Les mitochondries sont souvent considérées comme les centrales énergétiques des cellules, car elles produisent la molécule d’énergie chimique, l’adénosine triphosphate (ATP). Chaque cellule humaine possède des centaines de mitochondries, qui ont évolué à partir de bactéries symbiotiques ayant pris résidence dans les ancêtres des eucaryotes modernes. Ces organites se reproduisent de manière similaire aux bactéries et peuvent fusionner ou se diviser, tout en se débarrassant des mitochondries endommagées grâce à un mécanisme de contrôle de qualité appelé mitophagie. Avec l’âge, la fonction mitochondriale diminue, ce qui est lié à une réduction de la mitophagie et à des changements dans les dynamiques mitochondriales. Bien que ce soit un domaine de recherche actif, il reste encore beaucoup à découvrir sur les raisons pour lesquelles les mitochondries deviennent moins efficaces dans les cellules des tissus âgés. Plusieurs projets se concentrent sur l’amélioration de l’efficacité de la mitophagie afin de ralentir le déclin lié à l’âge de la fonction mitochondriale. Cependant, la manière dont les divers médicaments et suppléments agissent sur la mitophagie n’est souvent comprise que de manière sommaire. Certains médicaments sont découverts par criblage, tandis que d’autres sont développés pour cibler un mécanisme spécifique, mais leur importance n’est comprise qu’ultérieurement. Une autre approche consiste à modifier les dynamiques mitochondriales de manière favorable, en ajustant le rythme de la fission ou de la fusion des mitochondries pour altérer leur taille moyenne et d’autres aspects structurels et fonctionnels. La mitophagie et les dynamiques mitochondriales sont clairement interconnectées, mais une compréhension complète de cette relation reste encore à établir.
Le mitochondrion est une structure à double membrane située dans le cytoplasme, contenant son propre génome et générant la majorité de l’énergie cellulaire par la respiration aérobie. Les mitochondries éliminent naturellement les mutations pathogènes de l’ADN mitochondrial (ADNmt) et réparent leurs architectures dynamiques en contrôlant la division et la fusion des organelles via un signalement dépendant de la guanosine triphosphatase (GTPase). Dans ce processus, la fusion compense les mitochondries partiellement endommagées, tandis que la fission génère de nouvelles mitochondries et dilue la fraction dysfonctionnelle. Des défauts dans la biogenèse dépendante de la GTPase entraînent une phosphorylation oxydative dysfonctionnelle, associée au vieillissement des mammifères et à une défaillance organique. Ainsi, cibler efficacement la qualité mitochondriale pourrait avoir le potentiel de rajeunir la biologie cellulaire et d’atténuer les maladies liées à l’âge.
Les GTPases Mitofusins 1 et 2 (MFN1 et MFN2) sont des cibles importantes dans les maladies mitochondriales, car elles initient la fusion de la membrane mitochondriale. Un signe distinctif du vieillissement myocardique est l’accumulation de mitochondries dysfonctionnelles due aux fonctions non redondantes de MFN1 et MFN2. Pour cibler l’activité de fusion de MFN1, un petit agoniste moléculaire, S89, a été récemment développé. Ce dernier a permis de sauver la fragmentation mitochondriale et le gonflement suite à des lésions dues à l’ischémie/reperfusion en interagissant avec le domaine GTPase de MFN1, retardant ainsi la sénescence dérivée des mutations de l’ADN mitochondrial. Pour moduler l’activité fusogénique de MFN2, un autre petit moléculaire peptidomimétique, MASM7, a été découvert. MASM7 active la conformation pro-tethering de MFN2 et permet la fusion mitochondriale, entraînant une augmentation du potentiel membranaire, de la respiration mitochondriale et de la production subséquente d’ATP, promettant ainsi de réduire les maladies métaboliques dégénératives liées à l’âge.
La régulation de la fission mitochondriale dans le vieillissement humain a également été étudiée. La GTPase Drp1 déclenche de manière unique la fission mitochondriale en constrictant chimiquement la surface mitochondriale pour diviser l’organite, conduisant ainsi à la mitophagie. Une activation incontrôlable de Drp1 entraîne une hyper-fragmentation, l’ouverture soutenue des pores de transition de perméabilité mitochondriale et, finalement, à l’apoptose, un phénomène communément détecté au cours du vieillissement. Le plus efficace des inhibiteurs de Drp1 est Mdivi-1, un dérivé de la quinazolinone, largement rapporté pour atténuer diverses maladies allant de l’insuffisance myocardique à la neurodégénérescence anormale. Plus récemment, une nouvelle molécule covalente nommée MIDI a été découverte. MIDI interagit avec les cystéines de Drp1 et bloque efficacement le recrutement de Drp1, offrant ainsi une nouvelle approche pour établir des inhibiteurs de Drp1 ciblant les maladies liées à l’âge. Source : https://www.fightaging.org/archives/2025/02/towards-control-of-mitochondrial-dynamics/