Étiquette : horloge épigénétique

Reprogrammation Cellulaire et Rajeunissement : Nouvelles Perspectives Thérapeutiques

Le reprogrammation des cellules adultes se produit tôt dans le développement embryonnaire, transformant les cellules germinales adultes en cellules souches embryonnaires pluripotentes. Ce processus élimine également les modifications épigénétiques caractéristiques de l’âge, permettant ainsi de revitaliser les fonctions cellulaires, notamment l’activité mitochondriale. Cela fait vingt ans qu’une méthode pour recréer ce processus de reprogrammation a été découverte, impliquant une augmentation de l’expression des quatre facteurs de Yamanaka. Au fil du temps, l’intérêt de la communauté scientifique s’est étendu au-delà des efforts initiaux pour utiliser la reprogrammation afin de générer des cellules souches pluripotentes induites (iPS) adaptées aux patients pour la recherche et les thérapies cellulaires. Actuellement, les chercheurs s’intéressent également à la reprogrammation partielle, qui peut produire un rajeunissement épigénétique et fonctionnel des tissus sans effacer le type cellulaire. Les chercheurs ont initialement pensé que ces deux aspects de la reprogrammation, la dédifférenciation vers la pluripotence et le rajeunissement épigénétique, seraient régulés séparément. Il a été supposé qu’il existerait d’autres niveaux de régulation distincts qui produisent la dédifférenciation par rapport au rajeunissement épigénétique. Cependant, les progrès vers l’identification de ces niveaux de régulation ont été lents. Une annonce récente de l’équipe de Shift Bioscience prétend avoir trouvé un moyen efficace d’induire le rajeunissement sans dédifférenciation, en modifiant l’expression d’un gène unique. Bien que les effets aient été validés sur quelques types cellulaires, il est incertain s’ils s’appliqueront à tous les types cellulaires. Le vieillissement est un facteur clé des maladies majeures touchant le monde moderne. Ralentir ou inverser le processus de vieillissement pourrait donc avoir des bénéfices significatifs et larges pour la santé humaine. Les facteurs de Yamanaka, comprenant OCT4, SOX2, KLF4, et parfois c-MYC, ont été montrés comme capables de rajeunir les cellules en se basant sur des prédicteurs d’âge précis connus sous le nom d’horloges épigénétiques. Malheureusement, OSK(M) induit des voies de pluripotence dangereuses, le rendant inadapté à un usage thérapeutique. Pour surmonter cette barrière thérapeutique, nous avons cherché de nouveaux facteurs en optimisant directement pour le renversement de l’âge plutôt que pour la pluripotence. Nous avons formé une horloge transcriptomique de vieillissement, sans être limité par le faible débit des tests de méthylation de l’ADN, permettant un criblage d’une échelle et d’une granularité sans précédent. Notre plateforme a identifié ce que nous désignons ici comme SB000, la première intervention par gène unique capable de rajeunir les cellules de plusieurs couches germinales avec une efficacité rivalisant avec celle des facteurs de Yamanaka. Les cellules rajeunies par SB000 conservent leur identité somatique, sans preuve de pluripotence ou de perte de fonction. Ces résultats révèlent que le découplage de la pluripotence du rajeunissement cellulaire ne supprime pas la capacité de rajeunir plusieurs types cellulaires. Cette découverte ouvre la voie à des thérapies de rajeunissement cellulaire qui peuvent être largement appliquées à travers les maladies liées à l’âge. Source : https://www.fightaging.org/archives/2025/06/progress-in-separating-rejuvenation-from-pluripotency-in-cell-reprogramming/

Nouveau Mesure du Rythme du Vieillissement : Une Analyse des Trajectoires de Santé chez les Personnes Âgées

L’étude du rythme du vieillissement, initialement développée à partir des données de l’étude Dunedin, a été redéfinie grâce à une méthode améliorée qui utilise des données cliniques et d’autres mesures fonctionnelles simples. Cette nouvelle approche se concentre sur l’analyse des données de deux études représentatives, l’étude de santé et de retraite des États-Unis (HRS) et l’étude longitudinale anglaise du vieillissement (ELSA), qui suivent les adultes de 50 ans et plus. Les chercheurs ont mesuré le rythme du vieillissement chez 19 045 participants, en utilisant des échantillons de sang séché, des examens physiques et des tests de performance. Les résultats montrent que les métriques utilisées peuvent prédire des résultats de santé futurs, tels que l’apparition de maladies, le handicap et la mortalité, tout en révélant des différences significatives dans les trajectoires de vieillissement au sein de différents sous-groupes de population. Les résultats indiquent également que les personnes ayant un niveau d’éducation inférieur présentent des signes de vieillissement accéléré. Ainsi, bien que le terme ‘rythme du vieillissement’ soit utilisé pour décrire ces évaluations, il est important de noter que cette nouvelle approche diffère fondamentalement des horloges épigénétiques précédemment étudiées. Source : https://www.fightaging.org/archives/2025/06/a-new-pace-of-aging-built-from-clinical-measures/

L’IC Clock : Une horloge épigénétique mesurant la capacité intrinsèque pour prédire la mortalité

L’étude publiée par le Buck Institute for Research on Aging et l’IHU HealthAge en France présente une avancée majeure dans le domaine des biomarqueurs de vieillissement avec l’introduction de l’IC Clock, une horloge épigénétique qui mesure la capacité intrinsèque plutôt que l’âge chronologique. Contrairement aux horloges de méthylation de l’ADN qui se concentrent sur l’âge ou la mortalité, l’IC Clock évalue les capacités cognitives, physiques, sensorielles et psychologiques, offrant ainsi une vision plus holistique du vieillissement. En se basant sur les données de la cohorte INSPIRE-T, qui comprend plus de 1 000 individus âgés de 20 à 102 ans, l’IC Clock a été formée sur cinq domaines clés : la cognition, la santé psychologique, la vitalité, la locomotion et la fonction sensorielle. Ces éléments définissent la capacité intrinsèque d’un individu. Les résultats montrent que les scores faibles de l’IC Clock sont associés à un risque de mortalité accru, tandis que ceux qui affichent une capacité intrinsèque élevée vivent en moyenne 5,5 ans de plus. L’IC Clock a également démontré une capacité à prédire la mortalité toutes causes confondues, surpassant les horloges épigénétiques antérieures. Ce nouvel outil est pertinent dans le cadre de la compétition XPRIZE Healthspan, qui se concentre sur l’amélioration des fonctions liées à la santé des adultes plus âgés. Grâce à son approche axée sur la fonction plutôt que sur la maladie, l’IC Clock pourrait influencer la manière dont les soins de santé sont dispensés aux personnes âgées, en mettant l’accent sur le maintien de leur autonomie et de leur qualité de vie. En intégrant des données de méthylation de l’ADN provenant de tests sanguins ou salivaires, l’IC Clock pourrait également se révéler accessible pour des études à grande échelle, rendant possible le suivi du vieillissement dans des contextes à ressources limitées. Avec la reconnaissance de la capacité intrinsèque par l’OMS dans la classification internationale des maladies, l’IC Clock pourrait ouvrir de nouvelles voies pour l’adoption clinique et réglementaire du vieillissement comme condition cible, marquant un tournant important dans la recherche sur le vieillissement et les interventions associées. Source : https://longevity.technology/news/aging-by-function-not-by-numbers/

L’impact de la chaleur sur le vieillissement épigénétique : une étude révélatrice

Une étude récente a révélé des associations significatives entre l’augmentation des jours de chaleur et le vieillissement épigénétique accéléré. Bien que les journées d’été chaudes à la plage soient agréables, la chaleur extrême ne l’est pas, surtout dans la vie quotidienne et pour la santé, car elle est liée à des maladies cardiovasculaires et à des décès. La méthylation de l’ADN est un processus biologique qui réagit aux stress tels que la chaleur. En modifiant la manière dont l’ADN est méthylé, les organismes peuvent ajuster l’expression de leurs gènes. Ces changements liés au stress peuvent avoir des conséquences à long terme sur la durée de vie. Alors qu’il existe de nombreuses preuves dans différentes espèces, les études chez l’homme sont rares. Les chercheurs ont utilisé des horloges épigénétiques pour évaluer l’effet de la chaleur extérieure sur la vitesse de vieillissement, en analysant les données d’un échantillon représentatif de plus de 3 500 adultes âgés de 56 ans et plus aux États-Unis.

Pour leur analyse, les chercheurs ont calculé un indice de chaleur quotidien basé sur une formule du National Weather Service pour chaque jour entre 2010 et 2016. Cet indice prend en compte la température ambiante maximale quotidienne et l’humidité relative minimale pour estimer comment la température est ressentie par le corps humain. La combinaison de chaleur et d’humidité est particulièrement importante pour les personnes âgées, qui ont une capacité réduite à transpirer. L’indice de chaleur est divisé en catégories, allant de « caution » à « danger » et « extrême danger ». Les chercheurs ont examiné différentes fenêtres temporelles pour estimer les effets des vagues de chaleur immédiates, des réponses retardées et des conséquences d’une exposition prolongée à la chaleur.

Les résultats ont montré des associations significatives entre la chaleur et le vieillissement épigénétique, avec des variations selon les horloges épigénétiques utilisées. Les participants vivant dans des zones avec de nombreux jours de chaleur ont connu jusqu’à 14 mois de vieillissement biologique supplémentaire par rapport à ceux vivant dans des zones plus fraîches. Des différences dans les résultats selon les horloges épigénétiques pourraient être dues à la sélection des sites de méthylation et à la sensibilité différente aux stress environnementaux. Les chercheurs ont également noté que l’exposition prolongée à la chaleur pourrait changer le comportement, réduire l’activité physique et entraîner un stress accru, ce qui pourrait contribuer à un déclin de la santé et à un vieillissement accéléré.

L’analyse a montré que les résultats étaient cohérents parmi différents sous-groupes sociodémographiques, sans indiquer une vulnérabilité accrue d’un groupe spécifique. Cependant, les chercheurs ont souligné que leur analyse ne tenait pas compte du temps passé à l’extérieur ou de l’utilisation de la climatisation, ce qui limite l’interprétation des résultats. Ils insistent sur l’importance d’inclure la chaleur dans les discussions sur les risques de morbidité et de mortalité, et soulignent que des stratégies de mitigation doivent être développées pour faire face à l’augmentation des températures et au vieillissement de la population. Source : https://www.lifespan.io/news/heat-may-speed-up-epigenetic-aging-in-older-adults/?utm_source=rss&utm_medium=rss&utm_campaign=heat-may-speed-up-epigenetic-aging-in-older-adults

L’impact des dommages à l’ADN sur le vieillissement : mutations et modifications épigénétiques

Le texte explore la relation complexe entre les dommages à l’ADN nucléaire stochastiques et le vieillissement dégénératif. Il met en évidence que la plupart des mutations se produisent dans des zones non fonctionnelles du génome, principalement dans des cellules somatiques proches de la limite de Hayflick, ce qui limite leur impact sur le vieillissement. Une théorie suggère que seules les mutations dans les cellules souches ont un rôle significatif, car elles se propagent lentement dans les lignées cellulaires somatiques, un phénomène connu sous le nom de mosaïcisme somatique. Bien qu’il existe des preuves suggérant que le mosaïcisme somatique peut contribuer à certaines dysfonctions liées à l’âge, ces preuves sont limitées. Une autre perspective, moins étayée mais intrigante, propose que la réparation des cassures double brin de l’ADN modifie les mécanismes moléculaires qui contrôlent la structure de l’ADN nucléaire, entraînant des changements épigénétiques caractéristiques du vieillissement dans chaque cellule. Un article de recherche récent aborde une nouvelle façon dont les dommages à l’ADN peuvent influencer les changements épigénétiques, en montrant que les mutations au niveau des sites CpG affectent non seulement la méthylation à ces sites, mais aussi à proximité, modifiant ainsi l’expression de nombreux gènes de manière prévisible. Deux théories dominantes concernant le vieillissement et l’ADN sont discutées : la théorie des mutations somatiques, qui postule que le vieillissement résulte de l’accumulation de mutations aléatoires, et la théorie de l’horloge épigénétique, qui suggère que le vieillissement découle des modifications épigénétiques. Des chercheurs ont analysé les données de 9 331 patients et ont trouvé une corrélation prévisible entre les mutations génétiques et les modifications épigénétiques, montrant qu’une seule mutation peut entraîner de nombreux changements épigénétiques à travers le génome. Les horloges épigénétiques, basées sur les marques de méthylation de l’ADN, ont été utilisées pour prédire l’âge calendaire, et les résultats suggèrent un lien étroit entre l’accumulation de mutations somatiques sporadiques et les changements de méthylation observés au cours de la vie. Source : https://www.fightaging.org/archives/2025/01/evidence-for-mutational-damage-as-a-cause-of-age-related-epigenetic-change/

Mutations somatiques et remodelage épigénétique : implications pour le vieillissement

Un nouvel article publié dans *Nature Aging* suggère que les mutations somatiques provoquent une remodelage significatif du paysage épigénétique, ce qui pourrait être pertinent pour les futures interventions anti-âge. L’instabilité génomique et les altérations épigénétiques sont deux caractéristiques clés du vieillissement. Les mutations dans les cellules somatiques peuvent résulter d’erreurs de réplication et de stress, tandis que les altérations épigénétiques, telles que la méthylation, régulent l’expression des gènes. Bien que le rôle exact des mutations somatiques dans le vieillissement ne soit pas entièrement clair, la méthylation des sites CpG est fortement corrélée avec le vieillissement, formant la base des horloges épigénétiques. Une étude de l’Université de Californie a exploré la possibilité qu’il existe un lien causal entre mutations et épimutations. Les chercheurs ont découvert que les sites CpG mutés étaient moins souvent méthylés et que ces mutations créaient des motifs de méthylation atypiques dans les régions environnantes du génome. En construisant une horloge des mutations, ils ont constaté qu’elle pouvait prédire l’âge biologique, mais avec une précision inférieure à celle de l’horloge de méthylation. Les résultats montrent que les mutations somatiques expliquent plus de 50 % de la variation de l’âge de méthylation entre individus. Dr. Trey Ideker, auteur principal, a souligné que les horloges épigénétiques peuvent être expliquées par les mutations d’ADN sous-jacentes, ce qui pose des questions sur les efforts actuels pour inverser les changements épigénétiques sans tenir compte des mutations. Les résultats pourraient également avoir des implications pour le reprogrammation cellulaire, où les mutations pourraient perturber le paysage épigénétique après reprogrammation. D’autres chercheurs, comme João Pedro de Magalhães et Dr. Sam Sharifi, ont noté que la pertinence des mutations somatiques dans le vieillissement épigénétique mérite des investigations supplémentaires. La recherche pourrait ouvrir la voie à des horloges basées sur les mutations, offrant potentiellement une meilleure mesure de l’âge, étant donné le caractère permanent des mutations d’ADN et leur accumulation avec l’âge. Source : https://www.lifespan.io/news/new-study-links-epigenetic-changes-to-genetic-mutations/?utm_source=rss&utm_medium=rss&utm_campaign=new-study-links-epigenetic-changes-to-genetic-mutations

Amélioration des horloges épigénétiques : vers une évaluation plus précise de l’âge biologique

Les horloges épigénétiques sont des outils prometteurs pour évaluer l’âge biologique en s’appuyant sur des données provenant d’un ensemble de cellules hétérogènes dérivées de tissus. Ce mélange de différents types de cellules peut influencer les changements liés à l’âge, ce qui soulève des questions sur la précision des évaluations d’âge biologique. Des études antérieures ont examiné cette problématique, notamment en se concentrant sur les globules blancs dans des échantillons de sang. Les chercheurs ont observé que la séparation des types cellulaires pourrait améliorer la précision des horloges épigénétiques et des évaluations d’âge dans divers tissus. Actuellement, il est reconnu que la capacité à quantifier avec précision l’âge biologique pourrait contribuer à la surveillance et au contrôle du vieillissement en bonne santé. Cependant, les horloges épigénétiques existantes, développées à partir de tissus hétérogènes, reflètent deux processus de vieillissement : les changements de composition des types cellulaires et le vieillissement individuel de chaque type cellulaire. L’objectif est donc de disséquer et de quantifier ces deux composantes des horloges épigénétiques afin de développer des horloges qui fournissent des estimations d’âge biologique à la résolution du type cellulaire. Dans le sang et le cerveau, environ 39 % et 12 % de l’exactitude d’une horloge épigénétique est influencée par les variations sous-jacentes des sous-ensembles de lymphocytes et de neurones, respectivement. En utilisant des tissus cérébraux et hépatiques comme prototypes, les chercheurs ont développé et validé des horloges de méthylation de l’ADN spécifiques aux neurones et aux hépatocytes. Ces horloges spécifiques au type cellulaire fournissent des estimations améliorées de l’âge chronologique pour les types de cellules et de tissus correspondants. Des résultats ont montré que les horloges spécifiques aux neurones et aux cellules gliales affichent une accélération de l’âge biologique dans le cas de la maladie d’Alzheimer, l’effet étant plus marqué pour les cellules gliales situées dans le lobe temporal. De plus, les sites CpG issus de ces horloges présentent un chevauchement significatif, bien que faible, avec l’horloge DamAge, qui est liée à des gènes clés impliqués dans la neurodégénérescence. L’horloge hépatocytaire est également accélérée dans le foie sous diverses conditions pathologiques. En revanche, les horloges non spécifiques aux types cellulaires ne montrent pas d’accélération significative de l’âge biologique, ou seulement de manière marginale. Source : https://www.fightaging.org/archives/2025/01/considering-shifts-in-cell-types-in-bulk-tissue-samples-assessed-for-epigenetic-age/

Étude des horloges épigénétiques : Corrélations entre l’âge et la méthylation de l’ADN dans différents types de tissus

Les horloges épigénétiques sont des algorithmes qui prédisent l’âge et d’autres phénotypes liés au vieillissement en utilisant des données de méthylation de l’ADN (DNAm) provenant d’échantillons de sang et de tissus humains. La plupart des horloges épigénétiques sont développées en appliquant des techniques d’apprentissage automatique à des données de méthylation de l’ADN dérivées des cellules immunitaires dans des échantillons de sang de personnes de différents âges. Ces horloges sont basées sur la fraction des génomes dans l’échantillon qui sont méthylés à des sites CpG spécifiques. Il n’est pas surprenant que ces horloges donnent des résultats différents lorsqu’elles sont appliquées à des données épigénétiques provenant d’échantillons de tissus plutôt que de sang, car tous les types cellulaires ne réagissent pas de la même manière au vieillissement épigénétique. Des recherches sont en cours pour développer des horloges universelles capables d’appliquer ces modèles à plusieurs espèces et tissus, cherchant ainsi des points communs entre eux. Cependant, les horloges les plus connues ont une performance médiocre en dehors du contexte dans lequel elles ont été fabriquées, c’est-à-dire les échantillons de sang. Une étude a été réalisée pour évaluer la performance des horloges DNAm sur des types de tissus non sanguins en appliquant des algorithmes DNAm à des données de méthylation provenant de neuf types de tissus humains différents. Les résultats ont montré que l’estimation moyenne de l’âge selon l’horloge DNAm variait considérablement d’un type de tissu à un autre, et les valeurs moyennes des différentes horloges variaient également au sein des types de tissus. Pour la plupart des horloges, la corrélation avec l’âge chronologique variait selon les types de tissus, le sang montrant souvent la corrélation la plus forte. Chaque horloge a montré une forte corrélation entre les tissus, avec des preuves d’une corrélation résiduelle après ajustement pour l’âge chronologique. Ce travail démontre que les différences dans le vieillissement épigénétique parmi les types de tissus entraînent des différences claires dans les caractéristiques des horloges DNAm. Des horloges épigénétiques spécifiques aux tissus ou types cellulaires sont nécessaires pour optimiser la performance prédictive des horloges DNAm dans les tissus et types cellulaires non sanguins. Source : https://www.fightaging.org/archives/2025/01/epigenetic-clocks-produce-different-results-by-tissue-type/