Étiquette : modélisation des maladies

Vivodyne : 40 millions de dollars pour révolutionner le développement de médicaments sans tests sur les animaux

Vivodyne, une entreprise biotechnologique américaine, a récemment levé 40 millions de dollars lors d’un tour de financement de série A dirigé par Khosla Ventures, dans le but d’éliminer les tests sur les animaux dans le développement de médicaments. L’entreprise utilise la robotique et l’intelligence artificielle pour cultiver et analyser des milliers de tissus humains pleinement fonctionnels, s’attaquant ainsi à l’inadéquation biologique qui entraîne un taux d’échec de 95 % dans les essais cliniques humains après des tests réussis sur des animaux. Ce financement permettra à Vivodyne d’ouvrir une installation entièrement robotisée de 23 000 pieds carrés à South San Francisco. Le développement traditionnel de médicaments précliniques a longtemps reposé sur des modèles animaux, qui, malgré certaines similitudes biologiques avec les humains, produisent souvent des résultats trompeurs en raison de différences fondamentales dans la manifestation des maladies et les réponses immunitaires. L’approche de Vivodyne remplace ces modèles inadéquats par des tests cliniquement prédictifs à grande échelle sur des tissus humains complexes. La plateforme de l’entreprise, capable de simuler la biologie humaine in vitro, permet aux entreprises pharmaceutiques de générer des informations plus précises à toutes les étapes du développement de médicaments, de la découverte de cibles aux évaluations de sécurité et d’efficacité. Dr Andrei Georgescu, co-fondateur et PDG de Vivodyne, a souligné que cette technologie a un potentiel important dans le secteur biotechnologique de la longévité. Il a déclaré que les recherches sur les maladies chroniques étaient jusqu’à présent limitées par le manque et l’échelle des données humaines disponibles. En remplaçant les tests sur des souris, qui ont une espérance de vie d’un an, par des recherches à grande échelle sur des tissus humains cultivés en laboratoire, Vivodyne espère produire une quantité massive de nouvelles données et, espérons-le, des informations exploitables pour l’industrie pharmaceutique. La meilleure façon de comprendre comment les maladies chroniques impactent le vieillissement humain ne peut être abordée qu’à travers une recherche à grande échelle basée directement sur des tissus humains. Vivodyne peut produire et analyser plus de 10 000 expériences indépendantes de tissus humains par course robotique, avec des tissus plus grands que les organoïdes traditionnels, permettant une collecte de données multi-omiques haute résolution, y compris l’imagerie, la transcriptomique unicellulaire et la protéomique. Ces ensembles de données reflètent les réponses humaines authentiques aux médicaments, permettant aux chercheurs de capturer des états de maladie complexes et des dynamiques immunitaires que les modèles animaux ne peuvent tout simplement pas reproduire. Vivodyne affirme que son système est capable de cultiver plus de 20 types de tissus humains différents, y compris le foie, le poumon, la moelle osseuse, le placenta et les ganglions lymphatiques, et peut modéliser une large gamme de maladies telles que le cancer, la fibrose, les conditions auto-immunes et les maladies infectieuses. La plateforme de l’entreprise est déjà utilisée par la plupart des grandes entreprises pharmaceutiques, qui s’en servent pour réduire les risques des essais cliniques et améliorer la sélection des candidats médicaments. En plus de Khosla, le tour de financement a vu la participation de nouveaux investisseurs tels que Lingotto Investment Management, Helena Capital, Fortius Ventures, ainsi que des investisseurs existants comme Kairos Ventures, CS Ventures, Bison Ventures et MBX Capital. Vinod Khosla a déclaré que la robotique et l’IA commencent déjà à changer fondamentalement le paysage des soins de santé et que Vivodyne est à l’avant-garde de cette révolution, permettant de cultiver et de tester plus de 100 000 tissus humains entiers automatiquement en deux semaines, permettant aux entreprises pharmaceutiques d’obtenir des informations équivalentes aux humains avant d’engager des milliards de dollars dans des essais cliniques. Source : https://longevity.technology/news/vivodyne-lands-40m-to-replace-animal-testing-in-drug-development/

Avancées dans la bioprinting 3D : Vers un traitement innovant des maladies cardiaques

Des chercheurs de l’Université de Galway ont réalisé une avancée majeure dans le domaine de la bioprinting 3D, en réussissant à fabriquer des tissus cardiaques humains fonctionnels. Leur recherche, publiée dans ‘Advanced Functional Materials’, présente le développement d’hydrogels bioprintés qui imitent l’environnement mécanique, électrique et biochimique du cœur, ce qui est crucial pour créer des tissus viables pour des applications régénératives et le développement de médicaments. Avec une demande croissante pour des solutions alternatives face à la pénurie de cœurs donneurs, la création de tissus cardiaques fonctionnels répond à ce besoin non satisfait et ouvre la voie à des avancées dans la recherche sur les maladies cardiaques et les options thérapeutiques futures. L’équipe a utilisé des techniques de bioprinting par extrusion pour créer des hydrogels structurés favorisant la croissance des cellules cardiaques. Les résultats ont montré que les tissus bioprintés pouvaient se contracter de manière synchronisée et préserver la viabilité cellulaire à long terme, ce qui suggère que le bioprinting pourrait mener à des thérapies spécifiques aux patients pour les maladies cardiovasculaires. L’innovation réside non seulement dans la capacité à reproduire les structures des tissus cardiaques, mais aussi à garantir leur fonctionnalité. Contrairement aux méthodes conventionnelles qui se concentrent sur la forme finale des organes, les chercheurs de Galway ont introduit une méthode de bioprinting qui incorpore des comportements de morphing de forme essentiels. Cela signifie que les tissus bioprintés peuvent changer de forme de manière programmable, ce qui améliore leur maturité structurelle et fonctionnelle. Les résultats des évaluations ont démontré un comportement contractile, une viabilité cellulaire, et une expression moléculaire satisfaisante, ce qui est crucial pour des applications en médecine régénérative et pour créer des modèles précis d’études de maladies comme les cardiomyopathies. En outre, l’équipe a développé un modèle de calcul capable de prédire le comportement de morphing des tissus. Cependant, malgré ces avancées prometteuses, de nombreux défis demeurent avant que les tissus cardiaques bioprintés ne puissent être utilisés en thérapie. L’intégration avec les tissus natifs, la mise à l’échelle de la production, et le respect des régulations sont des aspects qui nécessitent encore des recherches approfondies. Bien que la bioprinting d’organes complets soit un objectif lointain, ces avancées en matière de tissus fonctionnels constituent un précurseur vital. La capacité à simuler des comportements de changement de forme à la fois au niveau cellulaire et tissulaire pourrait transformer l’ingénierie des organes, ouvrant ainsi des possibilités passionnantes dans le domaine de la bioprinting d’organes et ayant des implications au-delà de la cardiologie, notamment pour d’autres organes affectés par des maladies comme l’insuffisance hépatique ou le diabète. Source : https://longevity.technology/news/researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue

Avancées dans l’impression 3D de tissus cardiaques : vers de nouvelles thérapies pour les maladies cardiovasculaires

Les chercheurs de l’Université de Galway ont récemment fait une avancée majeure dans le domaine de l’impression 3D de tissus biologiques, en réussissant à fabriquer un tissu cardiaque humain fonctionnel. Cette recherche, publiée dans Advanced Functional Materials, présente le développement d’hydrogels bioprintés qui imitent l’environnement mécanique, électrique et biochimique du cœur. Cette avancée est essentielle pour créer des tissus viables destinés aux applications régénératives et au développement de médicaments, et représente un pas important vers des thérapies cardiaques spécifiques aux patients. La maladie cardiaque est une des principales causes de mortalité dans le monde, et le manque de cœurs donneurs souligne l’urgence de solutions alternatives. La création de tissus cardiaques fonctionnels pourrait non seulement faire progresser la recherche sur les affections cardiaques, mais aussi offrir de futures options thérapeutiques. L’équipe a utilisé des techniques d’impression biographique par extrusion pour créer des hydrogels structurés destinés à soutenir la croissance des cellules cardiaques. Le bioencre utilisé mime de près les propriétés de la matrice extracellulaire, permettant la création de constructions tissulaires présentant à la fois une intégrité mécanique et une fonction biologique. Les résultats montrent que le tissu bioprinté présente des contractions synchronisées ainsi qu’une compatibilité avec la survie cellulaire à long terme, suggérant que l’impression biographique pourrait éventuellement mener à des thérapies spécifiques aux patients pour les maladies cardiovasculaires. L’innovation réside non seulement dans la capacité à répliquer les structures du tissu cardiaque, mais aussi à garantir leur fonctionnalité. Les approches conventionnelles d’impression biographique se concentrent souvent sur la reproduction de la forme finale des organes, sans tenir compte des transformations dynamiques survenant durant le développement embryonnaire. Les chercheurs de Galway ont introduit une méthode d’impression biographique innovante qui intègre ces comportements de changement de forme essentiels. L’étude, dirigée par Ankita Pramanick, candidate au doctorat à l’Université de Galway, a utilisé une plateforme nouvelle permettant d’imprimer des tissus capables de morphing de forme programmable, influencé par les forces générées par les cellules. Les résultats ont montré que l’amélioration du morphing de forme augmentait la maturité structurelle et fonctionnelle des tissus cardiaques bioprintés. Les constructions bioprintées ont été évaluées pour leur comportement contractile, leur viabilité cellulaire et leur expression moléculaire, montrant que les tissus pouvaient se contracter de manière synchronisée, un aspect essentiel du tissu cardiaque fonctionnel. L’étude a également démontré que les forces générées par les cellules pouvaient influencer le morphing des tissus bioprintés, ce qui a des implications importantes pour la recherche et la thérapie cardiaque. Les résultats suggèrent que des approches similaires pourraient être appliquées à d’autres organes, ouvrant ainsi la voie à des avancées dans le traitement de maladies variées. Cependant, malgré ces résultats prometteurs, des défis subsistent avant que les tissus cardiaques bioprintés ne puissent être utilisés dans un cadre thérapeutique. L’intégration avec les tissus natifs, la montée en échelle de la production pour répondre aux demandes cliniques et les obstacles réglementaires nécessiteront des recherches et des développements supplémentaires. Les chercheurs soulignent que, même s’ils sont encore loin d’imprimer des tissus fonctionnels pouvant être implantés chez l’humain, cette avancée les rapproche de la génération d’organes bioprintés fonctionnels, avec des applications potentielles larges en médecine cardiovasculaire. En somme, cette étude illustre le potentiel transformateur de l’impression 3D dans le domaine médical et ouvre des perspectives passionnantes pour le futur de la médecine régénérative. Source : https://longevity.technology/news/researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue

Avancées dans l’impression biotique 3D pour le traitement des maladies cardiaques

Les chercheurs de l’Université de Galway ont réalisé une avancée significative dans le domaine de l’impression biotique 3D en fabriquant avec succès des tissus cardiaques humains fonctionnels. Leur étude, publiée dans la revue Advanced Functional Materials, décrit le développement d’hydrogels bioprintés qui imitent l’environnement mécanique, électrique et biochimique du cœur, une étape essentielle pour créer des tissus viables destinés à la régénération et au développement de médicaments. Cette recherche est particulièrement pertinente face à la crise mondiale des maladies cardiaques, qui restent l’une des principales causes de mortalité, et à la pénurie de cœurs donneurs. En présentant des tissus cardiaques fonctionnels, les chercheurs visent à répondre à un besoin pressant et à offrir de nouvelles options thérapeutiques. L’approche de l’équipe repose sur l’utilisation de techniques d’extrusion pour créer des hydrogels structurés qui soutiennent la croissance cellulaire cardiaque. Les bioinks utilisés imitent les propriétés de la matrice extracellulaire, permettant la création de constructions tissulaires qui présentent à la fois une intégrité mécanique et une fonction biologique. Les tissus bioprintés ont démontré des contractions synchronisées et une compatibilité avec la survie cellulaire à long terme, suggérant que l’impression biotique pourrait éventuellement mener à des thérapies spécifiques aux patients pour les maladies cardiovasculaires. Un aspect innovant de cette recherche est l’intégration de comportements de morphing dynamique, qui sont cruciaux pour le développement normal du cœur. En utilisant une méthode d’impression biotique intégrée, les chercheurs ont pu imprimer des tissus qui subissent un morphing de forme prédictible et programmable, basé sur les forces générées par les cellules. Cette découverte pourrait transformer les résultats fonctionnels et la maturation des tissus imprimés. Les résultats montrent que le morphing des tissus peut influencer le comportement contractile et l’alignement cellulaire, ce qui est essentiel pour la médecine régénérative et la modélisation des maladies. Les applications immédiates de ces tissus cardiaques bioprintés incluent le dépistage des médicaments, offrant une alternative plus précise et éthique aux modèles animaux. À long terme, cette technologie pourrait contribuer à résoudre la crise de pénurie d’organes, bien que des défis subsistent, notamment l’intégration des constructions bioprintées avec des tissus natifs et la mise à l’échelle de la production pour répondre aux besoins cliniques. Malgré ces obstacles, les chercheurs sont optimistes quant à l’avenir de l’impression biotique dans la médecine cardiovasculaire. De plus, les techniques développées ont des implications au-delà de la cardiologie, permettant la conception de tissus fonctionnels pour d’autres organes, ce qui pourrait révolutionner le traitement de diverses maladies. L’interdisciplinarité de ce travail souligne le potentiel de l’impression biotique 3D comme technologie transformative en médecine. Source : https://longevity.technology/news/researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue

Avancées dans la bio-impression 3D : Vers de nouvelles approches pour le traitement des maladies cardiaques

Les chercheurs de l’Université de Galway ont réalisé une avancée majeure dans le domaine de la bio-impression 3D en fabriquant avec succès des tissus cardiaques humains fonctionnels. Leur recherche, publiée dans ‘Advanced Functional Materials’, décrit le développement d’hydrogels bio-imprimés qui imitent l’environnement mécanique, électrique et biochimique du cœur. Cela représente une étape essentielle pour créer des tissus viables pour des applications régénératives et le développement de médicaments, en offrant des thérapies cardiaques spécifiques aux patients. La maladie cardiaque étant l’une des principales causes de mortalité dans le monde et avec une pénurie significative de cœurs donneurs, la création de tissus cardiaques fonctionnels répond à un besoin pressant, permettant d’avancer la recherche sur les conditions cardiaques tout en offrant de futures options thérapeutiques. L’approche des chercheurs repose sur des techniques de bio-impression par extrusion, créant des hydrogels structurés soutenant la croissance cellulaire cardiaque, et le bio-encre utilisé imitant étroitement les propriétés de la matrice extracellulaire. Les tissus bio-imprimés ont démontré des contractions synchronisées et une compatibilité avec la survie cellulaire à long terme, suggérant un potentiel pour des thérapies spécifiques aux patients. La percée se situe non seulement dans la capacité à reproduire les structures des tissus cardiaques, mais aussi à assurer leur fonctionnalité. Contrairement aux approches conventionnelles qui se concentrent sur la forme finale des organes, les chercheurs de Galway ont introduit une méthode d’impression qui intègre des comportements de transformation de forme essentiels. Ankita Pramanick, auteur principal de l’étude, a déclaré que leur travail introduit une nouvelle plateforme utilisant l’impression biographique intégrée pour produire des tissus capables de morphing de forme programmable et prévisible, ce qui améliore la maturité structurelle et fonctionnelle des tissus cardiaques imprimés. Les constructions bio-imprimées ont été évaluées pour leur comportement contractile, leur viabilité cellulaire et leur expression moléculaire, montrant que ces tissus peuvent se contracter de manière synchrone, une caractéristique essentielle des tissus cardiaques fonctionnels. Les résultats indiquent également que les forces générées par les cellules peuvent conduire à la morphologie des tissus bio-imprimés, influencée par des facteurs tels que la géométrie d’impression initiale et la rigidité de la bio-encre. Le professeur Andrew Daly a affirmé que cette recherche montre que permettre aux tissus cardiaques bio-imprimés de subir des changements de forme améliore leur force et leur rapidité de battement, un résultat prometteur pour surmonter le défi de la maturité limitée des tissus bio-imprimés. L’une des applications immédiates des tissus cardiaques bio-imprimés est leur utilisation potentielle dans le dépistage de médicaments, offrant une alternative plus précise et éthique aux modèles actuels basés sur des tissus animaux. À long terme, cette technologie pourrait contribuer à résoudre la crise de pénurie d’organes, bien que l’impression d’organes complets reste un objectif lointain. Les chercheurs soulignent que la scalabilité et la reproductibilité seront des défis clés à surmonter pour adapter la technologie aux applications cliniques. Malgré des résultats prometteurs, des obstacles importants subsistent avant que les tissus cardiaques bio-imprimés puissent être utilisés en thérapie, notamment l’intégration avec des tissus natifs et la montée en échelle de la production. Les implications de cette recherche vont au-delà de la cardiologie, car les techniques développées pourraient être appliquées pour créer des tissus fonctionnels pour d’autres organes, ouvrant la voie à des avancées dans le traitement de maladies variées. L’interdisciplinarité de ce travail, combinant des matériaux de pointe et des sciences biologiques, souligne le potentiel de la bio-impression 3D en tant que technologie transformative en médecine. Source : https://longevity.technology/news/researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-achieve-bioprinting-milestone-with-functional-human-heart-tissue