Étiquette : Phagocytose

Restauration de la fonction immunitaire par l’élimination sélective du cholestérol toxique dans les cellules spumeuses : vers des essais cliniques pour le composé novateur UDP-003

Le rôle central du 7-kétokétostérol (7KC) dans la pathogenèse de l’athérosclérose est bien documenté. En tant que dérivé oxydé toxique du cholestérol, le 7KC s’accumule dans les parois artérielles et contribue à la transformation des macrophages en cellules spumeuses dysfonctionnelles et chargées de lipides. Ces cellules provoquent une inflammation, déstabilisent les plaques et alimentent finalement les maladies cardiovasculaires, qui restent la première cause de mortalité dans le monde. De nombreuses stratégies thérapeutiques ont cherché à réduire les lipides ou à adopter des approches anti-inflammatoires, mais peu ont tenté d’éliminer directement le 7KC des cellules, et moins encore ont réussi à inverser la formation de cellules spumeuses. Cyclarity Therapeutics a publié des données précliniques suggérant que son composé à base de cyclodextrines, UDP-003, peut atteindre cet objectif, avec un profil de sécurité et pharmacocinétique favorable soutenant son aptitude à des essais cliniques chez l’homme. L’étude, dirigée par Bhargava et al., a utilisé des modèles in vitro et ex vivo pour montrer qu’UDP-003 non seulement empêche la formation de cellules spumeuses, mais restaure également la fonction des macrophages même après des dommages induits par le 7KC. Le traitement a réduit l’accumulation intracellulaire de lipides, le stress oxydatif et l’expression des gènes inflammatoires, tout en améliorant l’efflux de cholestérol, la phagocytose et l’efferocytose, des fonctions critiques souvent altérées dans l’athérosclérose avancée. Le composé UDP-003 est décrit comme une thérapie modifiant la maladie potentiellement première de sa catégorie pour l’athérosclérose, capable de restaurer la fonction cellulaire de manière mécaniste. L’approche de Cyclarity allie chimie élégante et science translationnelle pragmatique, offrant une sélectivité élevée pour le 7KC. Les cyclodextrines, qui constituent la structure chimique de base d’UDP-003, peuvent encapsuler des composés lipophiles comme le cholestérol, et la structure dimérique d’UDP-003 confère une sélectivité environ 1000 fois supérieure pour le 7KC par rapport au cholestérol. Cette sélectivité semble être essentielle pour la capacité du composé à éliminer le 7KC des tissus de plaque athéroscléreuse humaine en aussi peu que 15 minutes. Bien que l’accent soit actuellement mis sur l’athérosclérose, le 7KC est de plus en plus reconnu comme un marqueur plus large de pathologie liée à l’âge, avec des niveaux élevés trouvés dans des conditions telles que la dégénérescence maculaire et la maladie d’Alzheimer. Le potentiel d’UDP-003 pourrait donc s’étendre au-delà du système vasculaire. Bien que la restauration de la fonction des macrophages soit remarquable, la régression des plaques n’a pas été clairement démontrée dans les modèles animaux, et l’efficacité dans la réduction des lésions demeure à prouver in vivo. Néanmoins, l’élimination sélective d’une molécule toxique impliquée dans le vieillissement cellulaire et les maladies cardiovasculaires représente une intervention bienvenue. La véritable épreuve pour UDP-003 résidera dans sa capacité à devenir la première thérapie modifiant la maladie de l’athérosclérose, dépendant à la fois de la précision moléculaire et de la performance clinique. Source : https://longevity.technology/news/new-data-supports-cyclaritys-approach-to-atherosclerosis-reversal/

Impact des Microglies Sénescentes sur les Synapses et le Déclin Cognitif : Rôle des Composés Sénolytiques

Des chercheurs ont découvert que les microglies inflammées et sénescentes éliminent trop de synapses dans l’hippocampe et ont démontré qu’un composé sénolytique peut améliorer ce processus. Pendant le développement cérébral, les microglies, qui sont des cellules immunitaires résidentes du cerveau, taillent les synapses inutiles dans le cadre de l’entretien, un processus généralement bénéfique chez les jeunes enfants et les adultes matures, car il facilite la formation de connexions significatives. Cependant, dans des états pathologiques, ce processus de nettoyage peut s’intensifier, causant des dommages, comme on le voit lors de l’inflammation causée par une septicémie, où les microglies détruisent des synapses fonctionnelles, entraînant un déclin cognitif. Les microglies peuvent devenir sénescentes et incapables de se proliférer, mais cela ne signifie pas qu’elles sont complètement inactives. Une étude a exposé des souris à des lipopolysaccharides (LPS) pour induire une neuroinflammation, révélant une expression génique modifiée chez les microglies, avec des gènes liés à la phagocytose et à la sénescence. Le traitement avec le composé sénolytique ABT-737 a inversé le déclin cognitif observé chez les souris exposées au LPS, avec des résultats de navigation et d’intérêt pour des objets nouveaux semblables à ceux du groupe témoin. Ce traitement n’a pas amélioré les biomarqueurs d’inflammation, mais a réduit les marqueurs de sénescence, indiquant que le ABT-737 a efficacement réduit la phagocytose des synapses excitatrices et restauré la neuroplasticité, bien que certaines mesures ne soient pas revenues aux niveaux du groupe témoin. Des recherches supplémentaires sont nécessaires pour déterminer si le ABT-737 ou d’autres sénolytiques peuvent également atténuer le déclin cognitif dû à la sénescence des microglies dans le contexte du vieillissement. Source : https://www.lifespan.io/news/senolytics-may-affect-inflammation-related-cognitive-decline/?utm_source=rss&utm_medium=rss&utm_campaign=senolytics-may-affect-inflammation-related-cognitive-decline

Le rôle du TIMP2 dans la dysfonction microgliale liée à l’âge

Dans le domaine du vieillissement du cerveau, les chercheurs se penchent de plus en plus sur le dysfonctionnement inflammatoire du système immunitaire du système nerveux central, en particulier sur les cellules immunitaires innées, connues sous le nom de microglies, qui sont analogues aux macrophages dans le reste du corps. Les conditions neurodégénératives se caractérisent par une inflammation excessive et non résolue dans le tissu cérébral, perturbant la structure et la fonction des tissus, ce qui altère le comportement cellulaire de manière préjudiciable. Comme le souligne l’article, la recherche sur l’origine de cette inflammation et le dysfonctionnement des microglies progresse progressivement, en examinant chaque gène individuellement pour identifier les mécanismes régulateurs importants et les points d’intervention.

Il existe peu de compréhension sur la manière dont le vieillissement constitue le facteur de risque le plus fort pour plusieurs maladies neurodégénératives. Des types de cellules neuronales spécifiques, comme les microglies, subissent des changements maladaptatifs liés à l’âge, notamment une inflammation accrue, un nettoyage des débris compromis, et une sénescence cellulaire, mais les médiateurs spécifiques qui régulent ces processus demeurent flous. Le cerveau âgé est rajeuni par des facteurs plasmatiques associés à la jeunesse, tels que l’inhibiteur tissulaire des métalloprotéinases 2 (TIMP2), qui agit sur la matrice extracellulaire pour réguler la plasticité synaptique. Étant donné les rôles émergents des microglies dans ces processus, nous avons examiné l’impact de TIMP2 sur la fonction microgliale.

Nous montrons que la délétion de TIMP2 aggrave les phénotypes microgliaux associés au vieillissement, y compris les changements transcriptomiques dans l’activation cellulaire, l’augmentation de la microgliose, et des niveaux accrus de protéines de stress et inflammatoires mesurés dans l’espace extracellulaire cérébral par microdialyse in vivo. La suppression de pools cellulaires spécifiques de TIMP2 in vivo a augmenté l’activation microgliale et altéré la phagocytose de la myéline. Le traitement de souris âgées avec TIMP2 a inversé plusieurs phénotypes observés dans nos modèles de délétion, entraînant une diminution de l’activation microgliale, une réduction des proportions de microglies pro-inflammatoires, et une amélioration de la phagocytose des substrats physiologiques. Nos résultats identifient TIMP2 comme un modulateur clé de la dysfonction microgliale associée à l’âge. Exploiter son activité pourrait atténuer les effets néfastes des agressions liées à l’âge sur la fonction microgliale. Source : https://www.fightaging.org/archives/2025/06/timp2-and-microglial-function-in-the-context-of-aging/

Utilisation des microglies génétiquement modifiées pour la délivrance de protéines thérapeutiques dans le cerveau

Dans l’article publié dans la revue *Cell Stem Cell*, des chercheurs ont exploré comment des microglies génétiquement modifiées peuvent être utilisées pour délivrer des protéines thérapeutiques dans le cerveau. Un des défis majeurs dans le traitement des maladies neurologiques est la barrière hématoencéphalique (BHE), qui régule strictement les substances pouvant accéder au cerveau, tout en protégeant ce dernier des contaminants. Cependant, cette barrière représente également un obstacle pour l’administration de médicaments, ce qui complique le traitement de diverses pathologies. Les méthodes traditionnelles pour contourner la BHE, telles que l’injection directe de médicaments ou de cellules souches neurales, présentent des inconvénients, comme le risque de formation de tumeurs ou d’inflammations. Les chercheurs ont donc opté pour les microglies, qui sont des cellules auxiliaires du cerveau, comme vecteurs thérapeutiques. Ces cellules ne forment pas de tumeurs et ont montré une capacité d’engraftement efficace dans des modèles animaux.

Les scientifiques ont développé un modèle murin dépourvu de microglies, accumulant des plaques amyloïdes, pour tester leur approche. Ils ont créé des microglies dérivées de cellules souches pluripotentes induites (iPSCs) qui produisent la néprilysine, une enzyme capable de dégrader les peptides amyloïdes, en réponse à la présence de plaques grâce au récepteur CD9. Les résultats initiaux ont montré que ces microglies répondaient spécifiquement aux plaques sans s’exprimer dans d’autres régions du cerveau. De plus, l’approche de sécrétion de la néprilysine (sNEP), par rapport à la production membranaire (NEP), a permis une distribution améliorée de ce composé thérapeutique.

Les microglies sNEP ont montré une capacité accrue à phagocyter les amyloïdes, consommant ces derniers deux fois plus rapidement que les microglies humaines normales. Dans le modèle murin, ces microglies ont réussi à pénétrer et dégrader les plaques amyloïdes, réduisant ainsi la charge en amyloïde et la taille des plaques dans le cerveau. Parallèlement, les microglies sNEP ont contribué à la préservation des synapses, mesurée par le niveau de la protéine synaptophysine (SYP), dont les niveaux ont été restaurés à ceux d’un groupe témoin. Les souris modèles, semblables aux patients atteints de la maladie d’Alzheimer, ont également montré une réduction de l’astrogliose dans l’hippocampe, bien que cette réduction ne soit pas identique à celle observée dans le groupe témoin.

L’étude a également démontré que d’autres cibles de la néprilysine n’étaient pas affectées dans des régions non ciblées du cerveau, confirmant l’efficacité de la localisation de l’approche. Les chercheurs ont trouvé que l’engraftement généralisé des microglies sNEP n’était pas nécessaire pour obtenir des réductions des espèces amyloïdes dans tout le cerveau ; des injections précises dans l’hippocampe et le cortex suffisaient. De plus, la réduction des amyloïdes était accompagnée d’une diminution significative de l’inflammation, avec des niveaux de protéines inflammatoires, comme les interleukines, similaires à ceux du groupe témoin.

Bien que cette recherche soit à un stade précoce et considérée comme une preuve de principe, les auteurs soulignent que chaque élément de l’étude a été soigneusement contrôlé à un niveau génétique, sans impliquer de souris sauvages. La question de savoir si les microglies iPSC peuvent être adaptées à une utilisation humaine demeure ouverte, mais si cela s’avère possible, cette approche pourrait révolutionner la manière de délivrer des médicaments actuellement inaccessibles pour le traitement des maladies neurologiques. Source : https://www.lifespan.io/news/engineering-microglia-to-deliver-an-anti-alzheimers-drug/?utm_source=rss&utm_medium=rss&utm_campaign=engineering-microglia-to-deliver-an-anti-alzheimers-drug

Nouveaux Horizons dans le Traitement de la Maladie d’Alzheimer : L’Inhibition de la Neuroinflammation

La maladie d’Alzheimer est caractérisée par l’accumulation de plaques d’amyloïde-β et de filaments de tau dans le cerveau. Cependant, des recherches récentes mettent en évidence le rôle central de la neuroinflammation dans la progression de la maladie. Une étude publiée dans la revue Immunity par des chercheurs du Centre allemand pour les maladies neurodégénératives (DZNE) et de l’Université de Bonn explore comment le ciblage de l’inflammasome NLRP3, un régulateur clé de la réponse immunitaire, pourrait moduler la fonction métabolique et mitochondriale des microglies, améliorant ainsi leur capacité à éliminer les plaques d’amyloïde-β et à ralentir la progression de la maladie d’Alzheimer. Les résultats suggèrent que la neuroinflammation n’est pas simplement une conséquence secondaire de l’accumulation d’amyloïde-β, mais qu’elle pourrait en réalité être un moteur de la pathologie de la maladie. De plus, la neuroinflammation semble apparaître précocement dans la progression de la maladie d’Alzheimer, potentiellement avant même la formation des plaques. Cela offre une cible prometteuse pour l’intervention thérapeutique. Moduler l’activité des microglies et les voies inflammatoires pourrait permettre de développer des traitements qui s’attaquent simultanément à plusieurs aspects de la maladie d’Alzheimer, surtout face au succès limité des traitements actuels qui se concentrent uniquement sur l’amyloïde-β ou le tau. L’idée de cibler la neuroinflammation pour la prévention plutôt que pour le simple traitement pourrait également ouvrir de nouvelles voies pour ralentir le déclin cognitif avant que des dommages irréversibles ne se produisent. L’étude souligne également que l’inhibition chronique de NLRP3 est nécessaire pour induire des changements métaboliques significatifs dans les microglies. Cette inhibition entraîne une réduction de la neuroinflammation et aide les microglies à éliminer les dépôts nocifs d’amyloïde-β, un processus connu sous le nom de phagocytose. Les chercheurs ont identifié le transporteur de glutamate Slc1a3 comme un médiateur clé de ces effets, les microglies avec une activité réduite de NLRP3 montrant une augmentation de leur potentiel de membrane mitochondriale, ce qui améliore leur capacité à phagocyter l’amyloïde-β. De plus, les mécanismes observés dans cette étude ont été constatés chez des espèces différentes, puisque des tissus cérébraux post-mortem de patients atteints de la maladie d’Alzheimer présentaient une activité NLRP3 élevée et des niveaux réduits de Slc1a3. Cela souligne un chemin potentiel pour le développement de thérapies ciblant NLRP3 qui pourraient être applicables chez l’homme. L’étude s’inscrit dans une tendance croissante suggérant que la maladie d’Alzheimer ne se résume pas uniquement à un problème d’amyloïde, mais qu’elle implique une combinaison de dysfonctionnements métaboliques, immunitaires et neurovasculaires. Les résultats identifient également des voies de signalisation auparavant inconnues influencées par NLRP3, notamment la façon dont NLRP3 régule l’utilisation des nutriments par les microglies et leur impact sur les gènes ayant un rôle majeur dans leur fonction. La possibilité de reprogrammer les microglies par des interventions métaboliques soulève de nouvelles questions sur la façon dont l’inflammation pourrait être ciblée dans d’autres maladies neurodégénératives, y compris la maladie de Parkinson et la démence frontotemporale. Avec plusieurs inhibiteurs de NLRP3 actuellement en essais cliniques, cette recherche fournit un soutien supplémentaire à l’idée que la modulation des réponses immunitaires pourrait former une approche multi-ciblée pour le traitement des maladies neurodégénératives. Bien que d’autres études soient nécessaires pour évaluer la sécurité et l’efficacité à long terme de ces interventions, le potentiel de déplacer la fonction des microglies d’un état pro-inflammatoire vers un phénotype protecteur et homéostatique représente une avenue importante pour la recherche future. Source : https://longevity.technology/news/reducing-neuroinflammation-may-provide-new-pathway-for-alzheimers-treatment/

Stimulation par Ultrasons pour Éliminer les Cellules Sénescentes : Une Nouvelle Approche Thérapeutique

Des chercheurs ont démontré qu’une forme de stimulation par ultrasons peut inciter les cellules sénescentes à adopter un comportement qui augmente la vitesse de leur élimination par le système immunitaire. Cette méthode a permis de réduire le fardeau des cellules sénescentes dans les tissus cutanés d’environ un tiers, un résultat comparable à celui obtenu avec des médicaments sénolytiques de première génération. L’étude a été menée sur des jeunes souris soumises à une irradiation pour induire la sénescence, bien que des différences existent entre la sénescence induite par irradiation et celle causée par d’autres facteurs. Il est également noté que le système immunitaire devient moins efficace pour éliminer les cellules sénescentes avec l’âge, ce qui soulève des questions quant à l’efficacité de cette approche sur des souris âgées. En outre, les stratégies thérapeutiques émergentes contre le vieillissement se concentrent sur l’élimination sélective des cellules sénescentes, mais l’impact d’un stimulus physique sur ces cellules et son application potentielle dans la thérapie sénolytique n’ont pas encore été rapportés. Les chercheurs ont développé une méthode physique pour stimuler sélectivement les cellules sénescentes via un traitement par ultrasons pulsés de basse intensité (LIPUS). Ce traitement n’affecte pas le cycle cellulaire mais augmente la sécrétion de certaines cytokines dans les cellules sénescentes, connues sous le nom de phénotype sécrétoire associé à la sénescence (SASP), ce qui favorise la migration des monocytes/macrophages et la phagocytose des cellules sénescentes par des macrophages de type M1. Les résultats ont montré que la stimulation par LIPUS perturbe sélectivement la structure de la membrane cellulaire des cellules sénescentes, activant ainsi la voie de signalisation dépendante des espèces réactives de l’oxygène p38-NF-κB. Dans un modèle murin de vieillissement cutané induit par UV, une infiltration accrue de macrophages a été confirmée, suivie d’une réduction des cellules sénescentes après traitement par LIPUS. Étant donné les avantages du traitement par ultrasons, tels que sa non-invasivité, sa capacité de pénétration profonde et sa facilité d’application dans les milieux cliniques, cette méthode pourrait être appliquée pour traiter diverses maladies liées à la sénescence ou combinée avec d’autres thérapies biochimiques établies pour améliorer leur efficacité. Source : https://www.fightaging.org/archives/2025/02/ultrasound-as-a-basis-for-clearing-senescent-cells/

L’Ultrason Pulsé à Basse Intensité : Une Nouvelle Approche pour Éliminer les Cellules Sénecentes

Une nouvelle étude suggère que l’ultrason pulsé à basse intensité (LIPUS) peut être bénéfique pour éliminer les cellules sénescentes en recrutant et en activant les cellules immunitaires. L’accumulation de cellules sénescentes dans un organisme vieillissant est une caractéristique préoccupante et des approches variées sont développées pour neutraliser ces cellules. Les cellules sénescentes produisent le phénotype sécrétoire associé à la sénescence (SASP), une combinaison de molécules qui, bien que nuisibles, peuvent également avoir des effets positifs en attirant les cellules immunitaires pour éliminer les cellules sénescentes. Les auteurs de l’étude se sont alors tournés vers l’ultrason comme outil thérapeutique non invasif, étant donné les effets positifs observés du LIPUS sur les tissus, notamment la cicatrisation des plaies et la régulation des cytokines pro-inflammatoires. L’hypothèse était que le LIPUS pouvait moduler la sécrétion du SASP et aider à attirer les cellules immunitaires. Les chercheurs ont cultivé des fibroblastes humains et les ont rendus sénescents, puis ont observé l’impact du LIPUS sur les cellules sénescentes. Après 20 minutes de stimulation par LIPUS, un marqueur des cellules sénescentes, SA-β-gal, a augmenté dans les cellules sénescentes, indiquant une activation sélective. De plus, le LIPUS a augmenté l’expression des marqueurs d’attraction des cellules immunitaires, entraînant une migration accrue de monocytes et de macrophages vers ces cellules stimulées, permettant ainsi leur élimination par phagocytose. L’étude a également exploré le mécanisme moléculaire sous-jacent, confirmant que le LIPUS augmentait la génération de formes réactives d’oxygène (ROS) dans les cellules sénescentes, ce qui était nécessaire pour l’activation de la voie p38-NF-κB, menant à l’attraction des cellules immunitaires. Les chercheurs ont ensuite utilisé un modèle in vivo de vieillissement cutané chez la souris pour tester l’efficacité du LIPUS. Après un vieillissement cutané induit par les UVA, le LIPUS a été appliqué, entraînant une augmentation des marqueurs SASP d’attraction des cellules immunitaires et une réduction des cellules sénescentes. Ils ont conclu que le LIPUS pourrait être un outil efficace pour éliminer les cellules sénescentes par infiltration de macrophages. Enfin, ils ont suggéré que le LIPUS pourrait être utilisé en clinique pour éliminer les cellules sénescentes, mais il est nécessaire d’optimiser les paramètres du LIPUS et de tester ses effets secondaires avant son utilisation clinique. Source : https://www.lifespan.io/news/ultrasound-as-a-tool-to-eliminate-senescent-cells/?utm_source=rss&utm_medium=rss&utm_campaign=ultrasound-as-a-tool-to-eliminate-senescent-cells