Les microglies sont des cellules immunitaires innées du système nerveux central, analogues aux macrophages dans le reste du corps. Elles jouent un rôle crucial dans l’entretien des tissus et la défense contre les pathogènes. Les microglies adoptent des comportements appelés polarisation, avec deux formes principales : les microglies M1, qui sont inflammatoires et chassent les pathogènes, et les microglies M2, qui sont anti-inflammatoires et participent à la maintenance des tissus. Un excès de microglies inflammatoires est associé à des réponses inadaptées du système immunitaire, contribuant ainsi au vieillissement cérébral. Des méthodes de destruction sélective des microglies, comme l’utilisation de pexidartinib (PLX3397), permettent de réduire la population de microglies. Après l’arrêt du traitement, une nouvelle population de microglies émerge, généralement avec moins de comportements inflammatoires inadaptés. Cela a conduit les chercheurs à tester le nettoyage des microglies comme base pour des thérapies dans des modèles animaux de diverses conditions neurodégénératives. Les résultats sont généralement positifs, bien que des résultats moins satisfaisants aient été observés dans des modèles murins de la maladie d’Alzheimer. Les microglies jouent un rôle clé dans le neurodéveloppement et la plasticité, ainsi que dans la pathogénie de nombreux troubles neurodéveloppementaux et neurodégénératifs. En ce qui concerne la maladie d’Alzheimer, des facteurs de risque génétiques sont souvent liés aux récepteurs immunitaires exprimés par les microglies, ce qui les positionne comme des cibles importantes pour les thérapies modifiant la maladie. Toutefois, la fonction des microglies dans un environnement neuroinflammatoire chronique est complexe. Par exemple, l’élimination des microglies via l’inhibition du récepteur CSF1R peut réduire la formation de plaques lorsqu’elle est administrée tôt, mais pas lors des stades avancés de la pathologie amyloïde. Certaines études suggèrent que la perte tardive de microglies pourrait améliorer les fonctions cognitives, tandis que d’autres montrent une augmentation des dégâts neuritiques associés aux plaques. Plutôt que d’éliminer les microglies, leur renouvellement par déplétion suivi de repopulation est une stratégie prometteuse. Les microglies adultes peuvent rapidement restaurer leur niche après l’élimination, ce qui est bénéfique dans les modèles de lésion et le vieillissement. Cependant, dans le contexte de la maladie d’Alzheimer, aucune amélioration des fonctions cognitives ou de la pathologie amyloïde n’a été observée. La recherche a donc cherché à comprendre les effets dynamiques de la déplétion suivie de la repopulation des microglies sur leur fonction et la charge de plaques amyloïdes à différents stades de la pathologie amyloïde. L’inhibition du CSF1R par PLX3397 a été administrée à des souris 5xFAD, et les dynamiques microglies-plaques ont été suivies par imagerie in vivo. Bien qu’une amélioration transitoire de la charge en plaques ait été notée, cette amélioration n’a pas perduré. Cependant, les microglies repopulées à des stades intermédiaires à avancés semblent conserver une sensibilité accrue aux signaux noradrénergiques, souvent considérés comme anti-inflammatoires. Source : https://www.fightaging.org/archives/2025/01/clearance-of-microglia-produces-only-a-transient-reduction-in-amyloid-in-a-mouse-model-of-alzheimers-disease/
Rôle des Microglies dans la Maladie d’Alzheimer et leur Renouvellement : Une Étude des Dynamiques Impliquées
