Étiquette : protéostasie

L’impact des infections virales sur le vieillissement et les maladies neurodégénératives

Le texte aborde l’impact des infections virales persistantes, en particulier des herpèsvirus, sur le vieillissement et les maladies neurodégénératives. Bien que les preuves ne soient pas encore concluantes, une quantité significative de données suggère que ces infections peuvent influencer le début et la progression des maladies liées à l’âge. Les recherches se concentrent principalement sur le cerveau, où l’inflammation chronique, souvent induite par des infections virales, pourrait jouer un rôle central dans le vieillissement. Le système immunitaire, en vieillissant, réagit de manière de plus en plus inadaptée à des niveaux croissants de dommages biochimiques, ce qui entraîne une signalisation inflammatoire persistante qui altère la structure et la fonction des tissus. Un article de recherche en libre accès discute des mécanismes sous-jacents à ce phénomène, en soulignant que la recherche actuelle identifie divers mécanismes, mais que leur importance relative est encore difficile à établir, ce qui complique le développement de thérapies efficaces. Les virus neurotropes sont identifiés comme des facteurs de stress majeurs dans le système nerveux central, ayant été associés à un risque accru de maladies neurodégénératives. Des études épidémiologiques montrent que les patients ayant des antécédents d’infection virale neurologique ont trente fois plus de chances de développer des maladies comme la sclérose latérale amyotrophique ou la maladie de Parkinson. Le texte définit le vieillissement et examine comment les virus affectent le cerveau, en identifiant les voies de pathogénie virale qui se chevauchent avec la neurodégénérescence liée à l’âge. Les virus neurotropes affectent des mécanismes fondamentaux tels que la protéostasie, le compromis génomique et la sénescence, conduisant à des maladies neurodégénératives rapides et progressives. Des explications sont fournies sur le vieillissement prématuré induit par les virus, notamment par des mécanismes de stress communs. Les virus provoquent divers stress, tels que la dysrégulation de l’homéostasie, des dommages à l’ADN, un stress oxydatif et une exhaustion immunitaire. Ces facteurs mettent en lumière l’importance des vaccins et des antiviraux, non seulement pour leurs bénéfices immédiats, mais aussi pour leur rôle dans la gestion du vieillissement à long terme. Source : https://www.fightaging.org/archives/2025/05/to-what-degree-does-viral-infection-contribute-to-aging/

Le rôle du facteur de transcription EB (TFEB) dans la promotion de la protéostasie et ses implications pour le vieillissement

Dans une étude publiée dans Aging Cell, des chercheurs ont examiné comment le facteur de transcription EB (TFEB) favorise la protéostasie dans un modèle de vieillissement commun. La protéostasie, essentielle pour le bon fonctionnement des protéines, est maintenue par un système de contrôle qualité qui utilise un réseau de chaperons et co-chaperons, responsables du repliement, du déroulement et de la destruction des protéines mal repliées. Parmi les éléments clés de ce système se trouve la coenzyme A (CoA), impliquée dans diverses réactions biochimiques essentielles, y compris la gestion des protéines. Les chercheurs ont mis en évidence que la réduction de la production de PanK, une enzyme cruciale pour la synthèse de la CoA, n’entraîne pas de diminution de la durée de vie des vers C. elegans, mais plutôt des améliorations dans leur capacité à gérer des maladies liées à la protéostasie. Ils ont observé que les vers présentant une mutation génétique entraînant une expansion de PolyQ, un trouble de protéostasie, avaient moins de foyers d’agrégation musculaire et une meilleure activité motrice lorsque leur production de PanK était réduite. De plus, des expériences sur des protéines étiquetées ont montré que la réduction de PanK améliorait le traitement des protéines mal repliées. Les vers présentant moins de PanK réussissaient mieux à gérer le stress chimique et thermique. Ces résultats ont également été confirmés dans des cellules humaines, où les cellules cancéreuses traitées avec un inhibiteur de PanK ont mieux survécu au stress thermique. Ces effets bénéfiques étaient liés à des niveaux réduits de CoA. En parallèle, les chercheurs ont examiné le rôle des clusters de fer et de soufre (ISCs) associés à la CoA et ont découvert que la réduction de la production d’ISCs améliorait également la protéostasie. Ils ont identifié que la diminution de CoA et des ISCs due à la réduction de PanK activait TFEB, ce qui entraînait des effets bénéfiques sur le repliement des protéines par le biais des chaperons. Bien que l’étude ait fourni des détails sur les mécanismes biochimiques, elle reste préliminaire, car aucune des interventions n’a entraîné d’augmentation significative de la durée de vie des vers. Les chercheurs notent que des travaux supplémentaires sur des modèles de vers et de souris seront nécessaires pour évaluer si le renforcement direct des chaperons pourrait constituer un traitement efficace pour des troubles de la protéostasie tels que la maladie d’Alzheimer et la maladie de Parkinson. Source : https://www.lifespan.io/news/limiting-one-protein-maintenance-pathway-enhances-another/?utm_source=rss&utm_medium=rss&utm_campaign=limiting-one-protein-maintenance-pathway-enhances-another

L’impact de l’expression de XBP1 sur la longévité et la maladie d’Alzheimer

L’expression excessive du facteur de transcription XBP1 a été démontrée comme capable d’allonger la vie des mouches, probablement en améliorant l’efficacité de la réponse des protéines mal repliées, un processus de maintenance cellulaire. XBP1 influence également des mécanismes variés tels que la fonction immunitaire, le métabolisme lipidique et le métabolisme du glucose. Cette diversité d’effets est typique des facteurs de transcription. Des chercheurs ont appliqué une surexpression spécifique au cerveau de XBP1 sur des modèles murins de la maladie d’Alzheimer, observant une réduction de la pathologie. La dégradation du réseau de protéostasie est reconnue comme un marqueur de vieillissement, contribuant à la pathogenèse de la maladie d’Alzheimer. Des stratégies visant à améliorer la protéostasie ont montré des effets protecteurs significatifs dans divers modèles de maladies neurodégénératives. L’un des nœuds centraux du réseau de protéostasie, affecté par le vieillissement, est la fonction du réticulum endoplasmique (RE), principal site de production des protéines. Lorsqu’il est soumis à un stress, les cellules activent une voie conservée, connue sous le nom de réponse des protéines mal repliées (UPR), qui vise à restaurer la protéostasie. Cette réponse renforce plusieurs processus liés à la fonction de la voie sécrétoire pour améliorer la production de protéines et maintenir la fonction cellulaire, tandis qu’un stress chronique du RE peut entraîner neurodégénérescence et mort cellulaire. La branche de signalisation UPR la plus conservée est initiée par le capteur de stress du RE, IRE1, qui catalyse l’épissage non conventionnel de l’ARNm codant pour XBP1. Cet événement entraîne l’expression d’un facteur de transcription actif, appelé XBP1s, permettant une reprogrammation transcriptionnelle. Des recherches récentes ont montré que l’activité de la voie IRE1/XBP1 diminue dans le cerveau avec le vieillissement normal chez les mammifères, et que des stratégies visant à renforcer l’activité de l’UPR prolonge la durée de vie en bonne santé du cerveau. Il a été démontré que l’expression de XBP1s dans les neurones, que ce soit par des souris transgéniques ou par thérapie génique, retarde la dysfonction synaptique et le déclin cognitif liés au vieillissement normal, tout en réduisant le contenu des cellules de sénescence dans le cerveau. En testant les effets de l’imposition artificielle des réponses adaptatives de l’UPR dans le cerveau d’Alzheimer, les chercheurs ont surexprimé la forme active de XBP1s dans le système nerveux à l’aide de souris transgéniques et du vecteur viral associé aux adénovirus (AAV). La surexpression de XBP1s a considérablement réduit le contenu des plaques amyloïdes dans le cerveau et amélioré la performance cognitive et la plasticité synaptique dans un modèle de maladie d’Alzheimer familiale. De plus, la surexpression de XBP1s dans le cerveau a amélioré la performance de la mémoire dans un modèle de maladie d’Alzheimer sporadique basé sur l’injection d’oligomères d’amyloïde β. Les effets bénéfiques de l’expression de XBP1s dans le cadre de la maladie d’Alzheimer expérimentale et du vieillissement normal impliquent une correction substantielle des motifs d’expression génique associés à la fonction synaptique, à la morphologie neuronale et à la connectivité. Les chercheurs spéculent donc qu’un des mécanismes de protection majeurs de XBP1s dans la maladie d’Alzheimer se rapporte à sa fonction de régulateur de la physiologie neuronale, ce qui pourrait parallèlement réduire le dépôt d’amyloïde. Source : https://www.fightaging.org/archives/2025/03/xbp1-to-upregulate-the-unfolded-protein-response-reduces-pathology-in-mouse-models-of-alzheimers-disease/

Le rôle essentiel de KIF9 dans la lutte contre la maladie d’Alzheimer

Des chercheurs ont découvert que KIF9, un membre de la famille des kinésines, une protéine qui diminue avec l’âge, joue un rôle essentiel dans la capacité des cellules à éliminer les protéines nocives et à lutter contre la maladie d’Alzheimer dans un modèle murin. La maladie d’Alzheimer est bien connue comme une maladie de protéostasie, caractérisée par des plaques d’amyloïde bêta à l’extérieur des cellules et des enchevêtrements de tau à l’intérieur. Ces accumulations de protéines, qui se produisent avec l’échec de l’autophagie, soulignent l’importance de cette dernière dans la prévention de la maladie. L’autophagie, un processus complexe, implique plusieurs composants, et les kinésines, dont KIF9, sont responsables du transport des lysosomes, essentiels à l’autophagie, le long des microtubules à l’intérieur des cellules nerveuses. Les chercheurs ont mené des expériences sur des modèles murins d’Alzheimer, observant une réduction significative de KIF9 et une augmentation des protéines p62 et LCIII, signes d’une autophagie dégradée. En utilisant des cellules humaines, ils ont également démontré que l’expression accrue de KIF9 pouvait réduire la présence de précurseurs amyloïdes et restaurer les composants autophagiques. De plus, l’administration d’un virus associé à un adénovirus (AAV) pour augmenter l’expression de KIF9 chez des souris modèles d’Alzheimer a conduit à des améliorations comportementales, permettant aux souris de mieux s’acclimater à leur environnement et d’améliorer leur mémoire. Bien que le traitement ait montré des résultats prometteurs, des plaques amyloïdes et des protéines associées demeuraient présentes dans le cerveau des souris traitées. Ce travail met en lumière le rôle crucial de KIF9 dans l’autophagie et la lutte contre l’accumulation de protéines dans la maladie d’Alzheimer, tout en soulignant la nécessité de poursuivre les recherches pour comprendre comment cette approche pourrait être appliquée cliniquement. Source : https://www.lifespan.io/news/fighting-alzheimers-by-helping-neurons-consume-proteins/?utm_source=rss&utm_medium=rss&utm_campaign=fighting-alzheimers-by-helping-neurons-consume-proteins