études suggèrent que la reprogrammation épigénétique pourrait offrir une alternative pour inverser l’âge des cellules sénescentes. À ce jour, plusieurs sénothérapeutiques ont progressé dans les essais cliniques, mais des études supplémentaires sont nécessaires pour évaluer leur efficacité à long terme dans le traitement des maladies liées à l’âge. Malgré les défis, l’avenir des sénothérapeutiques semble prometteur, avec un potentiel d’amélioration de la longévité humaine. Source : https://www.fightaging.org/archives/2025/04/a-review-of-targeting-senescent-cells-to-treat-age-related-conditions/

Le rôle des macrophages cardiaques dans les maladies cardiovasculaires et la régénération tissulaire

Les macrophages, des cellules essentielles du système immunitaire inné, se trouvent dans divers tissus du corps, y compris le cœur, et remplissent de nombreuses fonctions vitales. Ils ne se contentent pas de détecter et d’éliminer les agents pathogènes et les cellules potentiellement nuisibles, mais ils jouent également un rôle crucial dans la régénération après une blessure. Les macrophages peuvent adopter des états pro-inflammatoires ou anti-inflammatoires selon les circonstances, ce qui en fait des cibles d’intérêt pour la recherche visant à réduire l’inflammation et à favoriser la régénération, notamment dans des organes tels que le cœur qui présentent une capacité régénératrice relativement faible après une lésion. Ces macrophages cardiaques sont hétérogènes et plastiques, avec plusieurs sous-ensembles ayant des phénotypes et des fonctions différents, impliqués dans divers processus pathophysiologiques. Des études récentes montrent que les populations de macrophages résidents dans le cœur jouent un rôle essentiel dans le développement cardiaque, la conduction électrique et les processus de remodelage ventriculaire. Les mécanismes utilisés par ces macrophages pour influencer les maladies cardiovasculaires (MCV) varient et incluent des interactions directes et indirectes avec d’autres cellules cardiaques. L’identification de cibles spécifiques pour les macrophages résidents cardiaques est cruciale pour la régulation des MCV. Bien que des méthodes exogènes et génétiques aient été développées pour cibler spécifiquement ces populations de macrophages, relativement peu d’études ont exploré des thérapies ciblant les macrophages résidents cardiaques chez les patients atteints de MCV, malgré l’accumulation de connaissances mécanistiques sur leur contribution au risque cardiovasculaire. Source : https://www.fightaging.org/archives/2025/03/tissue-resident-macrophages-in-the-heart-in-cardiovascular-disease/

Rôle des macrophages dans la régénération cardiaque après infarctus du myocarde

La régénération après une blessure dans le cœur des mammifères est un processus complexe impliquant des interactions entre les cellules immunitaires, les cellules somatiques et les cellules souches. Une attention particulière est portée aux macrophages, des cellules immunitaires innées qui jouent un rôle crucial dans la réparation et la régénération des tissus. La recherche actuelle vise à modifier le comportement des macrophages pour favoriser la réplique des cellules somatiques dans des tissus ayant une faible capacité régénérative, comme le cœur. Cependant, les résultats sont souvent mixtes en raison de la complexité des réactions des macrophages à leur environnement. Dans le cœur, les cardiomyocytes ont une fenêtre de prolifération temporaire qui limite leur capacité à se réparer, aggravant les maladies cardiaques et pouvant mener à une défaillance cardiaque. L’infarctus du myocarde entraîne la mort de cardiomyocytes, déclenchant une réponse immunitaire qui vise à restaurer l’intégrité du tissu. Lorsqu’une blessure myocardique entraîne une perte irréversible de cardiomyocytes, les macrophages qui interviennent ont un phénotype immunitaire unique qui favorise la formation de nouveaux cardiomyocytes. Pendant la régénération, les macrophages dérivés des mononucléaires et les macrophages résidents du cœur procurent des cytokines et des signaux moléculaires qui créent un environnement régénératif, une capacité de plasticité cellulaire essentielle pour la réparation myocardique. Ce processus est similaire à celui observé dans d’autres tissus humains, où les macrophages issus de l’endothélium embryonnaire contribuent à la spécification des monocytes. Cet article examine les nouvelles fonctions des macrophages dans la régénération et la réparation cardiaque après un infarctus du myocarde, ainsi que les avancées récentes et les perspectives sur la transformation phénotypique des macrophages cardiaques. En conclusion, les macrophages jouent un rôle critique dans la régénération, la réparation et le remodelage, représentant à la fois des cibles prometteuses et des défis pour les interventions thérapeutiques cardiovasculaires. Source : https://www.fightaging.org/archives/2025/03/towards-therapies-that-adjust-macrophage-behavior-to-provoke-heart-regeneration/

Rôle des cellules sénescentes dans le vieillissement et perspectives thérapeutiques

Un article récent a révélé que l’augmentation spectaculaire des cellules sénescentes par rapport à leurs homologues non sénescents n’est pas simplement un effet secondaire de l’état sénescent, mais qu’elle est en réalité nécessaire pour le signalement inflammatoire caractéristique des cellules sénescentes. Les chercheurs ont démontré que prévenir cette augmentation empêchait également largement le signalement inflammatoire. Étant donné que ce signalement inflammatoire est le mécanisme par lequel les cellules sénescentes accumulées contribuent aux maladies liées à l’âge, cette ligne de recherche pourrait mener à de nouvelles formes de thérapie. Il est important de garder à l’esprit que les activités des cellules sénescentes peuvent être utiles dans le bon contexte, comme c’est le cas pour tout signalement inflammatoire. Ces cellules attirent l’attention du système immunitaire sur des cellules potentiellement cancéreuses et coordonnent la régénération après une blessure. Supprimer l’inflammation des cellules sénescentes qui contribue au vieillissement entraînerait également la suppression de ces bénéfices. Les mécanismes sous-jacents de la morphologie et de la migration des cellules, notamment à travers les filaments d’actine et les fibres de stress, sont cruciaux pour comprendre comment la sénescence et l’inflammation interagissent. Dans une étude récente, les chercheurs ont identifié que l’AP2A1, une protéine régulatrice, joue un rôle dans la modulation des états cellulaires entre sénescence et rajeunissement, influençant la progression de la sénescence et les phénotypes cellulaires. Leur recherche a révélé que la régulation de l’AP2A1 pourrait inverser les phénotypes associés à la sénescence, suggérant des voies potentielles pour le développement de traitements basés sur la prévention de l’augmentation des cellules sénescentes. Cependant, l’élimination sélective des cellules sénescentes à l’aide de médicaments sénolytiques pourrait rester une meilleure option, permettant des traitements intermittents qui évitent la suppression des fonctions nécessaires des cellules sénescentes entre les traitements. Source : https://www.fightaging.org/archives/2025/03/ap2a1-is-important-in-the-enlargement-and-thus-inflammatory-signaling-of-senescent-cells/