Étiquette : plaques amyloïdes

Utilisation des microglies génétiquement modifiées pour la délivrance de protéines thérapeutiques dans le cerveau

Dans l’article publié dans la revue *Cell Stem Cell*, des chercheurs ont exploré comment des microglies génétiquement modifiées peuvent être utilisées pour délivrer des protéines thérapeutiques dans le cerveau. Un des défis majeurs dans le traitement des maladies neurologiques est la barrière hématoencéphalique (BHE), qui régule strictement les substances pouvant accéder au cerveau, tout en protégeant ce dernier des contaminants. Cependant, cette barrière représente également un obstacle pour l’administration de médicaments, ce qui complique le traitement de diverses pathologies. Les méthodes traditionnelles pour contourner la BHE, telles que l’injection directe de médicaments ou de cellules souches neurales, présentent des inconvénients, comme le risque de formation de tumeurs ou d’inflammations. Les chercheurs ont donc opté pour les microglies, qui sont des cellules auxiliaires du cerveau, comme vecteurs thérapeutiques. Ces cellules ne forment pas de tumeurs et ont montré une capacité d’engraftement efficace dans des modèles animaux.

Les scientifiques ont développé un modèle murin dépourvu de microglies, accumulant des plaques amyloïdes, pour tester leur approche. Ils ont créé des microglies dérivées de cellules souches pluripotentes induites (iPSCs) qui produisent la néprilysine, une enzyme capable de dégrader les peptides amyloïdes, en réponse à la présence de plaques grâce au récepteur CD9. Les résultats initiaux ont montré que ces microglies répondaient spécifiquement aux plaques sans s’exprimer dans d’autres régions du cerveau. De plus, l’approche de sécrétion de la néprilysine (sNEP), par rapport à la production membranaire (NEP), a permis une distribution améliorée de ce composé thérapeutique.

Les microglies sNEP ont montré une capacité accrue à phagocyter les amyloïdes, consommant ces derniers deux fois plus rapidement que les microglies humaines normales. Dans le modèle murin, ces microglies ont réussi à pénétrer et dégrader les plaques amyloïdes, réduisant ainsi la charge en amyloïde et la taille des plaques dans le cerveau. Parallèlement, les microglies sNEP ont contribué à la préservation des synapses, mesurée par le niveau de la protéine synaptophysine (SYP), dont les niveaux ont été restaurés à ceux d’un groupe témoin. Les souris modèles, semblables aux patients atteints de la maladie d’Alzheimer, ont également montré une réduction de l’astrogliose dans l’hippocampe, bien que cette réduction ne soit pas identique à celle observée dans le groupe témoin.

L’étude a également démontré que d’autres cibles de la néprilysine n’étaient pas affectées dans des régions non ciblées du cerveau, confirmant l’efficacité de la localisation de l’approche. Les chercheurs ont trouvé que l’engraftement généralisé des microglies sNEP n’était pas nécessaire pour obtenir des réductions des espèces amyloïdes dans tout le cerveau ; des injections précises dans l’hippocampe et le cortex suffisaient. De plus, la réduction des amyloïdes était accompagnée d’une diminution significative de l’inflammation, avec des niveaux de protéines inflammatoires, comme les interleukines, similaires à ceux du groupe témoin.

Bien que cette recherche soit à un stade précoce et considérée comme une preuve de principe, les auteurs soulignent que chaque élément de l’étude a été soigneusement contrôlé à un niveau génétique, sans impliquer de souris sauvages. La question de savoir si les microglies iPSC peuvent être adaptées à une utilisation humaine demeure ouverte, mais si cela s’avère possible, cette approche pourrait révolutionner la manière de délivrer des médicaments actuellement inaccessibles pour le traitement des maladies neurologiques. Source : https://www.lifespan.io/news/engineering-microglia-to-deliver-an-anti-alzheimers-drug/?utm_source=rss&utm_medium=rss&utm_campaign=engineering-microglia-to-deliver-an-anti-alzheimers-drug

Avancées prometteuses des cellules CAR dans le traitement de la maladie d’Alzheimer

La recherche sur l’immunothérapie, traditionnellement associée à l’oncologie, entre dans un nouveau domaine avec l’étude menée par l’équipe du Buck Institute for Research on Aging. Cette étude explore l’utilisation des récepteurs antigéniques chimériques (CARs), généralement employés dans le traitement du cancer, pour détecter les caractéristiques clés de la maladie d’Alzheimer, notamment les enchevêtrements de tau et les plaques amyloïdes toxiques. Selon les résultats publiés dans le Journal of Translational Medicine, des CARs dérivés d’anticorps contre Alzheimer peuvent être intégrés dans des cellules immunitaires de souris pour identifier des formes de protéines spécifiques à la maladie avec une grande précision. La motivation derrière cette recherche est de développer des traitements plus ciblés. Dr Julie Andersen, auteur principal de l’article, explique que les traitements actuels agissent comme un marteau-pilon, tandis que l’objectif est de concevoir un scalpel ciblé, surtout face aux effets secondaires croissants des médicaments anti-anticorps contre Alzheimer. Cette recherche représente une avancée importante, non seulement parce que le concept fonctionne in vitro, mais aussi car il repose sur des cibles d’anticorps déjà en phase III d’essai clinique. Cela pourrait accélérer le processus de translational et attirer l’attention des investisseurs. L’extension potentielle de cette technologie à d’autres maladies neurodégénératives, comme la maladie de Parkinson, est également prometteuse. L’équipe du Buck Institute a décidé de rendre publiques les séquences complètes des récepteurs, une démarche rare dans le domaine, afin de stimuler la collaboration et l’innovation dans la communauté de la neuroimmunologie. La spécificité des CARs est cruciale, car la pathologie d’Alzheimer est complexe et les plaques amyloïdes et les enchevêtrements de tau existent sous plusieurs formes, dont certaines sont plus toxiques que d’autres. Les résultats montrent que les cellules immunitaires peuvent être formées pour reconnaître des formes spécifiques de ces protéines, ce qui pourrait révolutionner le traitement. Contrairement aux cellules CAR-T utilisées en oncologie, qui détruisent leurs cibles, ces cellules sont conçues pour guérir, identifiant les protéines spécifiques de la maladie et délivrant un traitement localement. Les implications de cette étude pourraient dépasser la maladie d’Alzheimer, touchant à d’autres conditions associées à l’âge. La transparence adoptée par les auteurs, en publiant les séquences des récepteurs, est une avancée qui pourrait bénéficier à l’ensemble de la communauté scientifique. En somme, même si l’utilisation clinique de ces thérapies cellulaires pourrait prendre encore quelques années, la direction dans laquelle se dirige la recherche est claire : adapter l’ingénierie immunitaire aux besoins complexes du cerveau vieillissant pourrait transformer notre approche aux maladies neurodégénératives et à la longévité. Source : https://longevity.technology/news/engineered-car-immune-cells-show-promise-in-alzheimers/

Le Rôle des Microglies et de Tim-3 dans la Maladie d’Alzheimer

Le système immunitaire du système nerveux central (SNC) diffère de celui du reste du corps, bien qu’il existe une interaction significative entre les deux. Les cellules immunitaires innées, connues sous le nom de microglies, jouent un rôle crucial dans la défense contre les pathogènes, l’élimination des déchets métaboliques et le maintien des connexions synaptiques entre les neurones. Cependant, avec l’âge, les microglies adoptent un comportement de plus en plus inflammatoire, ce qui peut avoir des conséquences néfastes et contribuer à l’apparition et à la progression des maladies neurodégénératives. Les chercheurs s’efforcent de trouver des moyens de modifier le comportement des microglies pour mieux lutter contre ces conditions. Parmi les cibles thérapeutiques émergentes, la molécule Tim-3 a récemment été identifiée comme un élément clé dans la recherche sur la maladie d’Alzheimer. Tim-3, qui est un ‘immune checkpoint’, a été lié à la maladie d’Alzheimer à début tardif, mais son rôle dans le cerveau n’était pas bien compris jusqu’à présent. Des études précliniques ont révélé que Tim-3 est présent uniquement dans les microglies du SNC, où il aide à maintenir un état de santé cellulaire. Cependant, il peut également empêcher le cerveau d’éliminer efficacement les plaques amyloïdes toxiques qui s’accumulent dans la maladie d’Alzheimer. Les chercheurs ont constaté que la suppression de Tim-3 favorisait l’élimination des plaques en incitant les microglies à ingérer davantage de ces plaques, tout en produisant des protéines anti-inflammatoires pour réduire la neuroinflammation et limiter les troubles cognitifs. Actuellement, plusieurs essais cliniques testent des thérapies ciblant Tim-3 pour traiter des cancers résistants aux immunothérapies. L’étude met en lumière le potentiel thérapeutique d’adapter ces traitements pour améliorer l’élimination des plaques et atténuer la neurodégénérescence dans la maladie d’Alzheimer. Source : https://www.fightaging.org/archives/2025/04/tim-3-inhibition-in-microglia-encourages-amyloid-clearance-in-the-brain/

Échecs et défis dans le traitement de la maladie d’Alzheimer : un aperçu des approches thérapeutiques

L’histoire des tentatives de traitement de la maladie d’Alzheimer est marquée par des échecs coûteux, en partie à cause de la complexité du cerveau et de la maladie elle-même. La maladie d’Alzheimer, qui touche principalement les humains, présente des défis éthiques et pratiques pour la recherche, notamment l’accès à la biologie du cerveau vivant. Les modèles animaux, tels que ceux utilisant des souris, sont souvent artificiels et ne reproduisent pas fidèlement les mécanismes de la maladie, ce qui entraîne des traitements qui échouent chez les humains malgré leur efficacité dans les modèles. L’article de revue en accès libre d’aujourd’hui aborde les principales catégories de développement de médicaments, tout en soulignant que certains traitements, notamment ceux ciblant les enchevêtrements neurofibrillaires liés à la protéine tau, ont été omis. Il met en garde contre l’enthousiasme excessif pour les nouvelles approches, car le bon mécanisme à cibler reste encore incertain. La maladie d’Alzheimer, qui est la cause la plus fréquente de démence, est une maladie neurodégénérative progressive, caractérisée par la dégénérescence des neurones cholinergiques et la présence de plaques extracellulaires d’amyloïde bêta et d’enchevêtrements neurofibrillaires. Les formes familiales de la maladie, bien qu’elles soient rares, peuvent être prévenues si le traitement commence suffisamment tôt. Cependant, la majorité des cas sont sporadiques et apparaissent après 65 ans, sans corrélation entre la présence de plaques amyloïdes et le degré de déclin cognitif. Les efforts récents de l’industrie pharmaceutique se sont concentrés sur le développement de médicaments pour réduire l’amyloïde bêta, mais les résultats ont souvent été décevants, avec seulement quelques anticorps monoclonaux approuvés et des effets secondaires potentiellement graves. D’autres cibles, comme les inhibiteurs de la γ-sécrétase, ont échoué dans des essais cliniques, entraînant des détériorations cognitives. De plus, le stress oxydatif et les cytokines pro-inflammatoires sont présents chez tous les patients atteints de la maladie d’Alzheimer, mais les médicaments qui pourraient les cibler ont également montré des effets indésirables ou des limitations d’efficacité. Des traitements comme le ladostigil, qui réduit le stress oxydatif, ont montré un potentiel prometteur dans des essais cliniques, mais le défi reste entier face à la complexité de la maladie et à la multitude de mécanismes contribuant à la neurodégénérescence. Source : https://www.fightaging.org/archives/2025/03/reviewing-the-state-of-therapies-for-alzheimers-disease/

Une étude innovante sur Alzheimer : Intervention précoce contre les plaques amyloïdes

Une nouvelle étude révolutionnaire sur Alzheimer a été lancée, visant à intervenir des décennies avant l’apparition des symptômes de la maladie. Cette recherche, dirigée par l’École de Médecine de l’Université de Washington à St Louis, teste un anticorps expérimental développé par Eli Lilly pour déterminer s’il peut empêcher l’accumulation de plaques amyloïdes dans le cerveau des jeunes adultes présentant un risque génétique élevé d’Alzheimer. Les participants, âgés de 18 ans et plus, portent des mutations génétiques qui garantissent presque le développement précoce de la maladie, généralement dans la trentaine à la cinquantaine. Cependant, les premiers changements moléculaires, tels que l’accumulation de bêta-amyloïde, peuvent commencer jusqu’à 25 ans avant l’apparition des symptômes. En ciblant ces plaques chez des individus asymptomatiques avec peu ou pas de bêta-amyloïde détectable, les chercheurs espèrent interrompre le processus de la maladie à son origine. Cette étude s’inscrit dans la continuité des progrès récents dans le traitement de la maladie d’Alzheimer, notamment avec des médicaments ciblant les amyloïdes chez des personnes avec des troubles cognitifs légers ou un Alzheimer à un stade précoce. Le professeur Eric McDade, principal investigateur de l’étude, souligne les avancées réalisées ces dernières années, avec deux médicaments ayant montré leur capacité à ralentir les symptômes de la maladie, récemment approuvés par la FDA. L’étude initialement prévue pour tester le ganténéumab, développé par Roche/Genentech, a été révisée suite à des résultats décevants, et c’est finalement le remternetug d’Eli Lilly qui a été choisi. Ce médicament a montré une réduction significative des plaques amyloïdes lors d’essais cliniques préliminaires. Les participants seront traités pendant deux ans, avec un suivi de l’accumulation d’amyloïde à travers des IRM cérébrales et des analyses de marqueurs moléculaires dans leur sang et leur liquide céphalo-rachidien. Bien que des changements cognitifs ne soient pas attendus à court terme, l’équipe de recherche prévoit de suivre les participants sur le long terme pour évaluer l’impact de cette intervention précoce sur la cognition à l’avenir. À la fin de l’étude, ceux porteurs de la mutation génétique auront la possibilité de continuer à recevoir le traitement pendant quatre ans supplémentaires dans le cadre d’une extension en ouvert. La participante Hannah Richardson, âgée de 24 ans, partage son expérience familiale avec la maladie et son engagement envers la recherche sur Alzheimer, ayant été inspirée par l’implication de sa mère. L’étude prévoit d’enrôler environ 240 participants à l’échelle mondiale, incluant des individus ayant hérité de la mutation et d’autres n’ayant pas cette mutation, qui serviront de groupe de comparaison. Pour être éligibles, les participants doivent avoir entre 11 et 25 ans de moins que l’âge d’apparition prévu des symptômes dans leur famille et ne doivent présenter aucune déficience cognitive. Source : https://longevity.technology/news/new-alzheimers-study-targets-disease-decades-before-symptoms-occur/

Le rôle essentiel de KIF9 dans la lutte contre la maladie d’Alzheimer

Des chercheurs ont découvert que KIF9, un membre de la famille des kinésines, une protéine qui diminue avec l’âge, joue un rôle essentiel dans la capacité des cellules à éliminer les protéines nocives et à lutter contre la maladie d’Alzheimer dans un modèle murin. La maladie d’Alzheimer est bien connue comme une maladie de protéostasie, caractérisée par des plaques d’amyloïde bêta à l’extérieur des cellules et des enchevêtrements de tau à l’intérieur. Ces accumulations de protéines, qui se produisent avec l’échec de l’autophagie, soulignent l’importance de cette dernière dans la prévention de la maladie. L’autophagie, un processus complexe, implique plusieurs composants, et les kinésines, dont KIF9, sont responsables du transport des lysosomes, essentiels à l’autophagie, le long des microtubules à l’intérieur des cellules nerveuses. Les chercheurs ont mené des expériences sur des modèles murins d’Alzheimer, observant une réduction significative de KIF9 et une augmentation des protéines p62 et LCIII, signes d’une autophagie dégradée. En utilisant des cellules humaines, ils ont également démontré que l’expression accrue de KIF9 pouvait réduire la présence de précurseurs amyloïdes et restaurer les composants autophagiques. De plus, l’administration d’un virus associé à un adénovirus (AAV) pour augmenter l’expression de KIF9 chez des souris modèles d’Alzheimer a conduit à des améliorations comportementales, permettant aux souris de mieux s’acclimater à leur environnement et d’améliorer leur mémoire. Bien que le traitement ait montré des résultats prometteurs, des plaques amyloïdes et des protéines associées demeuraient présentes dans le cerveau des souris traitées. Ce travail met en lumière le rôle crucial de KIF9 dans l’autophagie et la lutte contre l’accumulation de protéines dans la maladie d’Alzheimer, tout en soulignant la nécessité de poursuivre les recherches pour comprendre comment cette approche pourrait être appliquée cliniquement. Source : https://www.lifespan.io/news/fighting-alzheimers-by-helping-neurons-consume-proteins/?utm_source=rss&utm_medium=rss&utm_campaign=fighting-alzheimers-by-helping-neurons-consume-proteins

Rôle des Microglies dans la Maladie d’Alzheimer et leur Renouvellement : Une Étude des Dynamiques Impliquées

Les microglies sont des cellules immunitaires innées du système nerveux central, analogues aux macrophages dans le reste du corps. Elles jouent un rôle crucial dans l’entretien des tissus et la défense contre les pathogènes. Les microglies adoptent des comportements appelés polarisation, avec deux formes principales : les microglies M1, qui sont inflammatoires et chassent les pathogènes, et les microglies M2, qui sont anti-inflammatoires et participent à la maintenance des tissus. Un excès de microglies inflammatoires est associé à des réponses inadaptées du système immunitaire, contribuant ainsi au vieillissement cérébral. Des méthodes de destruction sélective des microglies, comme l’utilisation de pexidartinib (PLX3397), permettent de réduire la population de microglies. Après l’arrêt du traitement, une nouvelle population de microglies émerge, généralement avec moins de comportements inflammatoires inadaptés. Cela a conduit les chercheurs à tester le nettoyage des microglies comme base pour des thérapies dans des modèles animaux de diverses conditions neurodégénératives. Les résultats sont généralement positifs, bien que des résultats moins satisfaisants aient été observés dans des modèles murins de la maladie d’Alzheimer. Les microglies jouent un rôle clé dans le neurodéveloppement et la plasticité, ainsi que dans la pathogénie de nombreux troubles neurodéveloppementaux et neurodégénératifs. En ce qui concerne la maladie d’Alzheimer, des facteurs de risque génétiques sont souvent liés aux récepteurs immunitaires exprimés par les microglies, ce qui les positionne comme des cibles importantes pour les thérapies modifiant la maladie. Toutefois, la fonction des microglies dans un environnement neuroinflammatoire chronique est complexe. Par exemple, l’élimination des microglies via l’inhibition du récepteur CSF1R peut réduire la formation de plaques lorsqu’elle est administrée tôt, mais pas lors des stades avancés de la pathologie amyloïde. Certaines études suggèrent que la perte tardive de microglies pourrait améliorer les fonctions cognitives, tandis que d’autres montrent une augmentation des dégâts neuritiques associés aux plaques. Plutôt que d’éliminer les microglies, leur renouvellement par déplétion suivi de repopulation est une stratégie prometteuse. Les microglies adultes peuvent rapidement restaurer leur niche après l’élimination, ce qui est bénéfique dans les modèles de lésion et le vieillissement. Cependant, dans le contexte de la maladie d’Alzheimer, aucune amélioration des fonctions cognitives ou de la pathologie amyloïde n’a été observée. La recherche a donc cherché à comprendre les effets dynamiques de la déplétion suivie de la repopulation des microglies sur leur fonction et la charge de plaques amyloïdes à différents stades de la pathologie amyloïde. L’inhibition du CSF1R par PLX3397 a été administrée à des souris 5xFAD, et les dynamiques microglies-plaques ont été suivies par imagerie in vivo. Bien qu’une amélioration transitoire de la charge en plaques ait été notée, cette amélioration n’a pas perduré. Cependant, les microglies repopulées à des stades intermédiaires à avancés semblent conserver une sensibilité accrue aux signaux noradrénergiques, souvent considérés comme anti-inflammatoires. Source : https://www.fightaging.org/archives/2025/01/clearance-of-microglia-produces-only-a-transient-reduction-in-amyloid-in-a-mouse-model-of-alzheimers-disease/