Étiquette : NCLX

TMEM65 : Une protéine clé pour la régulation du calcium mitochondrial et ses implications thérapeutiques

Une équipe de scientifiques a identifié une protéine de membrane mitochondriale, TMEM65, comme un élément clé dans le maintien de l’équilibre calcique cellulaire, avec des implications potentielles pour le traitement des maladies cardiovasculaires et neurodégénératives. Les résultats, publiés dans la revue Nature Metabolism, montrent comment TMEM65 régule NCLX, l’échangeur sodium-calcium mitochondrial, offrant un nouvel éclairage sur la façon dont les perturbations dans la gestion du calcium contribuent à la pathologie liée à l’âge. Les mitochondries jouent un rôle central dans la production d’énergie et la survie cellulaire, mais leur fonction peut être gravement compromise lorsque le calcium s’accumule à des niveaux pathologiques. NCLX est essentiel pour maintenir l’homéostasie calcique au sein des mitochondries en extrudant les ions calcium en échange de sodium; cependant, peu d’informations étaient disponibles sur la régulation de cet échangeur. Selon l’équipe de recherche, la complexité de la structure de NCLX a historiquement entravé les efforts pour disséquer sa régulation. Dr John W. Elrod, auteur principal et professeur au Lewis Katz School of Medicine de l’Université Temple à Philadelphie, a déclaré que leur étude a adopté une approche différente, utilisant le marquage à la biotine, ce qui leur a permis de suivre les interactions de NCLX avec d’autres protéines dans des cellules intactes. Cette étude éclaire un mécanisme longtemps insaisissable régulant l’efflux calcique mitochondrial, un point de contrôle émergent dans la biologie du vieillissement. En identifiant TMEM65 comme un activateur direct de NCLX, l’étude offre une image plus claire de la façon dont la dysrégulation calcique contribue à la dysfonction liée à l’âge dans le cœur, le cerveau et le muscle squelettique. Les implications pour la géroscience sont claires : la surexpression de TMEM65 protège contre la mort cellulaire induite par le calcium, ouvrant la voie à de nouvelles stratégies thérapeutiques pour éviter l’effondrement mitochondrial dans les tissus vieillissants. Bien que les résultats soient précliniques et axés sur des modèles murins, ils marquent une avancée stratégiquement importante. L’application du marquage de proximité pour cartographier l’interactome de NCLX représente une plateforme puissante pour de futures interventions spécifiques aux tissus. Cependant, une prudence est de mise. La complexité de la dynamique calcique mitochondriale – et leur enchevêtrement avec d’autres caractéristiques du vieillissement – signifie que la modulation de TMEM65 doit être étudiée attentivement dans divers contextes, y compris des modèles humains. À mesure que les chercheurs travaillent à la modulation sûre et ciblée de cette voie, TMEM65 pourrait émerger comme un levier prometteur pour changer la trajectoire du vieillissement à son cœur métabolique. L’équipe a employé la biotinylation de proximité – une technique protéomique avancée qui permet d’identifier les protéines à proximité d’une protéine cible dans des cellules vivantes – pour rechercher des régulateurs de NCLX. Parmi les protéines interagissantes découvertes, TMEM65 s’est démarqué. Bien que précédemment non caractérisé, TMEM65 est intégré dans la membrane mitochondriale et a émergé comme un interacteur direct et fonctionnellement significatif de NCLX. Cette connexion clinique a poussé les chercheurs à mener des investigations plus approfondies; en utilisant des modèles génétiques chez la souris, ils ont démontré qu’une carence en TMEM65 entraînait un surcroît de calcium mitochondrial, une mort cellulaire, une dysfonction neuromusculaire et des signes de vieillissement prématuré. En revanche, la surexpression de TMEM65 était protectrice – préservant l’intégrité mitochondriale et la fonction cellulaire dans des conditions de stress calcique. Ces découvertes suggèrent que le complexe TMEM65-NCLX joue un rôle central dans la protection de la fonction mitochondriale pendant le vieillissement et les maladies. Étant donné que les tissus cardiaques et neuronaux dépendent fortement de l’efficacité mitochondriale, le potentiel thérapeutique de cibler ce complexe pourrait s’étendre à plusieurs conditions associées à l’âge. TMEM65 est considéré comme une cible thérapeutique prometteuse. Comprendre comment augmenter ou modifier son interaction avec NCLX pourrait offrir une option de traitement importante pour les patients touchés par des maladies impliquant une accumulation de calcium pathologique dans les mitochondries. La recherche a une pertinence particulière pour des conditions telles que l’insuffisance cardiaque et la maladie d’Alzheimer, qui sont toutes deux connues pour impliquer une dysfonction mitochondriale et une gestion calcique altérée. Dans des modèles murins, des modifications de l’expression de TMEM65 ont eu un impact sur les marqueurs de la fonction cardiaque et de la neurodégénération, soulignant davantage sa pertinence systémique. Amy J. Goldberg, MD, FACS, doyenne du Lewis Katz School of Medicine, a souligné l’importance plus large des résultats. Cette découverte illustre la science transformative qui se déroule au Lewis Katz School of Medicine. En approfondissant notre compréhension de la fonction mitochondriale, nos chercheurs ouvrent la voie à des traitements innovants qui pourraient avoir un impact profond sur les patients souffrant d’insuffisance cardiaque, de la maladie d’Alzheimer et au-delà. Bien que l’étude offre une base mécanistique claire, d’autres recherches sont nécessaires pour évaluer la sécurité et l’efficacité des thérapies basées sur TMEM65. Des questions demeurent sur la façon dont cette voie se comporte à travers différents tissus et états pathologiques chez les humains, et comment la modulation pharmacologique pourrait être réalisée sans perturber les gradients d’ions essentiels. Néanmoins, l’identification de TMEM65 comme régulateur de l’efflux calcique mitochondrial représente une avancée significative dans l’élucidation de l’architecture moléculaire du vieillissement et des maladies. À mesure que les chercheurs continuent de déchiffrer la chorégraphie cellulaire de la régulation du calcium, cette découverte pourrait aider à informer une nouvelle classe d’interventions ciblant la résilience mitochondriale face au stress lié à l’âge. Source : https://longevity.technology/news/new-mitochondrial-regulator-may-aid-aging-disease-therapies/