Étiquette : métabolisme

Impact des cellules sénescentes sur l’obésité et le diabète de type 2

Le texte aborde le rôle des cellules sénescentes dans l’inflammation chronique de l’âge et leur impact sur la structure et le fonctionnement des tissus. Il souligne que l’accumulation de cellules sénescentes est exacerbée par un excès de tissu adipeux viscéral, qui perturbe également le métabolisme et contribue à l’inflammation chronique. Bien que les cellules sénescentes soient cruciales dans les dommages causés par l’obésité, il est incertain dans quelle mesure les médicaments sénolytiques, qui visent à détruire sélectivement ces cellules, pourraient atténuer les conséquences de l’obésité. Le texte met en lumière la lenteur et le coût élevé des essais cliniques nécessaires pour obtenir des données humaines suffisantes, ce qui décourage l’industrie de financer la recherche sur des sénolytiques existants et peu coûteux. Par ailleurs, l’obésité et le diabète de type 2 (T2DM) sont des menaces sanitaires majeures, aggravées par l’accumulation de cellules sénescentes dans le tissu adipeux viscéral, entraînant des dysfonctionnements métaboliques. Le texte évoque également la charge financière massive associée au traitement des complications du T2DM, qui consomme une part importante des coûts de traitement. Les approches pharmacologiques actuelles se concentrent sur les défauts physiopathologiques du T2DM, sans prévenir les processus sous-jacents. Par conséquent, cibler et éliminer les cellules sénescentes pourrait représenter une stratégie prometteuse pour le traitement des maladies métaboliques. Source : https://www.fightaging.org/archives/2025/07/how-much-of-the-harm-of-obesity-is-caused-by-senescent-cells/

Le lien entre le métabolisme du glycogène et l’accumulation de tau dans les maladies neurodégénératives

Les scientifiques ont démontré que le métabolisme aberrant du glycogène dans les neurones est lié à l’accumulation de la protéine tau, qui est nuisible. La restriction calorique, les interventions génétiques et certaines petites molécules pourraient offrir des solutions. L’agrégation anormale de la protéine tau est une caractéristique marquante de plusieurs maladies neurodégénératives, notamment la maladie d’Alzheimer, où l’accumulation de tau sous forme de filaments neurofibrillaires hyperphosphorylés endommage les neurones. En outre, un métabolisme glycogénique anormal et une accumulation de glycogène sont également observés dans ces maladies. Le glycogène, forme stockée de glucose, est principalement présent dans le foie et les muscles, mais aussi dans les cellules du cerveau. Un métabolisme glycogénique altéré nuit à l’apprentissage et à la mémoire. La restriction alimentaire est connue pour prolonger la durée de vie et retarder la neurodégénérescence dans des modèles animaux de maladies neurodégénératives. Dans une étude récente, des chercheurs du Buck Institute for Research on Aging ont cherché à comprendre le lien entre ces deux faits.

Les chercheurs ont utilisé deux modèles de mouches Drosophila. L’un présentait une accumulation accélérée de la protéine tau sauvage, tandis que l’autre contenait une mutation connue de MAPT (R406W), causant une maladie familiale sévère chez l’homme. Les mouches étaient soit nourries librement, soit soumises à une restriction calorique. La restriction calorique a significativement augmenté la durée de vie, même chez les contrôles sains. Dans les deux modèles de maladie, l’effet était encore plus marqué. Dans les mouches soumises à restriction calorique, les niveaux de mort neuronale ont chuté de manière spectaculaire.

Les analyses protéomiques des cerveaux des mouches ont révélé que les voies liées au métabolisme des graisses et du glycogène étaient parmi les plus modifiées par la restriction calorique, et les niveaux de glycogène étaient effectivement élevés dans les cerveaux des mouches tauopathiques. Cependant, la restriction calorique ne semblait pas modifier les niveaux globaux de glycogène, malgré son impact bénéfique. Les chercheurs suspectent que la clé réside dans le taux de renouvellement du glycogène. Les enzymes impliquées, y compris la glycogène phosphorylase (GlyP), étaient régulées à la hausse dans les mouches mutantes soumises à restriction calorique. L’élévation de GlyP a augmenté la durée de vie des mouches mutantes de près de 70 % et réduit de manière significative la mort neuronale.

Les chercheurs ont utilisé des analyses métabolomiques et le séquençage de l’ARN pour étudier les effets moléculaires de l’augmentation de GlyP. Étonnamment, les voies de production d’énergie, telles que la glycolyse et le cycle de l’acide citrique, étaient en fait régulées à la baisse. En revanche, le glucose provenant de la dégradation du glycogène était dirigé vers la voie des pentoses phosphate (PPP), dont la fonction principale est de générer des antioxydants. Les espèces réactives de l’oxygène (ROS) étaient en effet significativement réduites dans les cerveaux des mouches avec une dégradation accrue du glycogène.

Les chercheurs ont également mené des expériences in vitro sur des neurones humains dérivés de cellules souches pluripotentes induites (iPSCs) provenant de patients atteints de FTLD-tau. Des cellules génétiquement corrigées des mêmes donneurs ont été utilisées comme témoins. Ils ont prouvé qu’il y avait une accumulation accrue de glycogène dans les cellules FTLD-tau et ont testé le mécanisme de sauvetage en surexprimant la version humaine de l’enzyme de dégradation du glycogène (PYGB) dans les neurones humains malades. Cela a réduit l’accumulation anormale de glycogène et restauré l’abondance mitochondriale, qui diminue avec cette maladie.

Il est important de noter qu’en utilisant ces neurones humains, l’équipe a montré que la protéine tau et le glycogène se co-localisent dans les cellules et interagissent physiquement, soutenant l’hypothèse selon laquelle une interaction directe entre les deux pourrait faire partie du problème. Les auteurs avancent l’hypothèse que cela pourrait créer un cycle vicieux néfaste dans lequel la liaison de tau favorise l’accumulation de glycogène, exacerbant ainsi la pathologie tau et le stress oxydatif. Les découvertes suggèrent que le glycogène est plus qu’un simple réservoir métabolique ; il pourrait agir comme un piège collant pour tau, créant une boucle de rétroaction dangereuse. Rompre ce cycle pourrait ouvrir une nouvelle voie thérapeutique dans la lutte contre la maladie d’Alzheimer. Source : https://www.lifespan.io/news/fixing-sugar-metabolism-shows-promise-against-dementia/?utm_source=rss&utm_medium=rss&utm_campaign=fixing-sugar-metabolism-shows-promise-against-dementia

Un vaccin peptidique cible CD38 pour améliorer la santé physique et cognitive chez les souris âgées

Les chercheurs d’une récente étude publiée dans Aging Cell ont décrit un nouveau vaccin peptidique ciblant le CD38, qui a montré des améliorations significatives de la santé physique et a prévenu le déclin cognitif chez des souris âgées. Contrairement aux stratégies anti-âge nécessitant une prise quotidienne, un vaccin peut avoir des effets durables après une seule administration. Ce vaccin cible le CD38, une protéine associée à des activités enzymatiques multifonctionnelles liées au métabolisme du NAD. L’augmentation des niveaux de CD38 avec l’âge a été liée à une diminution du NAD+ et à une dysfonction mitochondriale. Des recherches antérieures ont montré les bienfaits de la cible CD38 pour des problèmes tels que l’intolérance au glucose et l’inflammation neurogène. Les chercheurs ont créé trois vaccins peptidiques à partir de séquences d’acides aminés du CD38, en choisissant celui qui a suscité la meilleure réponse immunitaire. Les souris âgées immunisées ont montré des améliorations en termes de distance de marche totale, de vitesse maximale de marche, de force de préhension et d’endurance. De plus, les souris vaccinées ont affiché des résultats cognitifs meilleurs dans des tests tels que le labyrinthe aquatique de Morris. Les améliorations observées ont également inclus une meilleure tolérance au glucose et une sensibilité à l’insuline. En analysant les mécanismes moléculaires sous-jacents, les chercheurs ont constaté une réduction des niveaux de CD38 et des marqueurs de sénescence dans les organes solides des souris. Ils ont également observé des changements dans l’expression des gènes liés au métabolisme, notamment une régulation positive des processus métaboliques des acides gras. Le vaccin a également contribué à restaurer le rapport NAD+/NADH dans le foie et le tissu cérébral des souris âgées. Bien que les résultats soient prometteurs et montrent le potentiel anti-âge du vaccin CD38, des études supplémentaires sont nécessaires pour confirmer ces effets chez l’homme et explorer son efficacité dans d’autres maladies liées à l’âge, comme la maladie d’Alzheimer. Le vaccin a démontré une spécificité et une sécurité élevées, sans effets secondaires observés, bien qu’une surveillance des infections soit suggérée en raison du rôle du CD38 dans la réponse immunitaire. Des réponses inflammatoires, bien que transitoires, ont également été notées, soulignant la nécessité d’explorer davantage comment ce vaccin affecte le système immunitaire. Source : https://www.lifespan.io/news/healthspan-effects-of-an-anti-aging-vaccine-on-mice/?utm_source=rss&utm_medium=rss&utm_campaign=healthspan-effects-of-an-anti-aging-vaccine-on-mice

Découverte d’un nouveau médicament anti-obésité : SANA et ses effets sur la thermogenèse

La désaccouplement mitochondrial est un processus par lequel les mitochondries des cellules passent de la production de l’adénosine triphosphate (ATP), une molécule de stockage d’énergie chimique, à la libération de cette énergie sous forme de chaleur. Ce phénomène suscite un intérêt particulier dans le contexte du vieillissement, car une régulation à la hausse du désaccouplement mitochondrial semble ralentir le vieillissement dans des études animales. En outre, cette régulation prolongée produit une réduction des tissus adipeux et une perte de poids, ce qui attire davantage l’attention des humains, surtout à l’heure où les médicaments pour la perte de poids représentent une source de revenus importante pour les grandes entreprises pharmaceutiques.

Historiquement, les chercheurs ont rencontré des difficultés à développer des médicaments de désaccouplement mitochondrial qui ne provoquent pas de surchauffe mortelle lorsqu’ils sont pris à des doses élevées. L’un des premiers médicaments de ce type, le 2,4-dinitrophénol (DNP), a été largement utilisé au début du XXe siècle. Bien qu’il existe peu de documentation sur les décès accidentels dus à son utilisation, il est possible de prendre une dose fatale de DNP et de mourir d’hyperthermie sans signes immédiats d’overdose. Tout médicament qui régule directement le désaccouplement de la même manière est susceptible d’avoir des caractéristiques similaires.

Les chercheurs d’aujourd’hui affirment avoir découvert une approche sûre qui contourne le mécanisme utilisé par les méthodes précédentes pour réguler le désaccouplement, ce qui signifie influencer l’activité de la protéine de désaccouplement 1 (UCP1). Dans cette approche, UCP1 n’est pas impliquée dans le passage de la production d’ATP à la thermogenèse, et l’effet se produit uniquement dans les cellules adipeuses, et non dans tout le corps. Compte tenu des biais actuels en matière de financement et d’intérêt, les chercheurs présentent bien sûr cela comme une stratégie pour perdre du poids, mais cela pourrait également être intéressant dans le contexte du vieillissement.

Le médicament expérimental, actuellement appelé SANA (abréviation de salicylate-nitroalkène), est un dérivé du salicylate, un composé chimique possédant des propriétés analgésiques et anti-inflammatoires, que l’on trouve naturellement dans les plantes et qui est utilisé pour produire des médicaments comme l’aspirine. Les chercheurs ont d’abord cherché à développer un médicament anti-inflammatoire et ont testé plusieurs modifications chimiques de la molécule de salicylate. Au lieu de protéger contre l’inflammation, la molécule synthétisée protège contre l’obésité induite par le régime alimentaire.

Deux modèles différents ont été utilisés pour tester cet effet sur des animaux. Dans le premier modèle, SANA a été administré à des souris avec un régime riche en graisses, empêchant toute prise de poids, tandis que le groupe témoin a pris entre 40 % et 50 % de leur poids corporel au cours de huit semaines. Dans le second modèle, le traitement a commencé après que les animaux étaient obèses. Après trois semaines, les souris avaient perdu 20 % de leur masse corporelle, avec une réduction de la glycémie, une amélioration de la sensibilité à l’insuline et une diminution de la graisse accumulée dans le foie.

Les expériences ont montré que SANA cible spécifiquement le tissu adipeux, activant la thermogenèse par un mécanisme non conventionnel. Il peut donc être considéré comme le premier d’une nouvelle classe de médicaments anti-obésité. Il n’affecte pas le système nerveux central ou le système digestif, ni l’appétit. La thermogenèse est généralement médiée par une protéine appelée UCP1, activée dans certaines situations, comme l’exposition au froid. Cependant, SANA entraîne les adipocytes à utiliser la créatine, un composé formé par trois acides aminés, comme source d’énergie pour produire de la chaleur sans impliquer la protéine UCP1.

Les chercheurs affirment que l’impact observé sur la température corporelle est faible et ne présente pas de risque significatif pour la santé. Contrairement aux agents thermogéniques plus anciens, SANA agit uniquement sur les mitochondries du tissu adipeux, sans surcharger le système cardiovasculaire.

Enfin, une étude clinique randomisée, en double aveugle et contrôlée par placebo a été réalisée, comprenant deux parties avec quatre bras. SANA a montré une bonne sécurité et tolérabilité, tout en ayant des effets bénéfiques sur le poids corporel et la gestion du glucose dans les deux semaines suivant le traitement. Source : https://www.fightaging.org/archives/2025/07/a-novel-approach-to-thermogenesis-without-involving-uncoupling-protein-1/

Les Réactions Différentielles de la Graisse Viscerale et Sous-Cutanée à l’Obésité

Les scientifiques ont découvert que la graisse viscérale, qui s’accumule autour des organes dans l’abdomen, et la graisse sous-cutanée, qui s’accumule sous la peau, réagissent différemment à l’obésité chez les souris mâles et les patients humains, et ont identifié un régulateur clé de ces processus. Des études épidémiologiques ont montré une corrélation plus forte entre la graisse viscérale et les dysfonctionnements métaboliques, les maladies et la mortalité. La recherche a également révélé que les tissus adipeux sont hautement vascularisés, jouant un rôle crucial dans la régulation du métabolisme énergétique. Une étude récente du Centre allemand de recherche cardiovasculaire (DZHK) a utilisé des outils avancés pour analyser le comportement des cellules endothéliales (CE) dans le tissu adipeux blanc (WAT) chez des souris nourries avec un régime normal ou un régime riche en graisses (HFD) pendant huit semaines. Les résultats ont montré une réduction significative de la densité des vaisseaux sanguins dans le WAT sous-cutané (sWAT) et le WAT viscéral (vWAT) en réponse au HFD, un phénomène connu sous le nom de raréfaction vasculaire. Grâce à une analyse de séquençage RNA à cellule unique, les chercheurs ont découvert un sous-ensemble unique de CE dans le sWAT caractérisé par des pores appelés « fenestrations ». Ces CE fenestrés étaient plus abondants dans le sWAT des souris maigres mais considérablement réduits chez les souris obèses. Le marqueur moléculaire de ces cellules, ITM2A, était également significativement régulé à la baisse dans les tissus de patients humains obèses par rapport aux individus maigres. Les auteurs suggèrent que ces CE fenestrés facilitent l’échange rapide et efficace de nutriments, d’hormones et de molécules de signalisation entre le tissu adipeux et la circulation sanguine. Leur perte pendant l’obésité pourrait donc nuire à la fonction métabolique saine du dépôt adipeux. L’étude a identifié le facteur de croissance endothélial vasculaire A (VEGFA) comme essentiel pour maintenir ces cellules spécialisées. Les niveaux de VEGFA étaient significativement réduits chez les souris obèses, mais cela ne se produisait que dans le sWAT et non dans le vWAT. De plus, il a été révélé que le HFD avait un effet dépendant du temps, avec une régulation temporaire à la hausse de VEGFA après quatre semaines, suggérant une réponse compensatoire éphémère. Pour prouver le rôle de VEGFA, les chercheurs ont bloqué systématiquement VEGFA chez des souris, ce qui a entraîné une réduction de la densité totale des vaisseaux sanguins et de la population spécifique de vaisseaux fenestrés dans le sWAT. Un modèle de perte de fonction du gène Vegfa a également montré une diminution significative des vaisseaux fenestrés. En revanche, une expérience de gain de fonction a révélé que des niveaux plus élevés de VEGFA entraînaient une densité vasculaire globale plus élevée. Les chercheurs ont noté que les CE du vWAT réagissaient différemment au HFD en suivant un programme d’augmentation vasculaire, alors que ceux du sWAT réagissaient en augmentant les facteurs liés à l’inflammation. Les résultats montrent que les changements vasculaires liés à l’obésité commencent plus tôt que prévu et varient considérablement en fonction de l’emplacement de la graisse. Ces découvertes pourraient fournir une base précieuse pour de futures thérapies visant à améliorer la fonction des vaisseaux sanguins dans le tissu adipeux et à prévenir des maladies secondaires telles que le diabète ou les crises cardiaques. Cependant, il est important de noter que l’étude a utilisé exclusivement des souris mâles et des tissus de patients humains mâles, ce qui limite sa généralisation en raison des différences biologiques connues entre les sexes dans le tissu adipeux. Source : https://www.lifespan.io/news/subcutaneous-and-visceral-fat-react-differently-to-obesity/?utm_source=rss&utm_medium=rss&utm_campaign=subcutaneous-and-visceral-fat-react-differently-to-obesity

Le potentiel du rapamycine et de la restriction calorique dans l’extension de la durée de vie

Le texte aborde les approches pharmaceutiques pour ralentir le vieillissement, en mettant particulièrement en avant le rapamycine, un inhibiteur de mTOR qui imite certains effets bénéfiques de la restriction calorique sur le métabolisme, la santé à long terme et la durée de vie. L’autophagie, un processus cellulaire crucial pour le recyclage des protéines et des structures indésirables, est considérée comme l’un des résultats les plus importants de l’utilisation de rapamycine. Bien que le rapamycine ait été utilisé pendant longtemps à des doses relativement élevées, les données humaines concernant des doses plus faibles, potentiellement anti-vieillissement, sont encore limitées. Cependant, les données disponibles suggèrent qu’il s’agit d’un médicament sûr avec peu ou pas d’effets secondaires. En parallèle, la restriction alimentaire (DR) a prouvé qu’elle prolonge robustement la durée de vie chez diverses espèces. Néanmoins, la DR est difficile à maintenir à long terme chez les humains, entraînant la recherche de composés capables de réguler le métabolisme et d’augmenter la durée de vie sans réduire l’apport calorique. Une analyse méta, qui a examiné 911 tailles d’effet à partir de 167 études sur huit espèces de vertébrés différentes, a confirmé que la DR prolonge significativement la durée de vie, tout comme le rapamycine, alors que le métformin ne produit pas de prolongement significatif de la durée de vie. Aucune influence constante du sexe n’a été observée à travers tous les traitements, et les résultats ont montré une hétérogénéité élevée et un biais de publication significatif. L’étude conclut que le rapamycine et la DR confèrent une extension comparable de la durée de vie dans un large éventail de vertébrés. Source : https://www.fightaging.org/archives/2025/06/animal-study-data-shows-rapamyin-to-be-a-robust-calorie-restriction-mimetic/

Collaboration stratégique entre Juvena Therapeutics et Eli Lilly pour améliorer la santé musculaire et la composition corporelle

Juvena Therapeutics, une entreprise de biotechnologie axée sur la longévité, a récemment annoncé un partenariat de collaboration de recherche et de licence mondiale avec Eli Lilly, un géant pharmaceutique. L’objectif de cette collaboration est de découvrir et de développer des candidats médicaments capables de traiter des conditions telles que la fragilité et l’obésité. Juvena utilisera sa plateforme d’intelligence artificielle pour identifier de nouvelles thérapies à partir de sa bibliothèque de protéines dérivées de cellules souches, visant à améliorer la masse musculaire, la fonction et la composition corporelle globale. Selon les termes de l’accord, Juvena recevra un paiement initial, un investissement en capital de Lilly et des paiements potentiels liés au développement et à la commercialisation. Lilly obtiendra les droits exclusifs sur les candidats principaux identifiés et assumera leur développement et commercialisation. Dr Hanadie Yousef, cofondatrice et PDG de Juvena, a souligné que la société est éligible à recevoir plus de 650 millions de dollars en paiements de recherche, développement et commercialisation. Ce partenariat intervient alors que les entreprises pharmaceutiques cherchent à capitaliser sur le succès des agonistes GLP-1 dans le traitement de l’obésité, en s’attaquant à des problèmes comme la perte de masse musculaire associée à la perte de poids induite médicalement. Juvena se concentre sur le potentiel thérapeutique des protéines de signalisation sécrétées dérivées de cellules souches humaines et utilise sa plateforme de découverte de médicaments alimentée par l’IA, JuvNET, pour optimiser les candidats médicaments biologiques. L’entreprise a déjà constitué un pipeline diversifié de biologiques ciblant les maladies musculaires chroniques et métaboliques, avec plus de 50 protéines identifiées ayant des applications thérapeutiques. Parmi elles se trouve JUV-161, qui a récemment débuté des essais cliniques et est basée sur une protéine sécrétée naturellement soutenant la régénération musculaire. Un autre programme, JUV-112, vise à favoriser la dégradation des graisses et à augmenter la dépense énergétique sans supprimer l’appétit ni réduire la masse musculaire. La nouvelle collaboration vise à accélérer la découverte de traitements qui non seulement traitent l’obésité et la fragilité, mais aussi promeuvent la santé métabolique et la résilience à long terme. Dr Jeremy O’Connell, cofondateur de Juvena, a exprimé que l’obésité affecte une personne sur huit dans le monde et que tous méritent une chance d’améliorer leur santé. En combinant l’expérience de Lilly dans les maladies métaboliques avec l’expertise de Juvena en IA et la compréhension des protéines sécrétées par les cellules souches humaines, ils visent à accélérer l’innovation qui fait progresser les normes de soins dans la gestion de l’obésité. Source : https://longevity.technology/news/juvena-flexes-muscles-in-650m-collaboration-deal-with-lilly/

Impact de la Transplantation de Microbiote Fécal sur le Vieillissement et la Santé Mentale

Le microbiome intestinal est composé de milliers d’espèces microbiennes qui varient en proportion. Avec l’âge, cet équilibre évolue, favorisant des microbes inflammatoires au détriment de ceux qui produisent des métabolites nécessaires au bon fonctionnement des tissus. Cela contribue, dans une certaine mesure, au vieillissement dégénératif. L’une des rares manières de modifier de façon permanente le microbiome intestinal est la transplantation de matières fécales d’un animal à un autre. La transplantation de microbiote fécal (TMF) d’un donneur jeune vers un receveur âgé permet de rajeunir le microbiome intestinal et de rétablir des niveaux de populations jeunes. L’étude présentée ici, parmi d’autres, démontre que cette procédure améliore la santé des souris âgées, réduisant ainsi l’impact d’un microbiome intestinal vieillissant sur le vieillissement dégénératif du corps et du cerveau. Le microbiote intestinal évolue tout au long de la vie et a un impact significatif sur le processus de vieillissement. Cibler le microbiote intestinal représente une nouvelle voie pour retarder le vieillissement et le déclin physique et mental lié à l’âge. Cependant, les mécanismes sous-jacents par lesquels le microbiote module le processus de vieillissement, en particulier les changements physiques et comportementaux liés à l’âge, ne sont pas totalement compris. Nous avons réalisé une transplantation de microbiote fécal (TMF) de souris donneurs mâles jeunes ou âgés vers des receveurs mâles âgés. Les receveurs âgés avec un microbiote jeune avaient une diversité alpha plus élevée que ceux avec un microbiote âgé. Comparé à la TMF avec un microbiote âgé, celle avec un microbiote jeune a réduit le poids corporel et prévenu l’accumulation de graisses chez les receveurs âgés. De plus, elle a également diminué la fragilité, augmenté la force de préhension et atténué les comportements dépressifs et anxieux chez les receveurs âgés. En accord avec les changements physiques observés, une analyse métabolomique non ciblée des sérums et des selles a révélé que la TMF avec un microbiote jeune abaissait les niveaux d’acides gras à longue chaîne liés à l’âge et augmentait les niveaux d’acides aminés chez les receveurs âgés. Une analyse bulk RNAseq de l’amygdale du cerveau a montré que la TMF avec un microbiote jeune réduisait les voies inflammatoires et augmentait la phosphorylation oxydative chez les receveurs âgés. Nos résultats démontrent que la TMF avec un microbiote jeune a des influences positives substantielles sur la composition corporelle liée à l’âge, la fragilité et les comportements psychologiques. Ces effets sont associés à des changements dans le métabolisme des lipides et des acides aminés dans le périphérique et à la régulation transcriptionnelle de la neuroinflammation et de l’utilisation d’énergie dans le cerveau. Source : https://www.fightaging.org/archives/2025/06/fecal-microbiota-transplantation-from-young-mice-to-old-mice-improves-health/

Les déterminants de la longévité humaine : Analyse des individus vivant longtemps

Au cours des 20 dernières années, une grande quantité de données a été générée concernant la génétique, l’épigénétique, la transcriptomique, la protéomique et divers aspects du métabolisme des individus vivant longtemps. Malgré cela, très peu de variantes génétiques associées à la longévité ont été identifiées, et la plupart des études produisent des associations qui échouent souvent à se reproduire. Les rares associations génétiques qui semblent solides sont de petite taille d’effet. En revanche, le métabolisme et la fonction immunitaire des individus âgés sont plus intéressants. Ces individus vivent longtemps en raison d’un métabolisme et d’un système immunitaire moins dégradés et plus fonctionnels. Cependant, il n’est pas clair si les données abondantes sur ces fonctions moins altérées fourniront des réponses utiles à la question de pourquoi certaines personnes atteignent cet objectif alors que d’autres ne le font pas. Bien que le mode de vie soit important, il existe une variation considérable des résultats entre les individus ayant des modes de vie similaires. Cette variation pourrait être due à des milliers de contributions individuelles, ce qui compliquerait la recherche de bases biochimiques pour créer des thérapies ralentissant le vieillissement.

Les individus vivant longtemps (IVL), définis comme des personnes survivant au-delà de 90 ans, présentent des caractéristiques distinctives telles qu’une morbidité réduite, un retard dans l’apparition de maladies chroniques et des fonctions physiologiques préservées. Les variants nucléaires génomiques clés incluent APOE ε2, protecteur contre les maladies cardiovasculaires et la maladie d’Alzheimer, FOXO3A, lié à la résistance au stress oxydatif et à la réparation de l’ADN, et SIRT6, impliqué dans le maintien du génome. Les haplogroupes mitochondriaux, tels que J et D, sont associés à une réduction du stress oxydatif, tandis que les gènes d’entretien des télomères assurent la stabilité chromosomique. Les études d’association génomique (GWAS) mettent en avant APOE et FOXO3A comme les gènes les plus régulièrement associés à la longévité, soulignant leur rôle essentiel.

Les mécanismes épigénétiques font le lien entre la génétique et l’environnement. Les modèles de méthylation de l’ADN chez les IVL montrent une perte de méthylation liée à l’âge retardée, en particulier dans les régions d’hétérochromatine, ce qui pourrait stabiliser l’intégrité du génome. Les ARN non codants, comme miR-363* et les lncARN, régulent la sénescence cellulaire et l’expression génique, contribuant ainsi à un vieillissement sain. Ces signatures épigénétiques sont corrélées à un âge biologique plus jeune et à un risque de maladie réduit chez les IVL et leur descendance.

Les profils métaboliques chez les IVL sont caractérisés par un métabolisme lipidique favorable, une résistance à l’insuline réduite et une capacité antioxydante améliorée. Des facteurs endocriniens, tels que des niveaux bas d’hormones thyroïdiennes et la préservation des hormones sexuelles, jouent également des rôles protecteurs. Les altérations du système immunitaire chez les IVL incluent une inflammation chronique réduite et une préservation de la fonction des cellules immunitaires. Les centenaires présentent des niveaux d’IL-6 plus bas, des niveaux élevés de TGF-β et d’IL-10 (cytokines anti-inflammatoires), ainsi qu’une prolifération de cellules T maintenue. L’équilibre entre les cellules Th17 pro-inflammatoires et les cellules T régulatrices se déplace vers des états anti-inflammatoires, contribuant à la résistance aux maladies. Les facteurs environnementaux et de mode de vie sont également cruciaux. Le microbiote intestinal des IVL présente une diversité accrue et une richesse en taxa favorables à la santé, qui améliorent la fonction de barrière intestinale et produisent des métabolites anti-vieillissement.

La quête pour déchiffrer les déterminants de la longévité humaine s’est intensifiée avec l’augmentation de l’espérance de vie mondiale. Les IVL, qui dépassent l’espérance de vie moyenne tout en retardant les maladies liées à l’âge, servent de modèle unique pour étudier le vieillissement sain et la longévité. La longévité est un phénotype complexe influencé par des facteurs génétiques et non génétiques. Cet article de revue explore les facteurs génétiques, épigénétiques, métaboliques, immunitaires et environnementaux qui sous-tendent le phénomène de la longévité humaine, avec un accent particulier sur les IVL, tels que les centenaires. En intégrant les résultats des études sur la longévité humaine, cet article met en évidence une grande diversité de facteurs influençant la longévité, allant des polymorphismes génétiques et des modifications épigénétiques aux impacts de l’alimentation et de l’activité physique. Source : https://www.fightaging.org/archives/2025/05/a-high-level-tour-of-the-metabolism-of-long-lived-individuals/

Les récepteurs liés aux œstrogènes comme cibles clés pour la régulation de l’énergie musculaire

Dans le domaine de la science de la longévité, l’un des défis majeurs est de maintenir la fonction musculaire squelettique avec l’âge. La dysfonction mitochondriale est à l’origine de la sarcopénie, des syndromes métaboliques et de la fatigue liée à l’âge. Des chercheurs de l’Institut Salk ont révélé que deux récepteurs nucléaires – ERRα et ERRγ, liés aux œstrogènes – jouent un rôle central dans la régulation de la production d’énergie mitochondriale dans les muscles. Ces découvertes, publiées dans PNAS, suggèrent que les ERR pourraient devenir des cibles essentielles pour des thérapies visant à préserver la fonction musculaire et à contrer le déclin métabolique. La dysfonction mitochondriale est un des principaux signes du vieillissement, sous-tendant une gamme de conditions dégénératives, musculaires et métaboliques. La nouvelle étude identifie ERRα et ERRγ comme des régulateurs maîtres de l’énergie mitochondriale, tant au repos qu’après un exercice, les positionnant comme des cibles de valeur pour une intervention pharmacologique. L’activation de ces récepteurs pourrait reproduire les bienfaits mitochondriaux associés à l’activité physique, offrant ainsi une voie moléculaire vers des mimétiques d’exercice, ce qui est particulièrement prometteur pour les personnes incapables de faire de l’exercice en raison de la fragilité, de blessures ou de maladies chroniques. Les chercheurs ont utilisé des modèles murins spécifiques pour démontrer que la suppression d’ERRα et d’ERRγ entraîne des défauts mitochondriaux profonds, et que même de faibles niveaux d’ERRγ peuvent préserver certaines fonctions mitochondriales. L’étude a également exploré l’interaction entre les ERR et PGC1α, un coactivateur connu pour stimuler la biogenèse mitochondriale. Les résultats suggèrent un potentiel pour des thérapies combinées, en associant les activateurs d’ERR avec d’autres agents pour améliorer les fonctions mitochondriales. Bien que des défis subsistent dans la traduction de ces découvertes en thérapies cliniques, de nouveaux composés montrent des propriétés pharmacologiques prometteuses, surmontant certaines des limites des générations précédentes. Au-delà des muscles, ERRγ est également exprimé dans des tissus énergétiques élevés comme le cerveau, où la dysfonction mitochondriale joue un rôle clé dans les maladies neurodégénératives. Les chercheurs notent qu’il existe des preuves croissantes de communication entre les muscles et le cerveau, ce qui ouvre la voie à un potentiel thérapeutique plus large pour l’activation des ERR. En fin de compte, les récepteurs liés aux œstrogènes semblent être des clés prometteuses pour traiter la faiblesse musculaire et la fatigue dans diverses maladies impliquant une dysfonction métabolique, et leur modulation pourrait restaurer force, énergie et indépendance, qui sont des éléments fondamentaux pour une vie plus longue et en meilleure santé. Source : https://longevity.technology/news/estrogen-related-receptors-emerge-as-key-to-muscle-energy/