Étiquette : neurodégénérescence

L’inflammaging : Comprendre l’inflammation chronique liée au vieillissement

L’inflammation à court terme est nécessaire pour répondre aux infections ou aux blessures, mais lorsque cette inflammation devient chronique, elle peut nuire aux tissus et à leur fonctionnement normal. Cette inflammation chronique, également connue sous le nom d’inflammaging, est un aspect du vieillissement et contribue à l’apparition et à la progression des maladies liées à l’âge. Il semble difficile d’éviter cette inflammation chronique liée à l’âge, à moins de traiter les dommages cellulaires et tissulaires qui en sont la cause. En effet, bien que l’on puisse atténuer certains signaux inflammatoires, cela pourrait également réduire l’inflammation à court terme qui est essentielle pour la défense contre les infections et la régénération des blessures. Le lien entre le vieillissement et l’inflammation périphérique est complexe et multifactoriel, impliquant de nombreux mécanismes moléculaires qui entraînent un état d’inflammation chronique de faible intensité. Contrairement à l’inflammation aiguë, qui est une réponse temporaire, l’inflammaging est un état persistant qui résulte de l’accumulation de facteurs internes et externes au cours de la vie. Ce processus est marqué par une activation soutenue des voies immunitaires, une production accrue de cytokines pro-inflammatoires et une déséquilibre de l’homéostasie immunitaire, contribuant à un déclin fonctionnel progressif lié à l’âge. Le vieillissement impacte plusieurs organes périphériques tels que le foie, les tissus adipeux, les muscles squelettiques et le tractus gastro-intestinal, qui jouent tous un rôle essentiel dans la modulation de l’inflammation systémique. La dysfonction progressive de ces organes avec l’âge est principalement causée par des altérations moléculaires et cellulaires, y compris le stress oxydatif, l’instabilité génomique, les changements épigénétiques, le dysfonctionnement mitochondrial et la sénescence cellulaire. Tous ces facteurs créent un microenvironnement inflammatoire qui entraîne des dommages tissulaires, contribuant ainsi à l’apparition et à la progression de nombreuses maladies liées à l’âge, telles que les troubles cardiovasculaires, les conditions neurodégénératives et le cancer. Au niveau moléculaire, l’inflammaging implique un réseau complexe de médiateurs inflammatoires, y compris les cytokines, les protéines de phase aiguë et les motifs moléculaires associés aux dommages (DAMPs), activant diverses voies de signalisation intracellulaire. Une caractéristique fondamentale de l’inflammaging est le phénotype sécrétoire associé à la sénescence (SASP). Avec le vieillissement, les cellules sénescentes s’accumulent dans plusieurs tissus, favorisant un environnement pro-inflammatoire qui active le système immunitaire et entraîne un remodelage des tissus. Un autre facteur dans l’inflammaging est la dysbiose du microbiote intestinal, qui est de plus en plus reconnue comme un régulateur significatif de l’inflammation systémique chez les individus âgés. Les altérations liées à l’âge de la composition du microbiote intestinal peuvent entraîner une augmentation de la perméabilité intestinale, facilitant la translocation des endotoxines bactériennes, telles que le lipopolysaccharide (LPS), dans la circulation. Ce processus déclenche une activation soutenue des cellules immunitaires, renforçant encore l’inflammation systémique. Source : https://www.fightaging.org/archives/2025/04/chronic-inflammation-is-central-to-aging/

La Déplétion de TDP-43 dans les Vaisseaux Sanguins : Un Lien avec les Maladies Neurodégénératives

La recherche récente menée par des chercheurs de l’Université du Connecticut met en lumière l’importance de la barrière hémato-encéphalique (BHE) dans la progression des maladies neurodégénératives telles que la maladie d’Alzheimer (MA), la sclérose latérale amyotrophique (SLA) et la démence frontotemporale (DFT). Traditionnellement, les études se concentraient sur la dysfonction neuronale et l’agrégation des protéines. Cependant, cette nouvelle étude souligne le rôle critique de la protéine TDP-43, un facteur de liaison de l’ARN, dans le maintien de la fonction des cellules endothéliales et l’intégrité de la BHE. La déplétion de TDP-43 dans ces cellules est corrélée à une dysfonction vasculaire et à une rupture de la BHE dans plusieurs conditions neurodégénératives. En utilisant des techniques de séquençage à noyau unique sur des échantillons de cerveau humain post-mortem, les chercheurs ont identifié un sous-ensemble de cellules endothéliales capillaires associées à la maladie, montrant une réduction du β-caténine et une élévation des marqueurs de l’inflammation, ce qui indique que la perte de TDP-43 pourrait être un facteur commun dans la dégradation de la BHE à travers différentes maladies. Les résultats suggèrent que la santé cérébrovasculaire est non seulement une conséquence, mais peut également être un moteur de la neurodégénérescence. En mettant l’accent sur la nécessité d’interventions précoces ciblant la santé endothéliale, l’étude ouvre la voie à des thérapies visant à stabiliser les niveaux de TDP-43 dans les cellules endothéliales, ce qui pourrait potentiellement retarder la progression de ces maladies. En conclusion, cette recherche appelle à une reconsidération du rôle des vaisseaux sanguins dans les maladies neurodégénératives, en soulignant leur participation active dans la progression de la maladie et en suggérant que la préservation de l’intégrité vasculaire est cruciale pour prolonger la santé cognitive et la longévité. Source : https://longevity.technology/news/research-links-tdp-43-loss-in-blood-vessels-to-neurodegeneration/

L’impact de l’expression de XBP1 sur la longévité et la maladie d’Alzheimer

L’expression excessive du facteur de transcription XBP1 a été démontrée comme capable d’allonger la vie des mouches, probablement en améliorant l’efficacité de la réponse des protéines mal repliées, un processus de maintenance cellulaire. XBP1 influence également des mécanismes variés tels que la fonction immunitaire, le métabolisme lipidique et le métabolisme du glucose. Cette diversité d’effets est typique des facteurs de transcription. Des chercheurs ont appliqué une surexpression spécifique au cerveau de XBP1 sur des modèles murins de la maladie d’Alzheimer, observant une réduction de la pathologie. La dégradation du réseau de protéostasie est reconnue comme un marqueur de vieillissement, contribuant à la pathogenèse de la maladie d’Alzheimer. Des stratégies visant à améliorer la protéostasie ont montré des effets protecteurs significatifs dans divers modèles de maladies neurodégénératives. L’un des nœuds centraux du réseau de protéostasie, affecté par le vieillissement, est la fonction du réticulum endoplasmique (RE), principal site de production des protéines. Lorsqu’il est soumis à un stress, les cellules activent une voie conservée, connue sous le nom de réponse des protéines mal repliées (UPR), qui vise à restaurer la protéostasie. Cette réponse renforce plusieurs processus liés à la fonction de la voie sécrétoire pour améliorer la production de protéines et maintenir la fonction cellulaire, tandis qu’un stress chronique du RE peut entraîner neurodégénérescence et mort cellulaire. La branche de signalisation UPR la plus conservée est initiée par le capteur de stress du RE, IRE1, qui catalyse l’épissage non conventionnel de l’ARNm codant pour XBP1. Cet événement entraîne l’expression d’un facteur de transcription actif, appelé XBP1s, permettant une reprogrammation transcriptionnelle. Des recherches récentes ont montré que l’activité de la voie IRE1/XBP1 diminue dans le cerveau avec le vieillissement normal chez les mammifères, et que des stratégies visant à renforcer l’activité de l’UPR prolonge la durée de vie en bonne santé du cerveau. Il a été démontré que l’expression de XBP1s dans les neurones, que ce soit par des souris transgéniques ou par thérapie génique, retarde la dysfonction synaptique et le déclin cognitif liés au vieillissement normal, tout en réduisant le contenu des cellules de sénescence dans le cerveau. En testant les effets de l’imposition artificielle des réponses adaptatives de l’UPR dans le cerveau d’Alzheimer, les chercheurs ont surexprimé la forme active de XBP1s dans le système nerveux à l’aide de souris transgéniques et du vecteur viral associé aux adénovirus (AAV). La surexpression de XBP1s a considérablement réduit le contenu des plaques amyloïdes dans le cerveau et amélioré la performance cognitive et la plasticité synaptique dans un modèle de maladie d’Alzheimer familiale. De plus, la surexpression de XBP1s dans le cerveau a amélioré la performance de la mémoire dans un modèle de maladie d’Alzheimer sporadique basé sur l’injection d’oligomères d’amyloïde β. Les effets bénéfiques de l’expression de XBP1s dans le cadre de la maladie d’Alzheimer expérimentale et du vieillissement normal impliquent une correction substantielle des motifs d’expression génique associés à la fonction synaptique, à la morphologie neuronale et à la connectivité. Les chercheurs spéculent donc qu’un des mécanismes de protection majeurs de XBP1s dans la maladie d’Alzheimer se rapporte à sa fonction de régulateur de la physiologie neuronale, ce qui pourrait parallèlement réduire le dépôt d’amyloïde. Source : https://www.fightaging.org/archives/2025/03/xbp1-to-upregulate-the-unfolded-protein-response-reduces-pathology-in-mouse-models-of-alzheimers-disease/

L’impact du microbiome intestinal sur la santé cognitive des personnes âgées

Le microbiome intestinal, véritable écosystème de microorganismes, joue un rôle crucial dans le maintien de la santé et l’influence sur la progression des maladies. Avec l’âge, l’équilibre des espèces microbiennes qui composent le microbiome intestinal évolue, ce qui peut favoriser l’inflammation chronique, notamment par l’infiltration de microbes dans les tissus et la production de métabolites néfastes, tout en réduisant la disponibilité de métabolites bénéfiques comme le butyrate. Les recherches récentes montrent que ces modifications sont liées à des conditions liées à l’âge, telles que les maladies neurodégénératives comme Alzheimer et Parkinson, qui présentent des changements dysfonctionnels spécifiques dans le microbiome intestinal vieillissant. Un article récemment publié a approfondi ces travaux en évaluant non seulement la fonction cognitive et la composition du microbiome intestinal, mais aussi l’âge biologique du cerveau, dérivé de l’imagerie des tissus cérébraux. Ces trois mesures semblent interagir : les personnes présentant une dysbiose plus marquée du microbiome intestinal ont également un âge cérébral plus avancé et une plus grande perte de fonction cognitive. On pourrait émettre l’hypothèse que les changements dans le microbiome intestinal contribuent à la neurodégénérescence, ou que le vieillissement immunitaire influence ces deux facteurs, ou même que les deux processus sont interconnectés. Il existe une relation bidirectionnelle entre l’état du système immunitaire vieillissant et celui du microbiome intestinal vieillissant. D’une part, le système immunitaire régule le microbiome intestinal en éliminant les microbes problématiques. En vieillissant, le système immunitaire devient moins capable d’exercer cette fonction. D’autre part, les modifications de la composition du microbiome intestinal peuvent affecter le système immunitaire, en provoquant une inflammation chronique et en influençant les tissus et organes nécessaires à la fonction immunitaire, comme la moelle osseuse et le thymus. Des études émergentes suggèrent que la dysbiose du microbiome intestinal est associée à un vieillissement accéléré de la matière grise, liée à l’inflammation et à une perméabilité intestinale accrue, ce qui conduit à une inflammation systémique et neuronale pouvant nuire à la fonction cognitive. Le vieillissement semble aggraver ces changements, marqués par une diminution de la diversité des espèces microbiennes bénéfiques et une augmentation de la prévalence d’espèces pro-inflammatoires. Ces changements microbiaux, combinés à une fonction immunologique réduite, peuvent accélérer le vieillissement cérébral et contribuer au déclin cognitif. Une étude a été menée sur 292 participants dans des cliniques de mémoire en Corée du Sud, utilisant l’imagerie par résonance magnétique et des échantillons de selles. L’analyse a révélé que la dysbiose du microbiome intestinal était associée à une fonction cognitive altérée, et que l’âge cérébral joue un rôle médiateur dans cette relation. Ces découvertes ouvrent la voie à des interventions ciblant le microbiome intestinal pour atténuer le déclin cognitif lié à l’âge. Source : https://www.fightaging.org/archives/2025/03/detrimental-changes-in-the-gut-microbiome-correlate-with-loss-of-cognitive-function-in-later-life/

Un nouveau traceur PET pour quantifier le stress oxydatif dans le cerveau

Une nouvelle sonde d’imagerie par tomographie par émission de positons (PET), dérivée du médicament edaravone, a montré un potentiel pour détecter le stress oxydatif dans le système nerveux central, un facteur sous-jacent dans des maladies neurodégénératives telles qu’Alzheimer et la sclérose latérale amyotrophique (SLA). Les chercheurs de St Jude Children’s Research Hospital et de l’Université de Virginie ont développé le [18F]fluoroedaravone ([18F]FEDV), un analogue radio-labellisé de l’antioxydant edaravone, qui permet une imagerie in vivo des espèces réactives d’oxygène et d’azote (RONS) dans le cerveau. L’étude, publiée dans Nature Biomedical Engineering, souligne l’importance de ce développement pour comprendre le rôle du stress oxydatif dans la neurodégénérescence. Cette étude répond à un défi de longue date : l’incapacité à mesurer directement les RONS in vivo dans le système nerveux central. Le développement du [18F]FEDV, un traceur PET dérivé de l’edaravone, offre un outil puissant pour visualiser le stress oxydatif au niveau cellulaire. En traversant avec succès la barrière hémato-encéphalique et en démontrant sa stabilité dans le plasma humain, le [18F]FEDV permet un suivi en temps réel et longitudinal de l’activité des RONS, ce qui est très pertinent pour évaluer la progression de la maladie et les interventions thérapeutiques dans des conditions comme la maladie d’Alzheimer et l’accident vasculaire cérébral. La large réactivité du [18F]FEDV avec les radicaux peroxyliques solubles dans les lipides et dans l’eau témoigne de sa polyvalence en tant que biomarqueur du stress oxydatif. Si cet outil d’imagerie est traduit en utilisation clinique, il pourrait affiner la sélection des patients pour des interventions basées sur des antioxydants, surveiller les réponses au traitement avec une précision sans précédent et même prédire l’apparition des symptômes, offrant ainsi un potentiel pour redéfinir la compréhension et la ciblage du stress oxydatif dans la gestion du vieillissement et des maladies neurodégénératives. Les espèces réactives d’oxygène et d’azote contribuent à la signalisation cellulaire et à l’homéostasie ; cependant, lorsque leur production dépasse la capacité des systèmes antioxydants de l’organisme, elles déclenchent des réactions en chaîne dommageables. Une activité excessive des RONS a été impliquée dans les lésions neuronales, la dysfonction mitochondriale et la progression pathologique des maladies neurodégénératives, mais malgré cela, la mesure directe du stress oxydatif dans le cerveau vivant reste un défi. Edaravone, initialement approuvé pour le traitement de la SLA, chasse les radicaux peroxyliques, les radicaux hydroxyles et le peroxynitrite, des composés qui contribuent aux lésions oxydatives. Le [18F]FEDV conserve ces propriétés tout en étant radio-labellisé pour l’imagerie PET, permettant ainsi de servir de biomarqueur du stress oxydatif. Contrairement à d’autres traceurs PET qui détectent la neuroinflammation ou le dépôt d’amyloïde, le [18F]FEDV fournit une mesure directe des niveaux de stress oxydatif, permettant un suivi longitudinal de la progression de la maladie et de la réponse aux traitements antioxydants. L’étude a démontré que le [18F]FEDV peut traverser la barrière hémato-encéphalique et s’accumuler sélectivement dans des régions présentant un stress oxydatif élevé. Dans des modèles murins, le traceur a détecté l’accumulation de RONS après un AVC induit et dans des cerveaux présentant une tauopathie, caractéristique de la maladie d’Alzheimer. Sa spécificité a été confirmée par un prétraitement des souris avec de l’edaravone, qui a bloqué le signal PET, indiquant que la sonde mesure directement le stress oxydatif plutôt que d’autres processus métaboliques. L’auteur correspondant, Kiel Neumann, PhD, du département de radiologie de St Jude, a expliqué que c’est la blessure secondaire subséquente, généralement causée par la réponse immunitaire, qui cause le plus de dommages neurologiques. Une visualisation du stress oxydatif en temps réel pourrait améliorer considérablement l’étude de la neurodégénérescence. Alors que les essais cliniques sur les antioxydants ont produit des résultats mitigés, en partie en raison du manque d’une méthode pour confirmer leur effet in vivo, le [18F]FEDV pourrait servir d’outil crucial pour évaluer l’efficacité thérapeutique. En permettant une mesure directe du stress oxydatif, le traceur pourrait également aider à identifier les individus à risque de développer des conditions neurodégénératives avant l’apparition des symptômes. L’objectif en imagerie est de promouvoir le contraste, donc nous voulons quelque chose qui interagisse rapidement avec sa cible mais qui soit également éliminé rapidement pour que vous puissiez voir votre cible immédiatement. Ce qui était unique à ce médicament, c’est que lorsqu’il réagit avec le stress oxydatif, il subit un changement structural et de polarité massif qui le garde dans la cellule et favorise le contraste. Des recherches supplémentaires seront nécessaires pour valider le [18F]FEDV dans des études humaines. Les prochaines étapes comprennent des essais cliniques pour évaluer sa sécurité et son efficacité chez les patients atteints de SLA, de la maladie d’Alzheimer et d’autres conditions neurodégénératives. De plus, les chercheurs visent à affiner les protocoles d’imagerie PET pour améliorer la sensibilité et la résolution de la détection du stress oxydatif dans le cerveau humain. Les tests diagnostiques sont de l’ordre des nanogrammes à microgrammes de matériel, donc le corps ne sait même pas qu’il est là. En fin de compte, notre objectif est d’utiliser cela pour impacter les soins cliniques. L’intervention thérapeutique utilisant cette technologie pour la gestion des maladies cliniques est l’avenir. Avec son potentiel à combler une lacune de longue date dans la recherche neurodégénérative, le [18F]FEDV représente une avancée dans l’imagerie moléculaire, qui pourrait conduire à un diagnostic plus précoce et précis des conditions liées au stress oxydatif, ainsi qu’à des stratégies améliorées pour leur traitement. Source : https://longevity.technology/news/repurposed-drug-enables-imaging-of-neurodegeneration/

Impact du vieillissement et des maladies neurodégénératives sur la barrière hémato-encéphalique et l’immunité cérébrale

La barrière hémato-encéphalique (BHE) est une structure spécialisée qui entoure les vaisseaux sanguins dans le cerveau et qui contrôle strictement les molécules pouvant y pénétrer. Elle joue un rôle essentiel en séparant le métabolisme du cerveau de celui du reste du corps. Avec l’âge, cette barrière peut devenir dysfonctionnelle, permettant à des cellules et molécules indésirables de s’infiltrer dans le cerveau, ce qui contribue à l’inflammation chronique du tissu cérébral. Des chercheurs se sont penchés sur la structure d’une couche fine spécifique de la BHE, notant qu’elle devient déséquilibrée avec l’âge, et ont trouvé un moyen d’améliorer sa fonction par le biais de la thérapie génique. La BHE est composée d’une couche de glycocalyx endothélial riche en glucides, composée principalement de protéoglycans, glycoprotéines et glycolipides, qui forment la première interface entre le sang et la vascularisation cérébrale. Cependant, peu de choses sont connues sur sa composition et son rôle dans le soutien de la fonction de la BHE dans des états d’homéostasie et de maladie. Les recherches ont révélé que le glycocalyx endothélial cérébral est fortement déséquilibré chez les personnes âgées et en cas de maladies neurodégénératives. Des perturbations importantes ont été identifiées dans une classe de protéines glycosylées O peu explorées, connues sous le nom de glycoprotéines à domaine mucine. Ces anomalies dans les glycoprotéines mucine-domaines associées à l’âge et aux maladies entraînent une dysrégulation de la fonction de la BHE et, dans les cas graves, des hémorragies cérébrales chez les souris. Les chercheurs ont également montré qu’il était possible d’améliorer la fonction de la BHE et de réduire l’inflammation neurogène et les déficits cognitifs chez les souris âgées en restaurant les mucines de type O dans l’endothélium cérébral à l’aide de virus adéno-associés sur-exprimant deux enzymes biosynthétiques de mucines de type O, C1GALT1 et B3GNT3. Ces résultats fournissent une cartographie détaillée de la composition et de la structure de la couche glycocalyx endothéliale cérébrale vieillissante et révèlent les conséquences importantes de la dysrégulation du glycocalyx associée à l’âge et aux maladies sur l’intégrité de la BHE et la santé cérébrale. Source : https://www.fightaging.org/archives/2025/03/restoration-of-the-glycocalyx-layer-of-the-aged-blood-brain-barrier-improves-function/

Dépression tardive : lien entre les maladies cérébrovasculaires et la santé mentale des personnes âgées

La dépression tardive, souvent associée à l’âge avancé, se réfère à l’apparition de troubles dépressifs majeurs chez les personnes âgées. Bien que les causes biochimiques de cette condition ne soient pas complètement comprises, des études soulignent que des comportements immunitaires altérés, souvent inflammatoires, pourraient jouer un rôle clé. Les interventions telles que l’activité physique ont montré des effets bénéfiques sur la dépression, mais leur efficacité varie d’une personne à l’autre. La recherche s’intéresse également aux liens entre le vieillissement cérébral et la dépression tardive, en particulier en examinant comment les maladies cérébrovasculaires peuvent contribuer à cette condition. Les maladies cérébrales des petits vaisseaux (CSVD) représentent un facteur de risque significatif, lié à l’hypertension et aux dommages microvasculaires, qui peuvent affecter la perfusion cérébrale. Une revue de la littérature a analysé vingt études, dont quinze ont révélé une corrélation significative entre CSVD et dépression tardive, tandis que cinq n’ont pas trouvé de lien significatif. Les hyperintensités de la substance blanche, souvent observées chez les patients atteints de CSVD, étaient associées à des symptômes dépressifs accrus. Cependant, la relation entre CSVD et dépression est complexe, étant influencée par des facteurs non vasculaires tels que la neuroinflammation, la neurodégénérescence et d’autres comorbidités. Ces résultats mettent en avant l’importance d’une détection précoce de la CSVD et d’approches interdisciplinaires pour atténuer la dépression et le déclin cognitif chez les populations vieillissantes. Des recherches futures devraient explorer des techniques d’imagerie avancées, le profilage génétique, et des études longitudinales pour mieux comprendre les mécanismes complexes reliant CSVD et dépression tardive, et ainsi améliorer les résultats cliniques. Source : https://www.fightaging.org/archives/2025/03/a-relationship-between-cerebrovascular-disease-and-late-life-depression/

Lutte contre le vieillissement : Avancées et Perspectives

Fight Aging! est une publication qui se consacre à la lutte contre les maladies liées à l’âge, en mettant en lumière les avancées de la médecine moderne dans le contrôle des mécanismes du vieillissement. Le bulletin hebdomadaire de Fight Aging! est envoyé à des milliers d’abonnés intéressés par ces thématiques. Le fondateur de Fight Aging!, Reason, propose également des services de conseil stratégique aux investisseurs et entrepreneurs dans l’industrie de la longévité. Les articles publiés dans cette revue abordent divers sujets, allant de la biologie cellulaire et des mécanismes de vieillissement, aux impacts de l’exercice physique sur le déclin cognitif et aux thérapies potentielles pour améliorer la santé des personnes âgées. Parmi les études notables, certaines mettent en évidence les effets bénéfiques de la déplétion partielle des microglies sur la fonction cognitive chez les souris âgées et l’importance de la reprogrammation cellulaire pour protéger les neurones contre la neurodégénérescence causée par l’inflammation. Les recherches soulignent également le rôle limité des facteurs génétiques dans l’espérance de vie, montrant que le mode de vie et les choix environnementaux ont un impact plus significatif sur la santé et le vieillissement. D’autres articles explorent les mécanismes de la sénescence cellulaire, l’influence de la microbiote intestinale sur la sarcopénie et l’importance de l’activité physique régulière pour réduire le risque de démence. En somme, Fight Aging! est une ressource précieuse pour ceux qui souhaitent comprendre et combattre le vieillissement et ses effets sur la santé. Source : https://www.fightaging.org/archives/2025/03/fight-aging-newsletter-march-3rd-2025/

Impact de la sclérose en plaques sur la rétine et possibilités de rajeunissement neuronal

Le texte aborde l’isolement relatif de l’œil par rapport au reste du corps et explique comment cela permet une étude plus ciblée des traitements médicaux, notamment pour les maladies oculaires. Les chercheurs s’intéressent particulièrement aux cellules rétiniennes, utilisant la rétine comme un indicateur de l’état du système nerveux central, surtout dans le cadre des conditions neurodégénératives telles que la sclérose en plaques (SEP). La SEP est décrite comme une maladie auto-immune entraînant une inflammation et une perte de myéline, affectant à la fois le système nerveux central et la rétine, ce qui conduit à des lésions au niveau du nerf optique et à une diminution des couches de fibres nerveuses rétiniennes. Cette recherche s’appuie sur des modèles animaux pour mieux comprendre les effets de la SEP sur les neurones. Les études récentes mettent en évidence un lien entre le vieillissement, la sénescence cellulaire et la SEP, la sénescence étant associée à des modifications cellulaires typiques du vieillissement. Les chercheurs analysent le transcriptome des cellules ganglionnaires rétiniennes (CGR) chez des souris modèles de SEP, identifiant des signatures transcriptionnelles similaires à celles des CGR âgés, ainsi qu’une accumulation de dommages à l’ADN. En utilisant des facteurs de Yamanaka pour induire un rajeunissement partiel des cellules rétiniennes, les chercheurs ont réussi à réduire la sénescence et à améliorer leur fonctionnalité. Les résultats suggèrent que des thérapies de rajeunissement pourraient offrir une protection neuroprotectrice dans les troubles neuroimmunitaires, en ciblant à la fois la sénescence et la pathologie neuroinflammatoire. Source : https://www.fightaging.org/archives/2025/02/reprogramming-helps-retinal-ganglion-cells-resist-inflammation-mediated-neurodegeneration/

Impact de la Déplétion Partielle des Microglies sur la Plasticité Synaptique et la Performance Cognitive chez les Souris Vieillissantes

Les microglies sont des cellules immunitaires innées du cerveau, comparables aux macrophages dans d’autres parties du corps. Elles jouent un rôle crucial dans la défense contre les pathogènes, l’élimination des cellules endommagées, le nettoyage des débris, et l’assistance à certaines fonctions des réseaux neuronaux. Avec l’âge, les microglies ont tendance à adopter un comportement inflammatoire accru, ce qui peut entraîner des inflammations chroniques nuisibles à la structure et à la fonction des tissus cérébraux. Cette réaction maladaptive est en partie due à des niveaux croissants de déchets moléculaires, comme des agrégats protéiques caractéristiques des conditions neurodégénératives. En outre, des dysfonctionnements mitochondriaux au sein des microglies peuvent également contribuer à ces problèmes liés à l’âge.

Une approche pour réduire l’inflammation dans le cerveau consiste à inhiber le récepteur du facteur de stimulation des colonies 1 (CSF1R), ce qui entraîne la mort des microglies et des macrophages. Un médicament anticancéreux, le pexidartinib (ou PLX-3397), a montré une efficacité dans ce domaine. Il a été observé que la dose nécessaire pour éliminer les microglies est bien inférieure à celle utilisée pour traiter les patients atteints de cancer, ce qui entraîne des effets secondaires plus gérables. De plus, après le traitement, la population de microglies et de macrophages se régénère à partir de populations progénitrices en quelques semaines. Des études animales sur la neurodégénérescence et le vieillissement cérébral ont démontré que ce traitement réduisait le nombre de microglies inflammatoires, diminuait l’inflammation dans le cerveau et améliorait la fonction cognitive.

Une recherche récente a examiné l’effet d’une réduction partielle des microglies avec le PLX-3397, visant à obtenir des bénéfices similaires à ceux observés lors de l’ablation totale des microglies. Des souris âgées ont été traitées pendant six semaines, ce qui a réduit le nombre de microglies dans l’hippocampe et le cortex retrosplénial à des niveaux comparables à ceux observés chez les jeunes souris. Ce traitement a également amélioré la plasticité synaptique et les performances cognitives. Bien que le traitement n’ait pas modifié le nombre ou l’intensité totale des réseaux périneuronaux dans l’hippocampe, il a altéré leur structure fine et a augmenté l’expression de certaines protéines synaptiques. En ciblant le CSF1R, cette étude suggère une stratégie sûre et efficace pour stimuler les fonctions synaptiques et cognitives dans le cerveau vieillissant. Source : https://www.fightaging.org/archives/2025/02/partial-depletion-of-microglia-in-the-brain-improves-cognitive-function-in-aged-mice/