Étiquette : phénotypes

Reprogrammation Cellulaire : Une Voie Prometteuse pour le Traitement du Vieillissement

La reprogrammation cellulaire est une approche prometteuse pour traiter le vieillissement en induisant l’expression des facteurs de Yamanaka pendant une période limitée. L’objectif est de modifier l’état épigénétique des cellules pour qu’il devienne plus jeune, tout en préservant leur fonction et en évitant la formation de cellules souches pluripotentes potentiellement nuisibles. Des recherches antérieures ont principalement exploré les technologies de thérapie génique, mais une branche de recherche se concentre sur des petites molécules capables d’induire une expression suffisante des facteurs de Yamanaka. Parmi ces combinaisons de petites molécules, le cocktail 2c a été étudié sur des souris. Bien que les petites molécules permettent une livraison efficace dans tout le corps, des préoccupations subsistent quant aux effets secondaires de ces agents de reprogrammation connus.

La recherche sur la reprogrammation cellulaire partielle par le biais de combinaisons spécifiques de petites molécules pourrait prolonger la durée de vie chez des organismes modèles. Des cocktails chimiques comme RepSox et la tranylcypromine (TCP) pourraient induire des changements bénéfiques liés à l’âge sans les risques associés à une reprogrammation complète. Dans une étude, des souris femelles C3H ont été divisées en deux groupes d’âge : ‘vieux’ (16-20 mois) et ‘senior’ (10-13 mois). Elles ont reçu des injections intrapéritonéales de RepSox (5 mg/kg) et de TCP (3 mg/kg) ou de DMSO (comme contrôle) tous les 72 heures pendant 30 jours.

Dans le groupe ‘vieux’, les souris traitées ont montré une amélioration de l’état neurologique, de la santé du pelage et du squelette, ainsi qu’une angiogenèse corticale accrue, bien que des changements histologiques défavorables aient été observés dans le foie et le cerveau. Dans le groupe ‘senior’, les souris traitées ont affiché un plateau de mortalité après sept mois, tandis que les décès ont continué chez les témoins. Bien que la survie globale n’ait pas montré de différence significative, la durée de vie maximale a augmenté de manière significative chez les souris traitées. Les résultats histologiques ont révélé des changements adaptatifs localisés plutôt que des effets toxiques majeurs. Ces résultats suggèrent que la combinaison de RepSox et de TCP exerce des effets protecteurs sur les phénotypes liés au vieillissement et pourrait potentiellement ralentir les processus de vieillissement systémique chez les souris C3H. Source : https://www.fightaging.org/archives/2025/06/small-molecule-reprogramming-in-mice-with-repsox-and-tranylcypromine/

Impact de l’Activité Physique sur le Vieillissement Cérébral : Une Étude de Dose-Réponse

Les études sur la courbe dose-réponse de l’exercice physique montrent que même une petite quantité d’exercice est bénéfique par rapport à l’absence d’activité physique. Des recherches suggèrent que des niveaux d’exercice modérés à vigoureux, dépassant les 150 minutes recommandées par semaine, peuvent encore améliorer les résultats de santé. Cependant, au-delà d’un certain point, les rendements décroissants peuvent devenir nuisibles, bien que peu de personnes atteignent ce seuil. Une étude récente a mis en évidence un indice de vieillissement cérébral dérivé de données d’imagerie neuroimaging, corrélant la progression de cet indice avec l’activité physique. La biomarqueur du vieillissement cérébral, estimé à partir de données d’imagerie, reflète la diversité et le degré du processus de vieillissement du cerveau, et sert d’indicateur robuste de la santé cérébrale globale. L’impact des niveaux d’intensité de l’activité physique sur le vieillissement cérébral n’est pas encore complètement compris. L’étude a inclus 16 972 participants du UK Biobank, et le vieillissement cérébral a été estimé à l’aide d’une approche d’apprentissage ensemble, le Light Gradient-Boosting Machine (LightGBM). Plus de 1 400 phénotypes dérivés d’images ont été initialement sélectionnés pour la prédiction de l’âge cérébral. Un indicateur de vieillissement cérébral accéléré, le cerveau âge gap (BAG), est calculé en soustrayant l’âge chronologique de l’âge cérébral estimé. Un BAG positif indique un vieillissement cérébral accéléré. L’activité physique a été mesurée sur une période de sept jours à l’aide d’accéléromètres portés au poignet, et le temps passé dans l’activité physique de faible intensité, d’intensité modérée, d’intensité vigoureuse et d’activité physique modérée à vigoureuse a été extrait. Un modèle additif généralisé a été appliqué pour examiner l’association non linéaire entre l’activité physique et le BAG, après ajustement pour les facteurs de confusion potentiels. Les performances de l’estimation de l’âge cérébral par LightGBM ont été significatives, atteignant un coefficient de corrélation de 0,81 et une erreur absolue moyenne de 3,65, améliorée par un ajustement du biais d’âge. Les résultats montrent que l’activité physique de faible, modérée et vigoureuse intensité, ainsi que l’activité physique modérée à vigoureuse, présentent une relation en forme de U avec le BAG, indiquant que des niveaux d’activité physique insuffisants ou excessifs peuvent nuire au vieillissement cérébral. Une amélioration de la santé cérébrale pourrait être atteinte grâce à un engagement modéré dans des niveaux d’activité physique mesurés objectivement, indépendamment de l’intensité. Source : https://www.fightaging.org/archives/2025/06/a-dose-response-curve-for-physical-activity-and-slowed-brain-aging/

Analyse des Protéines Plasmiques et leur Association avec le Vieillissement Biologique

Au cours des vingt dernières années, des recherches sur un ensemble de plus en plus diversifié des horloges biologiques de vieillissement ont démontré que l’analyse d’une base de données biologiques suffisamment complexe permettra de trouver des corrélations avec l’âge. Le vieillissement provoque des changements liés à l’accumulation de formes de dommages cellulaires et tissulaires. Étant donné que ce type de dommage est commun à tous, malgré des variations individuelles dans le rythme du vieillissement, il existe un certain nombre de changements spécifiques liés à l’âge dans les données biologiques qui se produisent de manière similaire chez presque tous les individus. À une époque où l’obtention et l’analyse de données coûtent peu, nous devons nous attendre à un flux continu d’articles où les chercheurs identifient des changements liés à l’âge de plus en plus spécifiques. Dans cette étude, les données de 51 904 participants de la UK Biobank ont été analysées pour explorer l’association entre 2 923 protéines plasmatiques et neuf phénotypes liés au vieillissement. Ces phénotypes comprennent PhenoAge, l’âge biologique KDM, la durée de vie parentale, la fragilité et la longévité. Les niveaux de protéines ont été mesurés à l’aide de la protéomique. La méthode DE-SWAN a été utilisée pour détecter et mesurer les altérations non linéaires dans le protéome plasmatique au cours du vieillissement biologique. Une randomisation mendélienne a été appliquée pour évaluer les relations causales, et une étude d’association à l’échelle du phénotype (PheWAS) a exploré les impacts globaux de ces protéines sur la santé. L’étude a identifié 227 protéines significativement associées au vieillissement, mettant en lumière les voies de l’inflammation et de la régénération. Les résultats ont révélé des motifs fluctuants dans le protéome plasmatique au cours du vieillissement biologique chez les adultes d’âge moyen, soulignant des pics spécifiques de changements liés à l’âge biologique à 41, 60 et 67 ans, ainsi que des modèles de changement protéique liés à l’âge distincts à travers divers organes. De plus, la randomisation mendélienne a soutenu l’association causale entre les niveaux plasmatiques de plusieurs protéines et le vieillissement, soulignant leur importance en tant que cibles médicamenteuses. L’analyse PheWAS des protéines associées au vieillissement a mis en évidence leurs rôles cruciaux dans des processus biologiques vitaux, en particulier en ce qui concerne la mortalité globale, le maintien de la santé et la santé cardiovasculaire. En outre, les protéines peuvent servir de médiateurs dans les modes de vie sains et les processus de vieillissement. Source : https://www.fightaging.org/archives/2025/05/an-example-of-proteomic-correlations-with-aging/

Le rôle complexe des microglies dans la maladie d’Alzheimer

Les microglies sont des cellules immunitaires innées résidant dans le cerveau, similaires aux macrophages présents dans le reste du corps. Ces cellules présentent une diversité d’états et peuvent passer d’un état à un autre en fonction des circonstances. Les recherches se concentrent souvent sur l’état inflammatoire M1, capable de chasser et de détruire les pathogènes, en opposition à l’état anti-inflammatoire M2, qui est axé sur la régénération et le maintien des tissus. Cependant, cette dichotomie simplifie à l’excès un continuum d’états plus complexe, dont certains ne s’insèrent pas bien dans ces catégories. La compréhension des microglies est cruciale, notamment dans le contexte des maladies neurodégénératives, où un trop grand nombre de ces cellules devient inflammatoire et dysfonctionnelle en réponse à l’environnement tissulaire vieillissant du cerveau. Certaines microglies sont plus nuisibles que d’autres, et des tentatives pour ajuster broadement leur état peuvent ne pas être aussi bénéfiques qu’espéré. Il est suggéré que davantage d’états de microglies doivent être compris en détail et ciblés de manière distincte.

Dans le cas de la maladie d’Alzheimer (MA), le rôle des microglies reste complexe et dual. Cette revue vise à résumer les avancées récentes concernant le rôle des microglies dans la MA, en tenant compte des mécanismes d’activation de ces cellules, de leur effet sur le nettoyage de l’amyloïde-β (Aβ), de la pathologie tau et de l’impact des variations génétiques sur leurs fonctions. L’état fonctionnel des microglies, principales cellules immunitaires du système nerveux central, est bien plus complexe que la simple polarisation des phénotypes M1 et M2. Les études récentes ont montré que l’état des microglies dans la MA peut comprendre une grande variété de phénotypes différents jouant divers rôles à différentes étapes de la maladie et dans divers microenvironnements.

Au-delà des phénotypes M1 et M2 classiques, des conditions comme les microglies associées à la maladie (DAM) et les microglies réactives (RAM) ont des profils fonctionnels et moléculaires spécifiques dans la pathologie de la MA. Les microglies M1 sont activées par des facteurs pro-inflammatoires, libérant des cytokines pro-inflammatoires qui aggravent les réactions neuroinflammatoires et les lésions neuronales, tout en promouvant l’accumulation d’Aβ et l’hyperphosphorylation de la protéine tau. En revanche, les microglies M2, activées par des facteurs anti-inflammatoires, sécrètent des facteurs neurotrophiques qui favorisent la régénération. De plus, les DAM présentent des motifs d’expression génique distincts associés à la MA et jouent un rôle crucial dans l’élimination de l’Aβ et la modulation de la pathologie tau. Les variantes de TREM2 sont significativement associées à un risque accru de MA, et leur fonction physiologique est de permettre la formation de DAM, facilitant ainsi le nettoyage de l’Aβ. La pathologie tau augmente également de manière significative avec une fonction TREM2 déficiente ou une déficience microgliale, soulignant le rôle essentiel des DAM dans la prévention de la propagation de tau. En somme, les phénotypes des microglies dans la MA vont au-delà des simples M1 et M2, englobant des phénotypes plus évolués tels que les DAM. Chaque état remplit des fonctions correspondantes à différentes étapes de la maladie et dans divers microenvironnements, et des recherches futures devront explorer les mécanismes moléculaires et les différences fonctionnelles entre ces états pour élucider le rôle multifonctionnel des microglies dans la MA. Source : https://www.fightaging.org/archives/2025/04/microglia-in-neurodegenerative-conditions-more-complex-than-simply-a-double-edged-sword/

Impact de la restriction calorique sur le métabolisme lipidique et le vieillissement : Une étude sur les souris

La restriction calorique est une pratique qui améliore la santé et prolonge la vie, avec des effets plus notables sur l’espérance de vie des espèces à courte durée de vie, comme les souris, par rapport aux espèces à longue durée de vie, telles que les humains. Les chercheurs se penchent sur les changements dans les lipides chez les souris résultant de la restriction calorique et de divers médicaments mimétiques de la restriction calorique. On s’attend évidemment à ce que les tissus graisseux changent considérablement à la suite d’un régime hypocalorique maintenu dans le temps, mais les niveaux de lipides et les distributions de différents lipides changent dans tout le corps. Les médicaments mimétiques de la restriction calorique ne capturent qu’une fraction des effets globaux de la restriction calorique, mais tendent tout de même à orienter les résultats dans une direction similaire. Une observation intéressante est que, dans l’ensemble, ces changements ressemblent à un rajeunissement, déplaçant les mesures du métabolisme lipidique vers un résultat plus jeune. La restriction calorique est associée à un vieillissement lent chez les organismes modèles. De plus, certains médicaments ont également montré qu’ils ralentissaient le vieillissement chez les rongeurs. Pour mieux comprendre les mécanismes métaboliques impliqués dans l’augmentation de la durée de vie, nous avons analysé les différences métabolomiques dans six organes de souris de 12 mois en utilisant cinq interventions conduisant à une longévité prolongée, spécifiquement la restriction calorique, 17-α estradiol, et les mimétiques de restriction calorique tels que la rapamycine, le canagliflozin et l’acarbose. Ces interventions ont généralement des effets plus forts chez les mâles que chez les femelles. En utilisant le test de tendance de Jonckheere pour associer l’augmentation des durées de vie moyennes aux changements métaboliques pour chaque sexe, nous avons trouvé un dimorphisme sexuel dans le métabolisme du plasma, du foie, du muscle gastrocnémien, des reins et de la graisse inguinale. Le plasma a montré la tendance la plus forte des composés exprimés différemment, soulignant les avantages potentiels du plasma pour suivre le vieillissement en bonne santé. Grâce à une analyse d’enrichissement chimique, nous avons constaté que la majorité de ces composés affectés étaient des lipides, en particulier dans les tissus mâles, ainsi que des différences significatives dans les tendances des acides aminés, particulièrement évidentes dans les reins. Nous avons également trouvé de forts effets métabolomiques dans les tissus adipeux. La graisse inguinale a présenté des augmentations surprenantes des lipides neutres avec des chaînes latérales polyinsaturées chez les souris mâles. Chez les souris femelles, la graisse gonadique a montré des tendances proportionnelles à l’effet d’extension de la durée de vie à travers plusieurs classes de lipides, en particulier les phospholipides. Fait intéressant, pour la plupart des tissus, nous avons trouvé des changements similaires induits par les interventions prolongatrices de durée de vie par rapport aux différences métabolomiques entre les souris non traitées de 12 mois et celles de 4 mois. Cette découverte implique que les traitements prolongateurs de durée de vie tendent à inverser les phénotypes métaboliques vers un stade biologiquement plus jeune. Source : https://www.fightaging.org/archives/2025/04/calorie-restriction-and-calorie-restriction-mimetic-drugs-restore-more-youthful-lipid-metabolism/

Le rôle des macrophages cardiaques dans les maladies cardiovasculaires et la régénération tissulaire

Les macrophages, des cellules essentielles du système immunitaire inné, se trouvent dans divers tissus du corps, y compris le cœur, et remplissent de nombreuses fonctions vitales. Ils ne se contentent pas de détecter et d’éliminer les agents pathogènes et les cellules potentiellement nuisibles, mais ils jouent également un rôle crucial dans la régénération après une blessure. Les macrophages peuvent adopter des états pro-inflammatoires ou anti-inflammatoires selon les circonstances, ce qui en fait des cibles d’intérêt pour la recherche visant à réduire l’inflammation et à favoriser la régénération, notamment dans des organes tels que le cœur qui présentent une capacité régénératrice relativement faible après une lésion. Ces macrophages cardiaques sont hétérogènes et plastiques, avec plusieurs sous-ensembles ayant des phénotypes et des fonctions différents, impliqués dans divers processus pathophysiologiques. Des études récentes montrent que les populations de macrophages résidents dans le cœur jouent un rôle essentiel dans le développement cardiaque, la conduction électrique et les processus de remodelage ventriculaire. Les mécanismes utilisés par ces macrophages pour influencer les maladies cardiovasculaires (MCV) varient et incluent des interactions directes et indirectes avec d’autres cellules cardiaques. L’identification de cibles spécifiques pour les macrophages résidents cardiaques est cruciale pour la régulation des MCV. Bien que des méthodes exogènes et génétiques aient été développées pour cibler spécifiquement ces populations de macrophages, relativement peu d’études ont exploré des thérapies ciblant les macrophages résidents cardiaques chez les patients atteints de MCV, malgré l’accumulation de connaissances mécanistiques sur leur contribution au risque cardiovasculaire. Source : https://www.fightaging.org/archives/2025/03/tissue-resident-macrophages-in-the-heart-in-cardiovascular-disease/

Étude des horloges épigénétiques : Corrélations entre l’âge et la méthylation de l’ADN dans différents types de tissus

Les horloges épigénétiques sont des algorithmes qui prédisent l’âge et d’autres phénotypes liés au vieillissement en utilisant des données de méthylation de l’ADN (DNAm) provenant d’échantillons de sang et de tissus humains. La plupart des horloges épigénétiques sont développées en appliquant des techniques d’apprentissage automatique à des données de méthylation de l’ADN dérivées des cellules immunitaires dans des échantillons de sang de personnes de différents âges. Ces horloges sont basées sur la fraction des génomes dans l’échantillon qui sont méthylés à des sites CpG spécifiques. Il n’est pas surprenant que ces horloges donnent des résultats différents lorsqu’elles sont appliquées à des données épigénétiques provenant d’échantillons de tissus plutôt que de sang, car tous les types cellulaires ne réagissent pas de la même manière au vieillissement épigénétique. Des recherches sont en cours pour développer des horloges universelles capables d’appliquer ces modèles à plusieurs espèces et tissus, cherchant ainsi des points communs entre eux. Cependant, les horloges les plus connues ont une performance médiocre en dehors du contexte dans lequel elles ont été fabriquées, c’est-à-dire les échantillons de sang. Une étude a été réalisée pour évaluer la performance des horloges DNAm sur des types de tissus non sanguins en appliquant des algorithmes DNAm à des données de méthylation provenant de neuf types de tissus humains différents. Les résultats ont montré que l’estimation moyenne de l’âge selon l’horloge DNAm variait considérablement d’un type de tissu à un autre, et les valeurs moyennes des différentes horloges variaient également au sein des types de tissus. Pour la plupart des horloges, la corrélation avec l’âge chronologique variait selon les types de tissus, le sang montrant souvent la corrélation la plus forte. Chaque horloge a montré une forte corrélation entre les tissus, avec des preuves d’une corrélation résiduelle après ajustement pour l’âge chronologique. Ce travail démontre que les différences dans le vieillissement épigénétique parmi les types de tissus entraînent des différences claires dans les caractéristiques des horloges DNAm. Des horloges épigénétiques spécifiques aux tissus ou types cellulaires sont nécessaires pour optimiser la performance prédictive des horloges DNAm dans les tissus et types cellulaires non sanguins. Source : https://www.fightaging.org/archives/2025/01/epigenetic-clocks-produce-different-results-by-tissue-type/