Étiquette : p53

Prévention de la Sénescence Cellulaire Induite par CRISPR/Cas9 : Vers une Nouvelle Approche Thérapeutique

La recherche publiée dans Cell Reports Medicine explore les causes de la sénescence cellulaire induite par la technologie d’édition génique CRISPR/Cas9 et examine des méthodes potentielles pour la prévenir. L’édition génétique des cellules vivantes par CRISPR/Cas9 nécessite trois étapes : la rupture de l’ADN, l’insertion de nouveaux gènes et la réparation de l’ADN. Le processus de rupture et de réparation de l’ADN entraîne une réponse de dommage à l’ADN, impliquant le facteur p53, qui favorise la sénescence cellulaire. Les vecteurs viraux, tels que les lentivirus et l’AAV6, augmentent également les niveaux de p53. Des études antérieures ont montré que l’inhibition temporaire de p53 pourrait permettre aux cellules de se multiplier suffisamment pour être efficaces.

Dans une expérience, les chercheurs ont électroporé les cellules souches hématopoïétiques humaines avec différentes modifications génétiques, utilisant des modifications par AAV6 qui ont entraîné des réactions inflammatoires plus fortes, notamment une augmentation des interleukines et des biomarqueurs de sénescence. L’AAV6 s’est révélé plus efficace pour cibler le locus IL-2RG, mais a également entraîné plus d’inflammation. Les modifications génétiques ont conduit à une augmentation de la sénescence cellulaire, et les cellules exposées à de fortes doses d’AAV6 ont montré une croissance plus lente. Ces résultats ont été confirmés chez des souris immunodéficientes, où les cellules exposées à AAV6 avaient moins de chances de se multiplier par rapport aux groupes témoins.

Pour lutter contre l’inflammation et la sénescence, les chercheurs ont administré de l’anakinra, un antagoniste direct de la cytokine IL-1, en parallèle avec AAV6. Cette approche a considérablement réduit le nombre de cellules modifiées présentant des signes de sénescence. Des traitements ciblant d’autres facteurs inflammatoires, comme NF-κB et p53, ont également montré des résultats similaires sans affecter l’efficacité de l’ingénierie génétique. Cependant, ils ont eu des effets différents sur le taux de mutation, certains augmentant le risque de mutations, tandis qu’anakinra a réduit ce risque.

Bien que des essais cliniques soient nécessaires pour confirmer l’efficacité de cette approche chez l’homme, ces résultats suggèrent que le prétraitement avec anakinra pourrait devenir une procédure standard pour la génération de cellules modifiées destinées à l’engreffement. Les réponses aux dommages à l’ADN et la sénescence sont des effets secondaires indésirables de l’ingénierie génétique, mais cette étude démontre qu’ils peuvent être atténués. Source : https://www.lifespan.io/news/preventing-crispr-from-causing-senescence/?utm_source=rss&utm_medium=rss&utm_campaign=preventing-crispr-from-causing-senescence

Avancées et Défis dans la Lutte Contre le Vieillissement et les Maladies Associées

Fight Aging! est une plateforme dédiée à la publication de nouvelles et de commentaires sur les avancées médicales visant à éradiquer les maladies liées à l’âge. Son fondateur, Reason, propose également des services de conseil stratégique pour les investisseurs intéressés par l’industrie de la longévité. Dans le cadre de cette mission, plusieurs articles traitent des mécanismes de l’âge et de leurs implications pour la santé. Parmi les sujets abordés, on trouve le vieillissement testiculaire, la régulation de l’autophagie par SQSTM1, et la compétition XPRIZE sur la longévité, qui encourage le développement de thérapies visant à améliorer la santé des personnes âgées. Les chercheurs explorent également le rôle des cellules T γδ dans l’élimination des cellules sénescentes, la relation complexe entre les éléments transposables et le vieillissement, ainsi que les effets de la perte auditive sur le déclin cognitif. D’autres articles abordent les implications de la protéine p53 sur la longévité, l’inflammation dans les maladies vasculaires cérébrales, et le potentiel des composés mimétiques de restriction en méthionine. L’utilisation de l’apprentissage automatique dans la polypharmacologie pour ralentir le vieillissement est également discutée, ainsi que les hypothèses sur la propagation synaptique et la vulnérabilité sélective dans les maladies neurodégénératives. Enfin, des approches innovantes pour prévenir l’agrégation de l’amyloïde-β et étudier les effets des acides produits par le microbiote intestinal sur l’endothélium vasculaire sont mises en lumière. Source : https://www.fightaging.org/archives/2025/05/fight-aging-newsletter-may-26th-2025/

Le rôle de la protéine p53 dans le vieillissement et la suppression tumorale

La protéine suppresseur de tumeur p53, codée par le gène TP53, joue un rôle crucial dans l’équilibre entre le maintien des tissus et le risque de cancer, ce qui contribue à la durée de vie des espèces. Une activité excessive de p53 réduit le risque de cancer mais raccourcit la durée de vie en supprimant également le maintien des tissus. À l’inverse, une activité trop faible de p53 augmente la durée de vie, mais accroît le risque de cancer, ce qui peut finalement mettre fin prématurément à cette vie prolongée. L’évolution atteint un certain équilibre pour chaque niche écologique, mais il pourrait y avoir des leçons à tirer d’autres espèces pour informer les approches possibles de contrôle du cancer chez l’homme.

Plusieurs mécanismes moléculaires ont été proposés pour réguler le vieillissement et influencer la durée de vie, dont beaucoup sont liés aux activités suppresseurs de tumeur de p53. Dans des conditions de stress faibles ou élevées, p53 se lie à plusieurs gènes cibles et induit des processus suppresseurs de tumeur tels que la réparation de l’ADN, l’apoptose et la sénescence cellulaire. D’une manière contextuelle, son mécanisme de réparation de l’ADN améliore la longévité, tandis que l’apoptose aberrante et la sénescence cellulaire accélèrent le vieillissement.

Des études de corrélation génotype-phénotype ont tenté de cartographier les différences observées dans la durée de vie à travers les espèces avec des différences dans la séquence et la structure des orthologues de p53, se concentrant principalement sur le domaine de liaison à l’ADN (DBD). Pour les orthologues de p53 étroitement liés, ceux des espèces à durée de vie plus longue possèdent des mutations uniques dans leur DBD qui sont hypothétisées pour améliorer leur interactome régulateur de longévité. Les résidus 180-192, qui composent la région L2 du DBD dans le p53 humain, montrent une forte corrélation avec la longévité.

Les changements d’acides aminés dans les régions non liantes à l’ADN, comme le domaine de transactivation (TAD), le domaine riche en proline (PRD), le domaine régulateur (REG) et le domaine de tétramérisation (TET), sont largement inexplorés. Pour aborder cette question, une méthode de travail appelée Relative Evolutionary Scoring (RES) a été développée pour examiner de manière exhaustive les changements dans la structure du p53 complet à travers des organismes de divers ordres taxonomiques et les durées de vie observées. En utilisant l’outil de prédiction de mutations Sorting Intolerant From Tolerant (SIFT) et les résultats d’essais fonctionnels basés sur la levure, nous avons caractérisé l’effet des résidus associés à la longévité prédits par RES sur la fonction de p53 et les voies suppresseurs de tumeur.

Nos résultats révèlent que, bien que la plupart des résidus associés à la longévité se trouvent dans le domaine de liaison à l’ADN, des résidus critiques existent également dans d’autres domaines de p53. Les expériences fonctionnelles de mutation et les prédictions d’interaction protéique suggèrent que ces résidus pourraient jouer un rôle vital dans la stabilité de p53 et ses interactions avec d’autres protéines impliquées dans l’induction de la sénescence. Ce travail élargit notre compréhension des mécanismes sous-jacents à la suppression tumorale dysrégulée de p53 et son lien avec le vieillissement accéléré. Source : https://www.fightaging.org/archives/2025/05/a-deeper-look-at-tp53-in-the-determination-of-species-life-span/

Le rôle protecteur du p53 dans la sénescence cellulaire et la prévention du cancer

Les chercheurs publiant dans *Nature Communications* ont découvert que le p53, un biomarqueur et inducteur de la sénescence, supprime à la fois l’inflammation et les dommages à l’ADN dans les cellules sénescentes. La sénescence cellulaire est l’un des principaux mécanismes par lesquels le corps combat le cancer. Le p53, connu comme un suppresseur de tumeur, réduit la sécrétion de facteurs associés à la sénescence (SASP) qui peuvent endommager les tissus environnants. Les chercheurs ont identifié une voie biochimique reliant les mitochondries au noyau comme partiellement responsable de l’activation du SASP. Dans leurs expériences, ils ont observé que la surexpression de 53BP1, un suppresseur de dommages à l’ADN, entraînait une réduction du SASP. En revanche, la mutation de 53BP1 augmentait la libération de chromatine dans le noyau, aggravant les effets du SASP. De plus, le p53 joue un rôle clé dans la réparation de l’ADN, et les niveaux de γH2AX, un marqueur de dommages à l’ADN, étaient réduits lorsque le p53 était activé. Les chercheurs ont ensuite réalisé des expériences in vivo sur des souris, découvrant que le traitement avec HDM201, un inhibiteur de MDM2, augmentait les niveaux de p53 et de p21, particulièrement chez les souris femelles. Bien que ce traitement n’ait pas éliminé les cellules sénescentes, il a inversé de nombreux changements d’expression génique liés à l’âge, suggérant que le p53 pourrait être un candidat pour des traitements visant à promouvoir un vieillissement plus sain. Cette recherche met en lumière l’importance de p53 et p21 non seulement comme cibles potentielles à supprimer, mais aussi comme éléments bénéfiques pour contrôler les effets négatifs des cellules sénescentes. Source : https://www.lifespan.io/news/a-core-senescence-biomarker-fights-inflammation/?utm_source=rss&utm_medium=rss&utm_campaign=a-core-senescence-biomarker-fights-inflammation