Une étude récente a examiné les différences de potentiel de durée de vie maximale parmi diverses espèces de mammifères. Les chercheurs ont trouvé des associations entre l’expansion de la taille des familles de gènes, le potentiel de durée de vie maximale et la taille relative du cerveau. Ils ont également étudié les caractéristiques génomiques liées à l’évolution de la durée de vie. Le potentiel de durée de vie maximale est défini comme l’âge de décès du plus vieil individu jamais enregistré dans une espèce, tant à l’état sauvage qu’en captivité, où les risques de décès dus à la prédation ou à des ressources limitées ne sont pas présents. Les facteurs biologiques intrinsèques déterminent ce potentiel, qui varie considérablement parmi les mammifères, allant de moins d’un an pour certaines espèces de musaraignes à deux cents ans pour les baleines boréales. Les différences génétiques de ces espèces ont été étudiées pour examiner les processus biologiques sous-jacents qui conduisent à de telles différences de durée de vie. Des travaux antérieurs ont identifié des changements dans les gènes liés à la réparation de l’ADN, à la régulation du cycle cellulaire, au cancer et au vieillissement chez les baleines boréales, ainsi qu’une expansion des familles de gènes associées à la réparation de l’ADN et à la suppression des tumeurs chez les éléphants. Cette étude sur les différences génétiques et les processus moléculaires connexes pourrait être utile pour le développement d’interventions de longévité. Certaines études ont exploré comment le potentiel de durée de vie maximale est influencé par des différences d’expression génique, la taille des familles de gènes et des mesures génomiques similaires. Ces études ont souligné que l’évolution de la taille des familles de gènes joue un rôle essentiel dans le potentiel de durée de vie maximale. Les familles de gènes se forment lorsqu’un gène unique est dupliqué. Dans ce cas, la copie supplémentaire a plus de liberté pour évoluer, car la copie originale produit la protéine nécessaire à l’organisme. La seconde copie peut devenir un pseudogène, accumulant tant de mutations qu’elle cesse de fonctionner correctement, ou elle peut muter pour devenir une protéine similaire à l’originale mais avec une fonction légèrement différente, donnant ainsi à l’organisme un potentiel avantage évolutif. Ce processus peut se répéter plusieurs fois, créant une famille de gènes similaires mais quelque peu différents. Des études sur les baleines boréales et les rats-taupes nus suggèrent que certaines de ces duplications sont liées à une longévité accrue de ces animaux. Dans cette étude, les chercheurs ont élargi ces observations et comparé l’impact de la taille des familles de gènes sur le potentiel de durée de vie maximale dans plusieurs espèces de mammifères. Les chercheurs ont réalisé une analyse bioinformatique de 4 136 familles de gènes dans 46 espèces de mammifères entièrement séquencées. Ils ont trouvé une association entre le potentiel de durée de vie maximale et l’expansion de 236 familles de gènes. Ils ont ensuite testé des facteurs confondants potentiels, qui peuvent influencer les résultats, tels que la taille relative du cerveau, la masse corporelle, le temps de gestation et l’âge à la maturité sexuelle. Seule la taille relative du cerveau a été trouvée pour influencer l’association entre l’expansion des familles de gènes et le potentiel de durée de vie maximale. Ces résultats sont conformes à des recherches antérieures suggérant que l’évolution de cerveaux plus gros est liée au potentiel de durée de vie maximale. Les chercheurs ont également observé que les groupes de gènes liés au potentiel de durée de vie maximale et ceux liés à la taille du cerveau contenaient également plus probablement des gènes liés aux fonctions immunitaires. Ils discutent que le système immunitaire peut avoir un impact positif sur une durée de vie plus longue de plusieurs manières, par exemple en éliminant les cellules sénescentes, les agents infectieux et potentiellement les cellules cancéreuses. Cependant, ces résultats n’ont pas d’interprétation simple, car l’analyse de sensibilité des chercheurs a indiqué que la plupart des espèces incluses dans l’étude ont un effet négligeable sur les résultats. Des effets plus importants ont été observés pour quelques espèces, suggérant que bien qu’une espèce ne soit pas à l’origine des résultats, elles peuvent être influencées par des groupes d’animaux (taxons) qui ont des valeurs extrêmes. Les chercheurs ont émis l’hypothèse que l’expansion des familles de gènes associée à l’évolution du potentiel de durée de vie maximale pourrait être liée à la quantité de produit génétique disponible dans la cellule (dosage génétique) ou à la diversité des transcrits géniques. La diversité des transcrits est liée à un processus appelé épissage alternatif. Les gènes des mammifères sont construits à partir de séquences d’ADN codantes (exons) entrecoupées de séquences d’ADN non codantes (introns). Lorsque l’ADN est transcrit en ARN lors de la production de protéines, les introns sont éliminés et les exons sont reliés. Cependant, les exons ne sont pas toujours épissés dans le même ordre, et parfois, certains exons sont omis, créant des versions alternatives de protéines qui proviennent du même gène. En comparant les gènes associés au potentiel de durée de vie maximale chez l’homme avec d’autres gènes de référence, les chercheurs ont révélé des niveaux d’expression génique plus élevés et un plus grand nombre de transcrits uniques parmi les gènes associés au potentiel de durée de vie maximale. Cependant, les auteurs avertissent que ces résultats doivent également être interprétés avec prudence, car ils sont uniquement basés sur des données humaines et que de telles observations pourraient ne pas être précises pour d’autres espèces ; des études futures doivent approfondir la signification évolutive de cette observation. Les chercheurs ont rassemblé des données provenant d’études antérieures qui avaient identifié différents gènes associés au vieillissement. Ils les ont divisés en groupes de gènes liés à des processus associés au vieillissement, des gènes dont l’expression est dépendante de l’âge, des gènes manuellement curés associés au vieillissement ou à la longévité, des cibles d’interventions modifiant la longévité et des gènes associés à la durée de vie. La comparaison des gènes liés aux processus liés à l’âge avec les gènes associés au potentiel de durée de vie maximale a montré que ce dernier groupe est significativement enrichi en gènes liés à la réparation de l’ADN et à l’inflammation ; cependant, les gènes associés à l’autophagie étaient sous-représentés. Parmi les gènes dont l’expression est dépendante de l’âge, les chercheurs ont observé soit une sous-représentation parmi les gènes associés au potentiel de durée de vie maximale, soit n’ont pas trouvé de sous-représentation ou de sur-représentation, selon la base de données et si leur activité augmentait ou diminuait avec l’âge. Les gènes manuellement curés pour la sénescence cellulaire et la longévité, ainsi que les gènes qui répondent à des interventions modifiant la longévité telles que la restriction calorique et les médicaments prolongateurs de vie, étaient significativement sous-représentés parmi les gènes associés au potentiel de durée de vie maximale. Seuls les gènes ayant des variantes génétiques associées aux centenaires humains et les gènes avec une évolution protéique plus rapide dans des espèces ayant un potentiel de durée de vie maximale plus élevé étaient sur-représentés parmi les gènes associés au potentiel de durée de vie maximale. En général, il y avait un chevauchement limité entre les listes de gènes uniques de cette étude et celles d’études précédentes. Cependant, il existe un chevauchement concernant les fonctions et les processus dans lesquels ces gènes sont impliqués. Les chercheurs ont identifié ce chevauchement dans les fonctions du système immunitaire, les dommages et la réparation de l’ADN, l’apoptose, l’autophagie, la sénescence et les cibles de médicaments prolongateurs de vie. Ils concluent que « bien que différentes études puissent identifier des ensembles de gènes distincts, elles mettent souvent en lumière les mêmes voies biologiques, renforçant l’importance de ces processus dans la longévité ». Bien que cette étude ne permette pas d’établir une causalité mais seulement des associations, ses résultats aident à comprendre la base évolutive d’une durée de vie plus longue et à identifier les processus génétiques et moléculaires qui augmentent le potentiel de durée de vie maximale. Source : https://www.lifespan.io/news/why-some-mammals-live-much-longer-than-others/?utm_source=rss&utm_medium=rss&utm_campaign=why-some-mammals-live-much-longer-than-others
Étude sur le potentiel de durée de vie maximale chez les mammifères : Gènes, cerveau et longévité
