Étiquette : expression génique

Activation des Gènes Sur le Chromosome X Silencieux et Différences Cognitives entre les Sexes durant le Vieillissement

Cette étude menée par des chercheurs de l’UCSF utilise un modèle animal pour explorer les différences cognitives entre les sexes liées à l’âge, en se concentrant sur l’activation des gènes sur le chromosome X silencieux. Les femmes, qui ont deux chromosomes X, montrent des différences notables par rapport aux hommes, qui en ont un, en matière de longévité et de vieillissement cognitif. Selon la chercheuse principale, Dena Dubal, les femmes présentent un cerveau qui semble plus jeune et moins affecté par les déficits cognitifs liés à l’âge. Les chercheurs établissent un lien entre les différences génétiques entre les sexes, en particulier les gènes présents sur le chromosome X, et ces différences dans le vieillissement cognitif. Dans les cellules femelles, un chromosome X est souvent inactif, mais certains gènes échappent à cette inactivation, ce qui pourrait influencer les différences cognitives. L’inactivation du chromosome X se produit de manière aléatoire dans le corps, rendant l’étude des gènes plus complexe. Les chercheurs ont croisé deux souches de souris, l’une ayant le chromosome X actif et l’autre inactif, pour mieux comprendre l’expression des gènes. Ils ont analysé les expressions géniques dans des échantillons de cellules de l’hippocampe, une région clé du cerveau pour l’apprentissage et la mémoire, et ont découvert que l’expression de plusieurs gènes était activée sur le chromosome X silencieux chez les souris âgées. Ces résultats indiquent que le chromosome X silencieux se réactive tard dans la vie, ce qui pourrait ralentir le déclin cognitif. Parmi les gènes activés, le gène Plp1, lié à la myéline, a montré une augmentation d’expression avec l’âge, particulièrement dans le cerveau des femelles. Les chercheurs ont également observé que l’augmentation de l’expression de Plp1 dans des cellules spécifiques améliorait les capacités d’apprentissage et de mémoire chez les souris âgées, sans affecter leur activité générale ou leur niveau d’anxiété. L’étude soulève des questions sur les mécanismes biologiques sous-jacents aux différences de vieillissement cognitif entre les sexes, suggérant que les modifications épigénétiques pourraient jouer un rôle clé dans l’activation des gènes du chromosome X silencieux. Les résultats de cette recherche offrent une compréhension plus approfondie des différences liées au sexe dans le vieillissement et pourraient guider le développement d’interventions visant à améliorer la santé cognitive des deux sexes. Source : https://www.lifespan.io/news/activation-of-silent-x-chromosome-might-improve-cognition/?utm_source=rss&utm_medium=rss&utm_campaign=activation-of-silent-x-chromosome-might-improve-cognition

Elamipretide : Une avancée dans l’amélioration de la fonction musculaire chez les souris âgées

Elamipretide, anciennement connu sous le nom de SS-31, est une molécule antioxydante ciblant les mitochondries, qui améliore la fonction mitochondriale. Bien que son mécanisme d’action ne soit pas entièrement compris, des recherches ont montré qu’il améliore la fonction musculaire chez des souris âgées, un résultat attendu, mais ne modifie pas l’âge épigénétique, ce qui est surprenant. Les horloges épigénétiques, qui évaluent l’âge biologique en se basant sur des modifications épigénétiques de l’ADN, ont des limites, mais la fonction mitochondriale est cruciale dans le processus de vieillissement. La diminution de la fonction musculaire cardiaque et squelettique liée au vieillissement est fortement associée à diverses comorbidités. Elamipretide a démontré une efficacité thérapeutique dans l’amélioration des conditions associées à la dysfonction mitochondriale dans des modèles cliniques et précliniques. Dans une étude, l’impact d’un traitement de 8 semaines avec Elamipretide a été examiné sur la prévalence de la fragilité, ainsi que sur la fonction des muscles squelettiques et cardiaques chez les souris C57BL/6J. Les résultats ont montré que l’état de santé, mesuré par l’indice de fragilité, la fonction diastolique et la force musculaire squelettique, diminue avec l’âge, la force musculaire changeant de manière dépendante du sexe. Le traitement par Elamipretide a atténué l’accumulation de la fragilité et a partiellement inversé ces déclins, comme en témoigne l’augmentation du stress cardiaque et de la résistance à la fatigue musculaire. Cependant, aucune modification statistiquement significative de l’expression génique ou des profils de méthylation de l’ADN n’a été détectée, indiquant peu de réorganisation moléculaire ou de réduction de l’âge biologique dans la plupart des groupes traités. L’analyse des voies métaboliques a révélé que le traitement par Elamipretide favorisait des changements pro-longevité dans l’expression génique, incluant l’upregulation des gènes impliqués dans le métabolisme des acides gras, la traduction mitochondriale et la phosphorylation oxydative, ainsi que la downregulation de l’inflammation. En somme, ces résultats indiquent que le traitement par Elamipretide est efficace pour atténuer les signes de sarcopénie et de dysfonction cardiaque dans un modèle de souris vieillissant, mais que ces améliorations fonctionnelles se produisent indépendamment des changements détectables dans l’âge épigénétique et transcriptomique. Ainsi, certains changements liés à l’âge dans la fonction peuvent être découplés des modifications de l’âge biologique moléculaire. Source : https://www.fightaging.org/archives/2025/03/elamipretide-ss-31-improves-muscle-function-but-doesnt-affect-epigenetic-age/

Augmentation des erreurs de traduction liées à l’âge : Une étude sur un modèle de souris luminescent

Les chercheurs ont développé un modèle de souris qui intègre une séquence d’ADN produisant une protéine luminescente uniquement en cas d’erreur de lecture (readthrough), lorsque la machinerie de traduction ignore un codon d’arrêt dans la séquence d’ADN. Cette méthode permet d’évaluer dans quelle mesure les erreurs de lecture augmentent avec l’âge, entraînant la production de molécules d’ARN aberrantes et des dysfonctionnements associés. Des preuves suggèrent qu’il y a une augmentation liée à l’âge des erreurs de traduction lors de la production d’ARN à partir de l’ADN. Cependant, il est difficile de déterminer dans quelle mesure le vieillissement dégénératif résulte de ce type de dysfonctionnement dans l’expression génique. La question de la précision de la synthèse des protéines et de son lien avec le vieillissement est un sujet d’intérêt de longue date. Pour étudier si des changements spontanés dans le taux d’erreurs ribosomiques se produisent en fonction de l’âge, les chercheurs ont d’abord établi que le readthrough des codons d’arrêt est un indicateur plus sensible de la mistraduction due à un appariement incorrect des codons et anticodons que l’incorporation d’acides aminés par erreur. Par la suite, ils ont développé des souris knock-in pour la détection in-vivo du readthrough des codons d’arrêt, utilisant un rapporteur de type Kat2-TGA-Fluc qui combine des techniques d’imagerie fluorescente et bioluminescente sensibles. Les chercheurs ont suivi l’expression des protéines rapporteurs in-vivo au fil du temps, et ont évalué l’expression de Kat2 et Fluc dans des extraits de tissus ainsi que par imagerie ex-vivo de tout organe. Les résultats montrent une augmentation organo-dépendante et liée à l’âge des erreurs de traduction : le readthrough des codons d’arrêt augmente avec l’âge dans les muscles (+75%) et le cerveau (+50%), mais pas dans le foie. En parallèle, des données récentes indiquent un vieillissement prématuré chez des souris présentant une mutation de ram sujette aux erreurs, soulignant que le déclin de la fidélité de traduction lié à l’âge pourrait contribuer au vieillissement. Source : https://www.fightaging.org/archives/2025/03/translational-errors-increase-with-age-in-some-organs-in-mice/

Reprogrammation Cellulaire : Vers une Réversion du Cancer Colorectal

Les cellules fonctionnent comme des machines d’état, leur comportement étant fortement influencé par le modèle d’expression génique qu’elles adoptent. Avec le temps, d’autres facteurs, tels que la présence de déchets moléculaires comme le lipofuscine, et des changements dans l’environnement extérieur, affectent les réactions cellulaires. Cela inclut le croisement de la matrice extracellulaire et des signaux inflammatoires. La maîtrise de l’expression génique pourrait permettre de réinitialiser le comportement des cellules et d’améliorer leur fonction, ce qui pourrait aussi entraîner un meilleur contrôle des maladies et du vieillissement. La recherche sur le reprogrammation cellulaire se concentre principalement sur le traitement du vieillissement en inversant certains changements d’expression génique. Les facteurs de Yamanaka, qui transforment les cellules germinales adultes en cellules souches embryonnaires, sont souvent au centre de ces travaux. Cependant, d’autres formes de reprogrammation sont possibles, comme la reprogrammation des cellules cancéreuses pour qu’elles ne soient plus cancéreuses. Cette recherche se concentre sur le cancer colorectal, avec une nouvelle technologie développée par la société Biorevert pour inverser les changements cancéreux. Une équipe de recherche a réussi à capturer le phénomène de transition critique où les cellules normales deviennent cancéreuses et a découvert un commutateur moléculaire capable de ramener les cellules cancéreuses à leur état normal. Ils ont identifié un état de transition critique instable où coexistent cellules normales et cancéreuses, et ont utilisé une méthode de biologie des systèmes pour développer une technologie d’identification des commutateurs moléculaires. En appliquant cette technologie aux cellules cancéreuses du côlon, ils ont pu prouver que ces cellules pouvaient retrouver les caractéristiques des cellules normales. Cette approche repose sur l’inférence automatique d’un modèle informatique du réseau génétique contrôlant la transition critique du développement cancéreux à partir de données de séquençage d’ARN à cellule unique. Les chercheurs ont identifié des commutateurs moléculaires qui suppressent la prolifération des cellules cancéreuses tout en restaurant les caractéristiques des cellules normales du côlon. Lorsqu’ils ont administré des inhibiteurs de ces commutateurs aux organoïdes dérivés de patients atteints de cancer colorectal, ils ont observé une inhibition de la prolifération des cellules cancéreuses et une activation des gènes liés à l’épithélium colique normal. Enfin, une approche systémique nommée REVERT a été présentée, permettant de reconstruire le modèle de réseau régulateur moléculaire et d’identifier un commutateur de réversion basé sur des données de transcriptome à cellule unique, illustrant son utilité dans l’étude des transitions de destinée cellulaire. Source : https://www.fightaging.org/archives/2025/02/more-on-reprogramming-of-colon-cancer-cells-into-normal-colon-cells/

Impact de l’âge et de la restriction calorique sur la sarcopénie : une analyse transcriptomique

L’impact du vieillissement sur les changements transcriptionnels dans les cellules est un domaine de recherche important. En examinant le transcriptome des cellules musculaires des rats âgés par rapport à ceux des jeunes et en tenant compte des interventions comme la restriction calorique, les chercheurs ont pu mieux comprendre les mécanismes sous-jacents à la sarcopénie, qui est la perte de masse et de force musculaire liée à l’âge. Cette condition est une cause majeure de handicap chez les personnes âgées et nécessite une étude approfondie. En utilisant le séquençage d’ARN à haut débit, les chercheurs ont isolé l’ARN total des tissus musculaires de rats nourris ad libitum et de ceux soumis à une restriction calorique. Les analyses ont révélé des changements significatifs dans l’expression génique, avec 442 gènes codant pour des protéines étant régulés à la hausse et 377 à la baisse dans les muscles âgés par rapport aux jeunes. Les gènes régulés à la hausse étaient souvent liés à la réponse immunitaire et au repliement des protéines, tandis que ceux régulés à la baisse étaient plus associés à la biologie du développement. La restriction calorique a permis de supprimer 69,7 % des gènes régulés à la hausse et de sauver 57,8 % des gènes régulés à la baisse dans le muscle âgé, tout en identifiant des gènes uniques qui n’étaient pas affectés par le vieillissement. Ces données fournissent des indices importants pour de futures interventions thérapeutiques visant à lutter contre la sarcopénie. Source : https://www.fightaging.org/archives/2025/01/an-epigenetic-view-of-the-benefits-of-calorie-restriction-in-aged-rats/

Les Mécanismes de l’ARN dans les Maladies Neurodégénératives : De la Biologie à la Thérapie

L’assemblage, le traitement et les activités des molécules d’ARN dans la cellule constituent un sujet vastement complexe, particulièrement dans le contexte des maladies neurodégénératives. Cet article présente un aperçu des domaines d’intérêt pour les chercheurs travaillant sur ces conditions. La transcription des gènes en ARN est la première étape de l’expression génique, et des changements importants dans cette expression surviennent avec l’âge. Un état cellulaire est largement déterminé par les ARN et les protéines produites, influençant ainsi la fonction des tissus. Les maladies neurodégénératives, qui touchent environ 6,9 millions d’Américains en 2024, incluent la maladie d’Alzheimer, la maladie de Parkinson, ainsi que des maladies moins courantes comme la maladie de Huntington et la sclérose latérale amyotrophique. Bien que les symptômes cliniques varient, ces maladies partagent des mécanismes pathologiques sous-jacents, notamment la présence d’inclusions pathologiques et de mutations des protéines liant l’ARN. Des expansions de répétition dans plusieurs maladies, comme la SLA et la DFT, entraînent la production d’ARN contenant des répétitions, qui peuvent induire une neurotoxicité par différents mécanismes. Dans l’ère post-génomique, diverses voies de traitement de l’ARN et de nouveaux types d’ARN, codants et non codants, ont été identifiés dans le contexte des maladies, suggérant une contribution potentielle à la neurodégénérescence. Des stratégies thérapeutiques ciblant l’ARN pour moduler les gènes associés aux maladies ont montré un succès notable. Cet article se concentre sur les mécanismes pathogéniques liés à l’ARN dans les maladies neurodégénératives et sur les approches thérapeutiques ciblant l’ARN qui montrent un grand potentiel. Nous examinons d’abord les différentes voies de traitement de l’ARN et comment ces voies sont dysrégulées dans les maladies neurodégénératives. Ensuite, nous discutons des mécanismes de dysfonctionnement des protéines liant l’ARN, entraînant une régulation incorrecte du traitement de l’ARN. Enfin, nous passons en revue les progrès actuels dans les thérapies ciblant l’ARN. Les différentes voies de traitement de l’ARN sont souvent interconnectées, et la plupart des protéines liant l’ARN jouent des rôles multifonctionnels à travers plusieurs étapes, créant une interaction significative entre elles. Source : https://www.fightaging.org/archives/2025/01/rna-dysregulation-in-neurodegenerative-conditions/

Réversion des cellules cancéreuses : une avancée prometteuse pour le traitement du cancer

Les cellules sont considérées comme des machines d’état, où le contrôle de l’expression génique détermine leur comportement et leur activité. Avec une compréhension adéquate et des moyens pour modifier l’expression génique, il est théoriquement possible de transformer un état cellulaire, même potentiellement irréversible, à condition que l’ADN nucléaire n’ait pas subi de dommages empêchant l’expression protéique correcte. Des recherches récentes ont démontré que certains types de cellules cancéreuses peuvent être retransformées en cellules normales, soulevant la question de la sécurité et de l’utilité de cette approche dans la thérapie du cancer. Des chercheurs ont mis au point une technologie innovante capable de traiter le cancer du côlon en convertissant les cellules cancéreuses en un état ressemblant à celui des cellules coliques normales sans les détruire, ce qui permet d’éviter les effets secondaires. En se basant sur l’observation que, durant le processus d’oncogenèse, les cellules normales régressent le long de leur trajectoire de différenciation, l’équipe de recherche a élaboré un jumeau numérique du réseau génique associé à cette trajectoire. Grâce à une analyse par simulation, ils ont identifié des interrupteurs moléculaires maîtres qui induisent la différenciation des cellules normales. Trois gènes, HDAC2, FOXA2 et MYB, ont été identifiés comme des facteurs clés qui déclenchent la différenciation des cellules coliques normales. Lorsque ces gènes sont inhibés, les cellules cancéreuses retournent à un état normal-like, comme confirmé par des expériences moléculaires et cellulaires ainsi que des études sur des animaux. Cette recherche montre qu’il est possible d’obtenir une réversion des cellules cancéreuses de manière systématique grâce à l’analyse et à l’utilisation du jumeau numérique du réseau génique des cellules cancéreuses, plutôt que de se fier à des découvertes fortuites. Les résultats ouvrent des perspectives prometteuses pour le développement de thérapies contre le cancer réversibles, applicables à différents types de cancers.