Étiquette : fibrose

Inhibition du complexe I mitochondrial : une nouvelle voie pour la régénération tissulaire et le vieillissement en santé

Une étude récente publiée dans le Journal of Pharmacology and Experimental Therapeutics présente une stratégie thérapeutique innovante visant à réparer les dommages tissulaires causés par des maladies inflammatoires chroniques et dégénératives, notamment l’arthrite rhumatoïde (RA) et la fibrose, grâce à l’inhibition du complexe I mitochondrial. Conduite par la société Istesso, spécialisée dans la réparation tissulaire, cette recherche suggère que ses nouveaux composés pourraient restaurer les tissus endommagés en activant les systèmes régénératifs du corps, non pas en supprimant l’inflammation, mais en renforçant la résilience au niveau cellulaire. Cette approche pourrait transformer notre compréhension des maladies chroniques, souvent associées au vieillissement, en les considérant non seulement comme des conditions à réprimer, mais comme des manifestations de la réparation altérée, potentiellement réversibles. Les données préliminaires proviennent d’études précliniques et d’essais cliniques en cours portant sur le médicament oral investigational Leramistat, un inhibiteur de complexe I de première classe qui semble activer les voies de signalisation mitochondriales impliquées dans la réparation et la récupération. Ce développement pourrait permettre une gestion des maladies chroniques sous un nouvel angle en favorisant la réparation plutôt que la suppression. Istesso exploite ainsi un point de blocage métabolique pour restaurer l’équilibre sans provoquer de crise cellulaire. Les premières données humaines suggèrent des modifications structurelles significatives dans l’arthrite rhumatoïde, une perspective rare dans le paysage pharmaceutique actuel qui se concentre souvent sur la gestion des symptômes. En modulant le complexe I, Leramistat semble pouvoir recruter des cellules progénitrices et restaurer les tissus endommagés, avec des résultats précliniques prometteurs dans des conditions inflammatoires et fibrosantes. Ce mécanisme d’action sans événements indésirables graves ni immunosuppression marquerait une avancée vers une intervention à long terme dans des pathologies dégénératives. Les implications de cette recherche pourraient s’étendre au-delà de la rhumatologie, touchant les domaines de la gérontologie et du traitement de la sarcopénie. L’idée de rétablir la structure tissulaire et de traiter les causes physiologiques du vieillissement pourrait offrir un chemin plus durable vers des vies plus saines et plus longues. Le mélange d’insights métaboliques et d’ambitions en ingénierie tissulaire pourrait ainsi contribuer à une science du vieillissement en pleine expansion, où la restauration des capacités réparatrices du corps prend le pas sur les interventions plus invasives. Source : https://longevity.technology/news/mitochondrial-modulation-drives-tissue-repair-in-chronic-disease/

Création de cellules exprimant GDF11 pour améliorer la fibrose pulmonaire chez les souris

Dans un article publié dans la revue *Molecular Therapy*, des chercheurs ont rapporté la création de cellules exprimant le facteur régénératif GDF11, qui se sont révélées améliorer la fibrose dans un modèle murin. GDF11, tout comme d’autres facteurs, a suscité un intérêt considérable dans le cadre des maladies liées à l’âge. Cependant, les recherches sur ce facteur ont produit des résultats contradictoires, certains études indiquant qu’il pourrait nuire à la régénération musculaire, tandis que d’autres soutiennent qu’il pourrait être bénéfique. Les effets de GDF11 semblent dépendre du contexte, variant selon la dose, la maladie, la gravité de la fibrose et le type de tissu. Les difficultés rencontrées dans l’utilisation de GDF11 en tant que médicament incluent son coût élevé de fabrication et sa courte demi-vie dans l’organisme, rendant son dosage crucial pour éviter des effets indésirables. En réponse à ces défis, les chercheurs ont développé une lignée de cellules souches embryonnaires (CSE) qui produisent GDF11 de manière endogène et peuvent être activées pour le sécréter. Ils ont ensuite différencié des progéniteurs pulmonaires à partir de ces cellules modifiées, dotées d’un système de sécurité pour éliminer les cellules nuisibles qui prolifèrent trop rapidement. Dans leurs expériences, les chercheurs ont observé que les souris plus âgées exprimaient beaucoup moins le gène Gdf11 par rapport aux souris plus jeunes. En exposant certaines de ces souris à une blessure pulmonaire induite par la bléomycine, qui mimait la fibrose pulmonaire idiopathique (FPI) chez l’homme, ils ont constaté que les souris âgées ne récupéraient pas de la fibrose comme le faisaient les jeunes souris. L’exposition à la bléomycine avait diminué l’expression de Gdf11 chez les souris âgées comparées à des témoins sains du même âge. Les chercheurs ont également identifié une association négative entre GDF11 et le gène de fibrose S100a4, avec une augmentation du gène lié à la sénescence p16. En examinant les cellules alvéolaires de type II (AEC-II) du poumon, ils ont découvert que l’exposition à GDF11 recombiné restaurait l’expression de la protéine surfactante C, essentielle pour la fonction de ces cellules, et améliorait la fonction mitochondriale tout en réduisant le stress oxydatif. Les télomères de ces cellules étaient allongés grâce à GDF11, sans effets similaires sur les cellules jeunes. GDF11 a également permis de réduire les dommages à l’ADN et les gènes de sénescence, sans tuer les cellules sénescentes, le qualifiant de composé sénomorphe. Les chercheurs ont ensuite décrit les cellules qu’ils avaient créées, s’assurant qu’elles étaient engagées en tant que progéniteurs pulmonaires et ne produiraient GDF11 que lorsqu’elles seraient exposées à la doxycycline, un médicament qui n’existe pas dans la nature. Après avoir comparé les cellules pulmonaires blessées par la bléomycine en présence de GDF11 recombiné ou de cellules SC-GDF11, ils ont trouvé que les cellules exposées à GDF11 avaient des signes de sénescence cellulaires significativement réduits, les cellules SC-GDF11 étant encore plus efficaces. Enfin, lors d’expériences sur des souris âgées, les chercheurs ont administré SC-GDF11 deux semaines après l’administration de bléomycine. Les poumons des souris traitées avec SC-GDF11 ressemblaient beaucoup à ceux du groupe témoin, avec une densité pulmonaire normale et moins de fibrose, montrant une préservation de la fonction pulmonaire. Les analyses d’expression génique ont confirmé ces résultats, montrant que non seulement Gdf11 avait été restauré, mais également que divers marqueurs de sénescence avaient été significativement réduits. Bien que ces résultats soient prometteurs, il s’agit encore d’une étude sur des souris et des cellules, et des recherches supplémentaires pour concevoir des cellules pour un usage humain doivent être menées avant d’envisager des essais cliniques. Source : https://www.lifespan.io/news/engineered-stem-cells-reduce-lung-fibrosis-in-mice/?utm_source=rss&utm_medium=rss&utm_campaign=engineered-stem-cells-reduce-lung-fibrosis-in-mice

L’ANGPTL4 : Une Protéine Clé dans le Vieillissement et les Maladies Associées

La recherche scientifique sur les maladies liées à l’âge se concentre souvent sur l’étude de protéines spécifiques, dont la biologie et les interactions sont relativement bien comprises. Cela implique une attention fluctuante portée sur certaines protéines selon l’intérêt de la communauté scientifique. Les chercheurs modifient leurs priorités pour approfondir leur compréhension et explorer les moyens d’altérer les niveaux d’expression protéique ou d’interférer dans les interactions entre protéines. Ce processus génère une base de connaissances et des thérapies potentielles, bien que la plupart d’entre elles n’atteignent jamais le stade du développement clinique. L’ANGPTL4, une protéine glycoprotéique sécrétée, joue un rôle clé dans le métabolisme énergétique et la performance physique, tout en étant un médiateur essentiel des interactions entre le microbiote intestinal et le métabolisme lipidique. Son expression est régulée par des voies de signalisation liées au vieillissement, et son activation excessive peut accélérer le processus de vieillissement en induisant un stress oxydatif, une transition épithéliale-mésenchymateuse, une fibrose, une accumulation lipidique anormale et un arrêt cellulaire. Étant donné son rôle important dans la fibrose organique et le cancer, cibler l’ANGPTL4 pourrait être une approche thérapeutique prometteuse. Néanmoins, les fonctions complexes des fragments N-terminal et C-terminal de l’ANGPTL4, qui peuvent avoir des effets opposés selon le stade de la maladie, rendent difficile le développement d’une thérapie par anticorps. Cet article passe en revue les mécanismes biologiques de l’ANGPTL4, son impact dual sur la fibrose et la tumorigenèse, et souligne ses avancées récentes comme biomarqueur potentiel dans les maladies liées à l’âge et les conditions inflammatoires. L’ANGPTL4 est un cible prometteuse mais complexe, nécessitant des stratégies basées sur les mécanismes pour une traduction clinique sûre. Source : https://www.fightaging.org/archives/2025/07/altered-angptl4-expression-in-the-context-of-aging/

Calico et Mabwell : Un partenariat stratégique pour cibler l’interleukine-11 et lutter contre le vieillissement

Calico Life Sciences, une entreprise de biotechnologie d’Alphabet axée sur le vieillissement et les maladies liées à l’âge, a conclu un accord de licence exclusif avec Mabwell Bioscience, une société biotechnologique basée à Shanghai, pour le développement et la commercialisation de thérapeutiques ciblant l’interleukine-11 (IL-11). Cet accord, d’une valeur initiale de 25 millions de dollars, pourrait atteindre jusqu’à 571 millions de dollars en fonction des jalons de développement et de commercialisation. La molécule clé de cet accord est un anticorps monoclonal expérimental, le 9MW3811, qui a montré des promesses dans le traitement de maladies liées à l’âge, notamment la fibrose. L’anticorps inhibe l’IL-11 et ses voies de signalisation en aval, qui sont liées à l’inflammation chronique et aux maladies dégénératives. Des études précliniques ont révélé que ce traitement réduisait le collagène pulmonaire et améliorait la fonction pulmonaire chez les souris atteintes de fibrose, le positionnant comme un agent thérapeutique prometteur pour la fibrose pulmonaire idiopathique. Calico s’intéresse de près à l’IL-11 dans le contexte de l’expansion de son portefeuille de thérapeutiques novatrices, car des études récentes ont renforcé l’idée que cibler l’IL-11 pourrait avoir des bénéfices significatifs pour la longévité et la santé. Par exemple, une étude récente a montré que le blocage de la signalisation de l’IL-11 chez les souris pouvait prolonger leur durée de vie de 25 % tout en améliorant leur fonction musculaire et en réduisant l’accumulation de graisse. Malgré des résultats décevants d’essais cliniques pour un traitement de la SLA en collaboration avec AbbVie, Calico continue de s’engager dans des partenariats stratégiques pour développer des traitements qui pourraient changer le cours du vieillissement. Source : https://longevity.technology/news/calico-inks-596m-deal-for-drugs-targeting-longevity-linked-cytokine/

HAYA Therapeutics : Une Révolution dans la Médecine de Précision grâce au Génome Sombre

HAYA Therapeutics, une start-up de biotechnologie spécialisée dans la médecine de précision, a récemment levé 65 millions de dollars lors d’un financement de série A pour faire avancer le développement de médicaments guidés par l’ARN, ciblant les maladies chroniques et liées à l’âge en modulant le génome régulateur. Ce financement permettra à l’entreprise d’accélérer les essais cliniques de son candidat thérapeutique principal pour l’insuffisance cardiaque et d’élargir son pipeline de thérapies ciblant les ARN longs non codants (lncARN) dans divers contextes pathologiques. L’approche de HAYA repose sur sa capacité à exploiter le génome régulateur, surnommé le ‘génome sombre’ car il ne code pas de protéines et est relativement inexploré. HAYA affirme que ce segment du génome joue un rôle clé dans le contrôle de l’expression génique et de l’identité cellulaire. En combinant des génomiques fonctionnelles multimodales avec des outils d’apprentissage automatique propriétaires, l’entreprise a créé un atlas complet du génome régulateur, permettant le développement de thérapies hautement ciblées et guidées par l’ARN qui peuvent reprogrammer des états cellulaires pathologiques dans un large éventail de maladies. HAYA, fondée par Samir Ounzain, est basée à Lausanne, en Suisse, et à San Diego, et est motivée par la vision que le génome est le code source de la vie, où les lncARN agissent comme des unités critiques de traitement de l’information. Le candidat principal de l’entreprise, HTX-001, cible un lncARN spécifique au cœur impliqué dans la cardiomyopathie hypertrophique non obstructive (nHCM), une condition où le remodelage fibreux persistant altère la fonction cardiaque. HAYA cherche à éviter les effets hors cible en ciblant spécifiquement les ARN régulateurs qui provoquent la fibrose de manière spécifique à la cellule et au tissu. En plus de la fibrose cardiaque, la plateforme de HAYA a démontré sa pertinence dans d’autres conditions chroniques telles que la fibrose pulmonaire, l’obésité et le carcinome épidermoïde. Récemment, HAYA a établi un partenariat stratégique avec Eli Lilly pour développer des thérapies basées sur l’ARN pour l’obésité et les troubles métaboliques. Le tour de financement a été co-dirigé par Sofinnova Partners et Earlybird Venture Capital, avec la participation d’Eli Lilly and Company et d’autres investisseurs. Selon Sofinnova, la plateforme de HAYA libère le potentiel thérapeutique du génome sombre en ciblant les états cellulaires responsables des maladies via les lncARN, ouvrant ainsi une nouvelle frontière dans la médecine de précision. Source : https://longevity.technology/news/haya-therapeutics-harnesses-the-dark-genome-against-age-related-diseases/

Les cellules sénescentes et leurs implications sur le vieillissement : Approches thérapeutiques et défis

Les cellules sénescentes s’accumulent avec l’âge dans les tissus du corps. Elles sont produites tout au long de la vie, principalement parce que les cellules somatiques atteignent la limite de Hayflick lors de leur réplication, mais aussi à cause de divers stress. Dans la jeunesse, les cellules sénescentes nouvellement créées sont rapidement éliminées par le système immunitaire. Cependant, cette capacité diminue avec l’âge, ce qui permet aux cellules sénescentes de persister. Bien qu’elles ne représentent qu’une petite fraction des cellules d’un tissu, les cellules sénescentes produisent de manière énergétique des signaux inflammatoires, connus sous le nom de phénotype sécrétoire associé à la sénescence (SASP). Ce signalement, lorsqu’il est maintenu dans le temps, cause des dommages qui perturbent le fonctionnement des cellules et des tissus, contribuant ainsi à des conditions liées à l’âge. Il existe plusieurs approches pour traiter le problème des cellules sénescentes. La première consiste à détruire sélectivement les cellules sénescentes par le biais de thérapies sénolytiques, qui sont les plus développées et offrent des résultats prometteurs. Dans des études sur des souris, ces thérapies ont montré une inversion rapide de certaines conditions liées à l’âge. La seconde approche vise à empêcher les cellules de devenir sénescentes, permettant ainsi au système immunitaire de réduire le fardeau des cellules sénescentes persistantes. Les thérapies qui augmentent l’autophagie, comme les inhibiteurs de mTOR, illustrent cette stratégie. La troisième approche consiste à interférer avec la capacité des cellules sénescentes à générer le SASP, ce qui est complexe en raison de la régulation variée du SASP et de ses composants. La modulation du SASP est une stratégie thérapeutique qui a suscité un intérêt croissant pour lutter contre les maladies liées à l’âge, la dégénérescence tissulaire et la progression du cancer. Bien que des études précliniques montrent des promesses, la traduction clinique est limitée en raison de la nature hétérogène et spécifique au contexte du SASP, ainsi que de son interaction complexe avec les voies immunitaires. Le SASP n’est pas uniforme, mais varie selon le type cellulaire, le déclencheur de sénescence, l’environnement tissulaire et la durée. Bien que des composants clés comme IL-6, IL-8 et CXCL1 soient couramment exprimés, d’autres, comme les microARN dérivés de vésicules extracellulaires, montrent une grande spécificité tissulaire. Cette diversité moléculaire complique la découverte de biomarqueurs et la conception de thérapies universelles. Les avancées en séquençage d’ARN à cellule unique et en transcriptomique spatiale ont amélioré notre compréhension de l’hétérogénéité du SASP, bien que des limitations techniques persistent. Les outils d’apprentissage automatique capables d’intégrer des ensembles de données multi-omiques pourraient aider à créer des approches personnalisées pour la modulation du SASP. Sur le plan thérapeutique, le SASP joue des rôles bénéfiques et nocifs selon le contexte. Un SASP aigu favorise la régénération, la cicatrisation et le développement embryonnaire, tandis qu’un SASP chronique contribue à l’inflammaging, à la fibrose et au cancer. Par exemple, les fibroblastes sénescents sécrètent des facteurs pro-angiogéniques, aidant à la réparation tout en facilitant la croissance tumorale et l’évasion immunitaire dans les tissus épithéliaux. La dysfonction mitochondriale, en particulier via la voie de détection de l’ADN cytosolique cGAS-STING, peut être à l’origine d’un SASP chronique et de l’inflammation associée, mais cibler les mitochondries soulève des inquiétudes quant aux effets à long terme sur l’intégrité métabolique. Le système immunitaire est à la fois influencé par et réactif au SASP. Un SASP précoce soutient le recrutement immunitaire grâce à des cytokines comme IL-6 et CXCL2, favorisant l’élimination des cellules sénescentes. Cependant, un SASP persistant peut entraîner une épuisement immunitaire et une inflammation chronique, supprimant les réponses anti-tumorales par des niveaux élevés d’IL-6 et de TGF-β. Les immunothérapies comme les inhibiteurs PD-1/PD-L1 montrent un succès partiel mais nécessitent une compréhension plus approfondie des dynamiques entre le SASP et le système immunitaire pour améliorer la cohérence et l’efficacité. La traduction des résultats précliniques en applications cliniques pose d’autres obstacles. Les modèles murins échouent souvent à reproduire la biologie de la sénescence humaine en raison des différences spécifiques aux espèces dans le SASP et les réponses immunitaires. Les plateformes émergentes telles que les systèmes d’organoïdes humanisés et les greffes de tissus âgés dérivés de patients offrent une meilleure fidélité, mais sont entravées par des méthodes d’induction inconsistantes et un manque de standardisation. Des cadres de recherche collaboratifs et des protocoles harmonisés seront essentiels pour obtenir des résultats cliniques reproductibles. Source : https://www.fightaging.org/archives/2025/05/suppression-of-the-senescence-associated-secretory-phenotype-as-a-basis-for-therapy/

Les petites vésicules extracellulaires : un espoir pour la santé cardiaque des souris âgées

Dans une étude publiée dans la revue *Stem Cell Research & Therapy*, des chercheurs ont découvert que les petites vésicules extracellulaires (sEVs) provenant de souris jeunes peuvent atténuer les dysfonctionnements cardiaques chez les souris âgées. Les vésicules extracellulaires ont été classées selon leur origine, mais la séparation actuelle repose principalement sur leur taille, avec une distinction entre petites (jusqu’à 200 nanomètres) et grandes vésicules. Les chercheurs ont extrait des sEVs de cellules souches dérivées du tissu adipeux de souris âgées de 3 à 6 mois, puis les ont administrés à des souris de 22 mois en deux doses espacées d’une semaine. Après injection, les sEVs ont migré dans le corps des souris, notamment dans le tissu hépatique et musculaire cardiaque. Bien que le traitement n’ait pas modifié la fréquence cardiaque ni la fonction systolique, il a significativement amélioré la fonction diastolique, réduisant l’épaisseur des parois cardiaques et aidant le ventricule gauche à mieux se dilater pour recevoir plus de sang. Les souris traitées avaient des cœurs plus petits, moins de fibrose et une angiogenèse partiellement restaurée. Les marqueurs liés aux dommages oxydatifs et à l’inflammation ont également montré des améliorations, indiquant un potentiel bénéfique des sEVs dans le traitement des maladies liées à l’âge. Bien que ces résultats ne signifient pas une inversion complète du vieillissement cardiaque, ils suggèrent que les sEVs pourraient être une voie prometteuse pour prolonger la durée de vie et traiter des conditions liées à l’âge, notamment l’insuffisance cardiovasculaire, qui est la première cause de mortalité dans le monde. Source : https://www.lifespan.io/news/extracellular-vesicles-restore-some-heart-function-to-mice/?utm_source=rss&utm_medium=rss&utm_campaign=extracellular-vesicles-restore-some-heart-function-to-mice

Tribune Therapeutics lève 37 millions d’euros pour avancer dans le traitement de la fibrose

Tribune Therapeutics, une biotech scandinave, a levé 37 millions d’euros pour faire avancer son portefeuille de thérapies anti-fibrotiques de nouvelle génération. Ces fonds serviront à développer cliniquement le candidat principal de l’entreprise, un mimétique de CCN5, conçu pour lutter contre la fibrose à ses causes profondes. La fibrose est caractérisée par une accumulation excessive de composants de la matrice extracellulaire, tels que le collagène, entraînant un durcissement des tissus, des cicatrices et une dysfonction organique, et contribue à de nombreuses maladies chroniques touchant les poumons, le foie, les reins et d’autres organes. Le vieillissement est un facteur de risque majeur, car la sénescence cellulaire, l’inflammation chronique, l’autophagie altérée et la dysfonction mitochondriale alimentent la progression fibrotiques. Les traitements actuels offrent seulement un soulagement symptomatique ou ralentissent modestement la progression de la maladie en ciblant des médiateurs inflammatoires ou des facteurs de croissance. Tribune, basée à Oslo et Stockholm, adopte une approche différente en se concentrant sur la famille de protéines CCN, qui régulent la formation de cicatrices. En ciblant ces protéines plutôt que les voies inflammatoires en amont, l’entreprise vise à développer des thérapies modifiant la maladie qui peuvent arrêter ou même inverser la fibrose. Son programme principal, appelé TRX-44, est conçu pour imiter la fonction naturelle de CCN5, une protéine endogène qui contrecarre les effets pro-fibrotiques d’autres membres de la famille CCN. En restaurant cet équilibre naturel, TRX-44 pourrait prévenir la formation excessive de cicatrices dans plusieurs systèmes organiques. L’indication principale pour TRX-44 est la fibrose pulmonaire idiopathique (IPF), une maladie pulmonaire mortelle menant à une insuffisance respiratoire dans les trois à cinq ans suivant le diagnostic. Le nouveau financement permettra à Tribune de faire avancer TRX-44 vers des essais cliniques tout en développant d’autres programmes ciblant les protéines CCN. Le PDG de Tribune, Georg Vo Beiske, a déclaré que l’entreprise avait été fondée sur des découvertes révolutionnaires concernant les facteurs sous-jacents de la fibrose, et que le soutien d’un groupe d’investisseurs solide et prestigieux augmente la confiance dans leur approche innovante pour traiter les maladies fibrotiques, dont beaucoup sont mortelles. Le financement annoncé inclut un tour de table de 23 millions d’euros dirigé par LifeArc Ventures, avec la participation d’investisseurs existants et nouveaux tels que Novo Holdings, HealthCap, Innovestor’s Life Science Fund, Inven2, Industrifonden et Investinor. João Ribas de Novo a commenté que les maladies fibrotiques comme l’IPF sont dévastatrices et souvent terminales, ajoutant que l’approche de Tribune exploite la biologie des CCNs pour fermer une voie pro-fibrotique clé. En parallèle du financement, Chris Baker de LifeArc et Jonathan Ilicki d’Industrifonden rejoindront le conseil d’administration de Tribune. Baker a exprimé que, après avoir examiné les données précliniques pour TRX-44 et rencontré l’équipe impressionnante qui le soutient, ils ont reconnu le potentiel de transformation de cette stratégie, affirmant que Tribune a l’opportunité de pionnier une nouvelle approche pour traiter les maladies fibrotiques, ce qui pourrait rendre des conditions débilitantes comme l’IPF gérables, améliorer la qualité de vie et donner un nouvel espoir à des milliers de patients diagnostiqués chaque année. Source : https://longevity.technology/news/tribune-raises-e37m-to-advance-fibrosis-targeting-therapeutics/

Le rôle des macrophages SPP1+ dans l’inflammation chronique liée au vieillissement

Les macrophages, cellules essentielles du système immunitaire inné, sont présents dans tout le corps, excepté dans le cerveau où des cellules analogues, les microglies, se trouvent. Une population de monocytes réside dans la rate et circule dans le sang, capable de se différencier en macrophages et d’entrer dans les tissus selon les besoins. Les macrophages, qui incluent des macrophages résidents dans les tissus, jouent plusieurs rôles cruciaux, tels que la destruction des agents pathogènes, des cellules sénescentes et cancéreuses, la coordination de la régénération tissulaire après une blessure, et l’élimination des déchets métaboliques. Leur diversité leur permet d’adopter différents comportements en réponse à leur environnement. Cependant, avec l’âge, certains de ces comportements peuvent devenir inadaptés, particulièrement dans un environnement tissulaire endommagé.

Un des aspects discutés dans l’article concerne les macrophages SPP1+, une sous-population spécifique de macrophages qui sont préoccupés par la signalisation inflammatoire au cours du vieillissement. L’inflammation chronique est une caractéristique du vieillissement, causée par divers facteurs, et lorsque cette inflammation devient persistante, elle perturbe la structure et la fonction des tissus, contribuant à l’apparition de maladies liées à l’âge. Pour résoudre ce problème, il semble que la solution la plus efficace soit de retirer les dommages moléculaires qui provoquent l’inflammation et de modifier les populations de cellules immunitaires qui génèrent le plus de signaux inflammatoires.

Les macrophages SPP1+, qui expriment un niveau élevé d’ostéopontine, ont été initialement identifiés dans le contexte des tumeurs, mais sont maintenant reconnus pour leur rôle dans diverses conditions pathologiques, y compris les troubles inflammatoires chroniques, les maladies neurodégénératives et le remodelage tissulaire. Des études de séquençage d’ARN à cellule unique ont montré leur abondance dans le muscle squelettique de souris âgées, où ils présentent des caractéristiques de sénescence et d’activité métabolique lipidique accrue. De plus, dans la maladie d’Alzheimer, une augmentation des microglies positives au SPP1 est corrélée à l’inflammation et à la perte synaptique, suggérant que les macrophages SPP1+ peuvent influencer à la fois l’inflammation et la neurodégénérescence.

Ces cellules sont également impliquées dans la promotion de la fibrose, le remodelage de la matrice extracellulaire et la modulation des réponses immunitaires, ce qui les place au centre des états inflammatoires chroniques et des dysfonctionnements tissulaires. Leur présence est souvent associée à de mauvais résultats cliniques, mettant en évidence leur potentiel en tant que cibles thérapeutiques. Bien que les macrophages SPP1+ partagent des caractéristiques fonctionnelles à travers différents contextes pathologiques, leur capacité d’adaptabilité soulève des questions sur leur classification. L’article propose donc de reconsidérer leur classification en tant que sous-type distinct de macrophages, et non pas spécifiquement lié aux tumeurs, ce qui pourrait améliorer notre compréhension de la biologie des macrophages et ouvrir de nouvelles voies pour des interventions thérapeutiques ciblées. Source : https://www.fightaging.org/archives/2025/03/spp1-macrophages-are-implicated-in-numerous-age-related-conditions/

Impact du facteur d’induction par hypoxie sur le vieillissement pulmonaire et la sénescence cellulaire

Cet article de revue examine les connaissances actuelles sur la signalisation du facteur d’induction par hypoxie (HIF) dans le vieillissement des tissus pulmonaires, avec un accent particulier sur le fardeau de la sénescence cellulaire comme mesure de la dysfonction liée à l’âge. Selon les chercheurs, l’expression chronique du HIF avec l’âge favorise la sénescence cellulaire. Comprendre pourquoi l’expression du HIF devient dysrégulée avec l’âge est l’une des nombreuses questions difficiles à résoudre. Il faut un grand effort pour retracer la chaîne de cause à effet qui mène à une altération donnée de l’expression génique, et dans presque tous les cas, la connexion longue et sinueuse à un mécanisme causal fondamental du vieillissement n’a pas été définitivement établie.

Le facteur d’induction par hypoxie (HIF) est un médiateur transcriptionnel clé des réponses cellulaires à un faible taux d’oxygène, régulant la physiologie et la pathogénie des poumons. Il est un régulateur central de l’adaptation hypoxique dans les tissus pulmonaires et joue un double rôle dans le maintien de l’homéostasie et la promotion de processus pathologiques. À faibles niveaux, l’activation induite par l’hypoxie du HIF est hormétique, déclenchant des réponses cellulaires adaptatives qui améliorent la résistance au stress et la longévité. Cependant, une activation excessive ou prolongée du HIF fausse cette réponse adaptative, favorisant la fibrose, l’inflammation et la progression des maladies.

Au cours du vieillissement normal, le HIF maintient l’homéostasie de l’oxygène, régule l’activité mitochondriale et soutient les réponses adaptatives au stress dans les tissus pulmonaires. Avec l’âge, l’efficacité de la signalisation HIF diminue, entraînant une tolérance au stress réduite et des mécanismes de réparation altérés dans les cellules pulmonaires. La dysrégulation chronique du HIF dans les poumons vieillissants a été liée à une augmentation du stress oxydatif, à l’induction de la sénescence et à la signalisation pro-inflammatoire. Dans les poumons, le HIF est également essentiel pour l’homéostasie de l’oxygène et l’adaptation aux environnements hypoxiques. Au-delà de son rôle dans la détection de l’oxygène, le HIF module le métabolisme cellulaire, l’inflammation et les voies de sénescence, influençant directement le vieillissement pulmonaire.

Des études récentes indiquent que le HIF et la sénescence cellulaire interagissent à plusieurs niveaux, où le HIF peut à la fois induire et supprimer la sénescence, selon les conditions cellulaires. Alors qu’une activation transitoire du HIF soutient la réparation des tissus et la résistance au stress, une dysrégulation chronique aggrave les pathologies pulmonaires. Des preuves émergentes suggèrent que cibler les voies HIF et de sénescence pourrait offrir de nouvelles stratégies thérapeutiques pour atténuer les maladies pulmonaires liées à l’âge. Cet article de revue explore les interactions complexes entre ces mécanismes, mettant en lumière la manière dont leur jeu d’influence affecte le vieillissement pulmonaire et la progression des maladies. Source : https://www.fightaging.org/archives/2025/03/dysregulated-hypoxia-inducible-factor-signaling-in-the-aging-lung/