Étiquette : nanoparticules lipidiques

Avancées dans la thérapie CAR-T : une approche in situ prometteuse contre le cancer

Les récepteurs d’antigène chimérique (CAR) sont des structures artificielles ajoutées aux cellules immunitaires, telles que les cellules T, pour les orienter vers une attaque agressive contre le cancer. Les thérapies CAR-T se sont révélées efficaces contre la leucémie, et des chercheurs s’efforcent de les adapter pour traiter les tumeurs solides. Actuellement, la livraison de cette thérapie est un processus long et coûteux, impliquant la collecte des cellules auprès du patient, leur ingénierie, leur expansion en culture, puis leur réinjection. Une approche potentiellement moins coûteuse consiste à utiliser des outils de thérapie génique pour ingérer une fraction des cellules T circulantes in situ chez le patient. Des chercheurs ont réalisé une démonstration de principe chez des souris, où ils ont utilisé des nanoparticules lipidiques pour encapsuler des molécules d’ARN messager (mRNA) codant pour une protéine réceptrice qui se lie à CD19, une protéine présente en grande quantité sur les cellules B, qui sont souvent responsables des cancers du sang. Dans cette étude, les chercheurs ont injecté des nanoparticules dans des souris atteintes de lymphome B et ont pu suivre la génération des cellules CAR-T in situ, observant qu’elles se dirigeaient vers les tumeurs. Cette méthode a permis de générer environ 3 millions de cellules CAR-T par animal, un nombre similaire à celui des cellules infusées chez les patients recevant une thérapie CAR-T conventionnelle. Les résultats ont été prometteurs, avec six des huit souris devenant sans tumeur 60 jours après le début du traitement, tandis que la croissance tumorale des deux autres a été contrôlée. Ces avancées marquent un pas important vers des traitements du cancer plus accessibles et efficaces. Source : https://www.fightaging.org/archives/2025/07/car-t-cells-generated-inside-the-body-via-messenger-rna-therapy/

Potentiel de l’édition de base mitochondriale dans le traitement des maladies héréditaires

La technologie de l’édition de base, notamment via des approches basées sur CRISPR, permet d’apporter de petites modifications aux séquences d’ADN. Cependant, elle ne fonctionne actuellement que dans le génome nucléaire. Récemment, des chercheurs ont démontré qu’il était possible d’effectuer une édition de base efficace sur les centaines de génomes mitochondriaux présents dans une cellule, ce qui pourrait bénéficier aux patients souffrant de mutations mitochondriales héréditaires. Les mutations dans le génome mitochondrial peuvent être responsables de maladies héréditaires, de cancers et de conditions liées au vieillissement. Bien que des progrès technologiques récents permettent de créer et de corriger des mutations dans le génome mitochondrial, il reste encore des questions sur la manière dont les patients atteints de maladies mitochondriales primaires pourraient en bénéficier. Les chercheurs ont mis en évidence le potentiel d’un éditeur de base dérivé de la toxine A de l’ADN double brin (DdCBE) pour développer des modèles de maladies et des stratégies thérapeutiques pour les maladies mitochondriales dans des cellules humaines primaires. Par exemple, l’introduction d’une mutation spécifique dans des organoïdes hépatiques a conduit à des lignées d’organoïdes montrant des niveaux variés d’hétéoplasmie et une réduction correspondante de la production d’ATP, fournissant ainsi un modèle unique pour étudier les conséquences fonctionnelles de différents niveaux d’hétéoplasmie. La correction d’une mutation dans des fibroblastes dérivés de patients a restauré le potentiel de membrane mitochondrial. L’édition de base par DdCBE a permis d’obtenir des modifications durables avec une grande spécificité et une pureté de produit élevée. En vue d’une application clinique, il a été constaté que l’édition de base mitochondriale médiée par l’ARNm offrait une efficacité et une viabilité cellulaire supérieures par rapport à l’édition médiée par l’ADN. De plus, la livraison efficace des éditeurs de base mitochondriaux par des nanoparticules lipidiques a été démontrée, représentant actuellement le système de livraison non viral le plus avancé pour les produits géniques in vivo. Cette étude démontre ainsi le potentiel de l’édition de base mitochondriale, non seulement pour générer des modèles in vitro uniques pour l’étude de ces maladies, mais aussi pour corriger fonctionnellement des mutations mitochondriales dans des cellules dérivées de patients à des fins thérapeutiques futures. Source : https://www.fightaging.org/archives/2025/07/an-approach-to-base-editing-for-mitochondrial-dna/

Turn Biotechnologies : Vers une Révolution dans la Thérapie de Rajeunissement Cellulaire

Turn Biotechnologies, une entreprise spécialisée dans la régénération cellulaire, a récemment acquis la technologie ARMMs (ARRDC1 Mediated Microvesicles) développée par l’Université de Harvard, ainsi que des actifs associés de Vesigen Therapeutics. Cette acquisition vise à renforcer ses capacités en reprogrammation épigénétique, permettant à l’entreprise de cibler une large gamme de tissus et d’organes, améliorant ainsi la précision et l’efficacité de ses thérapies. La technologie ARMMs utilise des vésicules extracellulaires humaines pour transporter des agents thérapeutiques, tels que les modulateurs épigénétiques de Turn Bio, entre les cellules de manière efficace, tout en assurant une spécificité élevée des cibles et en minimisant les effets indésirables. Un défi majeur pour la reprogrammation épigénétique et toutes les thérapies géniques est de garantir que les traitements soient cliniquement sûrs et bien tolérés par les patients, tout en maintenant l’efficacité et la stabilité du contenu. L’entreprise a résolu ce problème de livraison grâce à son système de nanoparticules lipidiques propriétaire eTurna, qui peut administrer un cocktail thérapeutique dans plusieurs tissus du corps. Par exemple, eTurna est utilisé pour livrer le candidat principal TRN-001 pour le rajeunissement des tissus cutanés. En intégrant ARMMs avec eTurna, Turn Bio estime pouvoir livrer une gamme plus large de contenus, y compris des éditeurs de gènes, des protéines et des thérapies à base d’ARN. Cette combinaison permet de surmonter les limitations des systèmes de livraison traditionnels, en offrant biocompatibilité, évolutivité et possibilité de répétition tout en maintenant un ciblage précis de tissus spécifiques. ARMMs permettra aux cellules cibles de communiquer naturellement avec d’autres cellules, sans recourir à des composants viraux qui déclenchent des réponses immunitaires compromettant les traitements thérapeutiques. Les données précliniques indiquent que la technologie ARMMs est efficace pour livrer des thérapies à plusieurs tissus, y compris la rétine, les poumons, le système nerveux, le foie et la rate. Turn Bio prévoit que cette technologie accélérera le développement de ses candidats médicaments, en particulier en ophtalmologie et pour la régénération des cellules immunitaires. L’entreprise dispose de données démontrant la preuve de concept chez des primates et d’autres modèles animaux et est prête pour une demande d’IND (Investigational New Drug), ce qui offrira immédiatement des actifs supplémentaires à ses partenaires stratégiques. L’année dernière, Turn Bio a signé un accord de licence mondial d’une valeur potentielle de 300 millions de dollars avec le géant pharmaceutique coréen HanAll Biopharma pour développer plusieurs traitements de reprogrammation épigénétique pour des conditions liées à l’âge des yeux et des oreilles. Alors que Life Biosciences s’apprête à amener la première thérapie de reprogrammation épigénétique en clinique cette année, Turn Bio ne devrait pas être loin derrière avec son programme de rajeunissement cutané. L’entreprise a démontré une expression complète des gènes ERA dans des tissus humains âgés ex vivo, ainsi qu’une inversion de plus de 10 ans d’âge dans des fibroblastes et des kératinocytes. Turn Bio a commencé des études préparatoires à l’IND et est en train de lever une série B pour entrer en clinique d’ici 2026. Source : https://longevity.technology/news/turn-bio-acquires-harvard-developed-therapeutic-delivery-technology/

Une nouvelle méthode pour la livraison d’un traitement durable dans le cartilage

Dans un article publié dans le Journal of Nanobiotechnology, des chercheurs ont présenté une nouvelle méthode pour administrer un traitement durable dans le cartilage. L’accent est mis sur le rôle de la protéine FGF18, qui est liée à la santé du cartilage et des articulations. Les problèmes génétiques affectant FGF18 sont associés à l’arthrose. Cette protéine est particulièrement importante dans les thérapies contre l’arthrite, notamment les hydrogels qui favorisent la croissance du cartilage. FGF18 influence positivement la voie FOXO3, essentielle pour l’autophagie, un processus cellulaire qui élimine les composants indésirables. Cependant, l’utilisation de protéines recombinantes comme traitement du cartilage pose des défis, car elles ne persistent pas longtemps dans les tissus. Les thérapies basées sur l’ARNm sont également sujettes à une dégradation rapide dans le corps humain. Pour surmonter ces obstacles, les chercheurs ont opté pour des nanoparticules lipidiques (LNPs) qui encapsulent l’ARNm, permettant une livraison ciblée dans les cellules.

Les chercheurs ont d’abord confirmé le lien entre FGF18 et l’arthrose en examinant une base de données d’expression génique. Ils ont constaté que les personnes âgées avaient un quart du niveau de FGF18 par rapport aux jeunes, et que les échantillons de tissus de patients ayant subi une arthroplastie du genou montraient une réduction de FGF18 d’environ 50%. Des études sur des souris ont également révélé des niveaux de cellules positives pour FGF18 réduits chez les souris âgées et celles ayant une arthrite induite.

L’exposition des chondrocytes à un environnement inflammatoire a également réduit l’expression de FGF18. La livraison d’ARNm à l’aide de LNPs s’est avérée efficace, sans toxicité pour les chondrocytes, même à des concentrations élevées. Les nanoparticules ont réussi à pénétrer profondément dans le cartilage des souris, jeunes et âgées, et sont restées dans l’articulation du genou pendant environ six jours, avec des effets durables. Les résultats montrent que le traitement par LNP-ARNm a conduit à une expression significative de la protéine FGF18 dans les cellules.

Dans les cultures cellulaires, le traitement a réduit la sénescence cellulaire et doublé la prolifération. L’autophagie a également été régulée à la hausse, avec une restauration des niveaux de FOXO3. Les chercheurs ont ensuite testé le traitement sur des souris dans divers groupes de contrôle, et ont constaté que le groupe traité avec LNP-ARNm avait des améliorations significatives en termes de douleur et de biomarqueurs physiques par rapport au groupe non traité. Bien que les souris traitées par FGF18 aient également montré des améliorations, les résultats du traitement par LNP-ARNm étaient souvent supérieurs.

La cartilagine des souris traitées avec LNPs était significativement plus épaisse, presque restaurée à des niveaux normaux. Cette approche semble prometteuse pour des essais cliniques futurs, même si cette étude n’a pas été réalisée sur des humains. Les chercheurs soulignent que des études supplémentaires sont nécessaires pour affiner cette méthode avant son utilisation clinique. Source : https://www.lifespan.io/news/new-nanoparticles-for-treating-arthritis/?utm_source=rss&utm_medium=rss&utm_campaign=new-nanoparticles-for-treating-arthritis