Étiquette : Cellules souches

L’Hématopoïèse Clonale et ses Implications sur le Vieillissement et la Santé

L’hématopoïèse clonale est une condition liée à de nombreux troubles liés à l’âge, qui survient lorsque des cellules souches hématopoïétiques (HSPC) acquièrent des mutations leur conférant un avantage compétitif dans leur reproduction. Ce phénomène, bien que rare chez les personnes de moins de 40 ans, devient de plus en plus fréquent avec l’âge, touchant près de 50 % des octogénaires. Il est associé à des risques accrus de cancers sanguins, de maladies cardiovasculaires et d’épuisement immunitaire. Une telle hématopoïèse clonale pourrait influencer le vieillissement immunitaire et l’inflammaging, et pourrait être l’un des facteurs limitant l’espérance de vie humaine à environ 120 ans. Une étude récente s’est penchée sur la mutation la plus courante liée à l’hématopoïèse clonale, identifiée dans le gène DNMT3A, qui joue un rôle dans la méthylation de l’ADN. Les chercheurs ont utilisé un modèle murin pour simuler l’environnement de la moelle osseuse âgée, découvrant que cette mutation augmentait l’efficacité mitochondriale des cellules, doublant leur production d’énergie. Cependant, cette surproduction d’énergie les rendait également vulnérables à des traitements comme MitoQ, un antioxydant qui, en accumulant des quantités excessives dans les mitochondries, entraînait la mort de la moitié des cellules mutées tout en améliorant la respiration des cellules saines. Parallèlement, le médicament metformine a également montré un potentiel pour réduire l’avantage compétitif des cellules mutantes en perturbant leur métabolisme. Ces découvertes fournissent des perspectives sur la manière dont les cellules souches sanguines changent avec l’âge et soulignent de nouvelles opportunités d’intervention pour prévenir des conditions liées à l’âge, non seulement dans le sang mais également dans d’autres tissus. Source : https://www.lifespan.io/news/researchers-fight-some-mutations-by-targeting-mitochondria/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-fight-some-mutations-by-targeting-mitochondria

Régénération et Rajeunissement : Les Secrets des Planaires Immortelles

Certain espèces animales inférieures, telles que les planaires, sont capables de régénération exceptionnelle, pouvant régénérer un corps entier après avoir été coupées en deux. Ces espèces illustrent la frontière entre croissance développementale et régénération, car elles continuent d’utiliser des processus de développement à l’âge adulte, contrairement à la plupart des animaux supérieurs. De plus, les cellules germinales adultes subissent un rajeunissement, éliminant les changements liés à l’âge dans l’expression génétique. Des recherches ont montré que les planaires adultes s’engagent dans un processus de rajeunissement tout en régénérant des parties du corps perdues. Les espèces à longue durée de vie, comme les planaires d’eau douce, offrent des opportunités uniques pour découvrir des mécanismes évolutifs de prolongation de la santé et de la vie. Les planaires sont souvent qualifiées d’immortelles en raison de leur longue durée de vie et de leurs capacités uniques de régénération des tissus. On a observé que les télomères se raccourcissent, que les yeux changent, et que la descendance viable diminue chez les planaires plus âgées. Cependant, il n’a pas été systématiquement examiné si les planaires subissent un vieillissement et présentent un déclin dépendant de l’âge dans leurs fonctions physiologiques, cellulaires et moléculaires, en partie à cause des difficultés à mesurer la durée de vie dans un animal à longue durée de vie et à définir l’âge chez des planaires asexuées qui se reproduisent de manière végétative. Des lignées consanguines de la lignée sexuelle de S. mediterranea ont été établies pour étudier les variations génétiques et la biologie des chromosomes. Cette ressource offre une occasion unique d’examiner le vieillissement dans ce modèle à longue durée de vie et de démêler le contrôle génétique des effets environnementaux. Dans cette recherche, nous définissons l’âge chronologique comme le temps écoulé depuis la fécondation, ce qui nous permet de surmonter les défis liés aux lignées qui reposent sur la reproduction végétative. Nous rapportons que la lignée sexuelle de S. mediterranea présente un déclin physiologique dans les 18 mois suivant la naissance, incluant une architecture tissulaire altérée, une fertilité et une motilité réduites, et une augmentation du stress oxydatif. Le profilage monocellulaire des têtes de planaires jeunes et plus âgées a révélé une perte de neurones et de muscles, une augmentation de la glie, et a montré des changements minimes dans les cellules souches pluripotentes, ainsi que des signatures moléculaires du vieillissement à travers les tissus. Fait remarquable, l’amputation suivie de la régénération des tissus perdus chez les planaires plus âgées a conduit à une inversion de ces changements liés à l’âge dans les tissus, tant proximalement que distalement à la blessure, à des niveaux physiologiques, cellulaires et moléculaires. Notre travail suggère des mécanismes de rajeunissement dans les tissus neufs et anciens, qui coïncident avec la régénération des planaires, ce qui pourrait fournir des idées précieuses pour des interventions anti-vieillissement. Source : https://www.fightaging.org/archives/2025/04/planarians-undergo-rejuvenation-when-regrowing-lost-tissues/

Des greffes neuronales non immunogènes pour traiter la maladie de Parkinson

Dans une avancée significative pour les traitements des maladies neurodégénératives, des chercheurs australiens ont développé des greffes neuronales non immunogènes en utilisant des cellules souches induites pluripotentes (iPSCs) reprogrammées. Ces cellules, capables de se différencier en neurones, ont été génétiquement modifiées pour surexprimer huit gènes qui permettent à certaines cellules, comme celles du placenta ou les cellules cancéreuses, d’échapper à la détection du système immunitaire. Cette technique vise à surmonter le problème de rejet des greffes, qui est couramment associé à des cellules provenant de donneurs génétiquement différents. Traditionnellement, les greffes allogéniques déclenchent une réponse immunitaire, et bien que des immunosuppresseurs puissent atténuer cette réaction, ils entraînent des effets secondaires indésirables. En s’inspirant des mécanismes d’invisibilité développés par certaines cellules au cours de l’évolution, les chercheurs ont conçu des cellules de greffe qui peuvent être utilisées comme donneurs universels. Dans le cadre de leur étude, ils ont utilisé des modèles de rongeurs atteints de la maladie de Parkinson, caractérisée par la mort progressive des neurones producteurs de dopamine dans une région du cerveau appelée substantia nigra. En injectant ces cellules modifiées dans des modèles murins, les chercheurs ont observé que les greffes « camouflées » entraînaient une activation immunitaire minimale, favorisant ainsi la croissance des greffes et la production de neurones dopaminergiques. En outre, pour contrer le risque potentiel de transformation cancéreuse des cellules greffées, un « interrupteur de sécurité » a été intégré, permettant d’éliminer les cellules prolifératives indésirables. Les résultats démontrent que ces greffes neuronales cloquées peuvent non seulement échapper à la surveillance immunitaire, mais aussi améliorer la fonction motrice chez les rats immunodéficients. En conclusion, cette recherche ouvre de nouvelles perspectives pour les traitements de la maladie de Parkinson et d’autres troubles neurodégénératifs, en offrant une alternative sécurisée pour les patients sans les complications associées aux greffes traditionnelles. Source : https://www.lifespan.io/news/neurons-hidden-to-immune-cells-improve-parkinsons-in-rats/?utm_source=rss&utm_medium=rss&utm_campaign=neurons-hidden-to-immune-cells-improve-parkinsons-in-rats

Les avancées de la reprogrammation cellulaire pour des thérapies de rajeunissement

Le reprogrammation cellulaire complète se produit dans les premiers stades de l’embryon, entraînée par l’expression des facteurs de Yamanaka, souvent abrégés en OSKM. Ce processus transforme les cellules germinales adultes en cellules souches embryonnaires, réinitialisant les motifs épigénétiques et restaurant la fonction mitochondriale. Les chercheurs ont réussi à reproduire ce processus pour produire des cellules souches pluripotentes induites à partir de n’importe quel échantillon de cellule adulte. La reprogrammation partielle vise à exposer les cellules à l’expression des facteurs de Yamanaka suffisamment longtemps pour produire une réinitialisation des motifs épigénétiques et une amélioration de la fonction mitochondriale, mais pas trop longtemps pour ne pas changer l’état cellulaire d’autres manières. Cela est considéré comme une voie prometteuse pour la production de thérapies de rajeunissement, bien qu’il existe de nombreux défis à surmonter pour atteindre cet objectif clinique. Un des principaux défis est que différents types de cellules dans un tissu donné peuvent avoir des exigences très différentes en termes de durée d’exposition ou de niveau d’exposition pour produire une reprogrammation bénéfique avec un risque minimal de générer des cellules pluripotentes potentiellement cancéreuses.

La reprogrammation partielle et complète peut partiellement inverser les changements transcriptomiques et épigénétiques liés à l’âge. Cependant, il n’est pas clair dans quelle mesure les horloges de vieillissement mesurent l’âge biologique ou la santé cellulaire/organismique. Quoi qu’il en soit, d’autres biomarqueurs de rajeunissement peuvent être mesurés dans les expériences de reprogrammation partielle. Par exemple, si des cycles d’expression des facteurs de reprogrammation de courte durée sont suivis d’une phase de récupération, des effets de rajeunissement phénotypique peuvent être observés. Par défaut, les marqueurs de rajeunissement doivent être évalués sur une base tissu par tissu.

Un exemple intrigant est le cerveau, où la cyclicité des OSKM sans phase de récupération restaure la proportion de neuroblastes et améliore la production de neurones in vivo. De plus, des études in vivo réalisées sur des neurones de souris et des cellules du gyrus denté de rats suggèrent que les OSKM peuvent inverser le déclin neurologique associé à l’âge et améliorer la mémoire. D’autres études in vivo sur des souris ont montré que la reprogrammation améliore la régénération du foie, favorise la réparation des nerfs optiques écrasés et atténue la perte de l’acuité visuelle liée à l’âge, permet la régénération des fibres musculaires, améliore la cicatrisation des plaies cutanées chez des souris âgées et favorise le rajeunissement cardiaque après un infarctus du myocarde.

Le mécanisme de rajeunissement semble dépendre en partie de la façon dont les cellules sont reprogrammées. En effet, il a été constaté que le mécanisme de reprogrammation des cellules somatiques par des régimes de petites molécules est distinct de la reprogrammation médiée par des facteurs de transcription. En construisant des paysages de chromatine, les chercheurs ont identifié des modifications hiérarchiques des histones et une réaffectation séquentielle des enhancers qui sous-tendent les programmes de régénération suite à une reprogrammation chimique ; ce programme de régénération semble inverser la perte de potentiel régénératif dans le vieillissement des organismes mais ne semble pas être activé dans la reprogrammation OSKM.

La reprogrammation de cellules spécifiques in vivo affecte les tissus environnants. Par exemple, il a été constaté que l’activation in vivo des OSKM dans les myofibres entraînait la prolifération des cellules satellites dans le niche des cellules souches des myofibres, sans induire de dédifférenciation des myofibres ; ces changements sont probablement modulés en partie par des modifications de la matrice extracellulaire (ECM). En fait, l’ECM et ses constituants sont fréquemment affectés par la reprogrammation partielle. À mesure que les souris vieillissent, les niveaux de transcrits associés au collagène diminuent dans le pancréas, mais augmentent à nouveau, du moins partiellement, après un traitement par OSKM avec une période de récupération de deux semaines. De plus, dans des expériences sur des cellules mésenchymateuses de fibroblastes et d’adipocytes sans période de récupération, certains processus associés à l’ECM sont régulés à la hausse par la reprogrammation partielle, y compris les voies liées au collagène. Source : https://www.fightaging.org/archives/2025/04/reviewing-what-is-known-of-the-effects-of-partial-reprogramming/

I Peace : Une nouvelle ère pour la banque de cellules souches ‘renversées’ aux États-Unis

La société japonaise I Peace a récemment annoncé lors de l’événement Vitalist Bay en Californie qu’elle propose des services de production et de banque de cellules souches pluripotentes induites (iPSCs) aux États-Unis. Ces cellules, créées grâce aux travaux du lauréat du prix Nobel Shinya Yamanaka, sont produites en reprogrammant des cellules somatiques adultes, comme celles de la peau ou du sang, en un état pluripotent. Les iPSCs ont la capacité de se différencier en pratiquement n’importe quel type de cellule humaine, ce qui les rend prometteuses pour la médecine régénérative. Contrairement aux cellules souches adultes conventionnelles, les iPSCs reflètent un état juvénile, ce qui leur confère un potentiel important pour le développement de thérapies visant à contrer les effets du vieillissement. Koji Tanabe, le fondateur de I Peace et ancien membre de l’équipe qui a créé la première lignée de cellules iPS humaines, a exprimé l’objectif de l’entreprise de rendre la technologie des cellules iPS accessible à tous, permettant ainsi aux individus de prendre en main leur longévité et d’optimiser leur santé. I Peace propose un service appelé ‘My Peace’, qui permet aux individus de créer et de stocker leurs propres cellules souches juvéniles tout en étant en bonne santé. De plus, l’entreprise a développé des techniques propriétaires pour réduire les coûts et améliorer l’évolutivité de la production d’iPSCs, ce qui auparavant coûtait des millions de dollars et nécessitait beaucoup de temps. En industrialisant le processus, I Peace prétend être capable de générer des centaines de lignées d’iPSCs par an pour des milliers de dollars par personne. Bien que l’entreprise ait indiqué qu’elle fournit déjà des thérapies de longévité et de rajeunissement basées sur ces cellules, les détails concernant ces thérapies restent flous. En plus de ses activités pour le grand public, I Peace collabore également avec des entreprises pharmaceutiques et biotechnologiques en fournissant des iPSCs de qualité clinique conformes aux normes réglementaires établies par la FDA et la PMDA du Japon. Source : https://longevity.technology/news/new-age-reversed-stem-cell-banking-service-launches-in-the-us/

Immorta Bio : Leveraging Autologous Cell Therapy for Anti-Aging Solutions

Immorta Bio développe des solutions de thérapie cellulaire autologue et d’immunothérapie pour combattre le vieillissement et améliorer la régénération cellulaire. Le vieillissement est un facteur de risque majeur pour de nombreuses maladies, entraînant la détérioration des organes et une augmentation du risque d’initiation de maladies. Les technologies d’Immorta Bio visent à exploiter la puissance des cellules souches jeunes et des cellules immunitaires améliorées du corps pour faire face aux cancers et aux maladies liées à l’âge. Le Dr Thomas Ichim, président et directeur scientifique d’Immorta Bio, explique que la thérapie cellulaire existe depuis longtemps, mais qu’il reste des défis à relever, notamment le risque de maladie du greffon contre l’hôte lors des transplantations de cellules souches sanguines. Pour surmonter ces obstacles, Immorta se concentre sur l’utilisation de cellules autologues, c’est-à-dire provenant du patient lui-même, afin de minimiser les risques. Ichim souligne que les cellules autologues peuvent offrir des réponses thérapeutiques plus efficaces et que leur approche peut générer des données prometteuses. Ils utilisent la technologie des cellules souches pluripotentes induites (iPSC) pour produire des cellules souches immortelles à partir du sang du patient, créant ainsi une réserve de cellules pouvant être utilisées pour régénérer différents tissus. Immorta vise également à traiter des indications telles que l’insuffisance hépatique avec ses cellules dérivées autologues. La plateforme SenoVax d’Immorta se concentre sur l’immunothérapie sénolytique, qui utilise les cellules dendritiques du patient pour créer des cellules immunitaires ciblées. Cette thérapie a montré des résultats positifs dans des modèles animaux de divers cancers et pourrait également être appliquée à la régénération d’organes. Ichim explique que la capacité du système immunitaire à éliminer les cellules sénescentes diminue avec l’âge, et que les tumeurs peuvent accélérer la sénescence. En immunisant contre les cellules sénescentes, Immorta Bio espère développer une thérapie anti-âge, sous réserve de l’approbation de la FDA. Ils ont également observé une synergie entre leur immunothérapie sénolytique et l’administration de cellules régénératrices dans le traitement de l’insuffisance hépatique. Ichim mentionne des recherches antérieures qui indiquent que le corps a une capacité innée de régénération, qui est inhibée par les cellules sénescentes. En éliminant ces cellules, Immorta vise à favoriser la régénération cellulaire. Cependant, le coût de la thérapie cellulaire reste un défi majeur, et Immorta explore des solutions pour réduire ces coûts tout en augmentant l’efficacité. À long terme, Immorta Bio prévoit de devenir un collaborateur et un licencié, se concentrant sur l’avancement de ses idées vers des applications cliniques tout en établissant des partenariats stratégiques. Leur objectif est de rendre leur technologie plus accessible et de créer des cellules régénératrices personnalisées pouvant être utilisées dans divers contextes. Source : https://longevity.technology/news/harnessing-the-power-of-personalized-cell-therapy/

Avancées dans le traitement des blessures de la moelle épinière : une collaboration innovante entre Cellino et Matricelf

Une nouvelle collaboration entre Cellino et Matricelf vise à créer des thérapies régénératives personnalisées pour le traitement des blessures de la moelle épinière, en générant des tissus neuraux spécifiques aux patients avec un potentiel de restauration de la fonction perdue. En combinant des technologies avancées de cellules souches et d’ingénierie tissulaire en 3D, cette initiative représente un pas important vers la prise en charge de la dégénérescence liée à l’âge et des conditions chroniques. La plateforme de biomanufacturation alimentée par l’IA de Cellino produit des cellules souches pluripotentes induites (iPSC) de haute qualité à grande échelle, rendant la médecine régénérative personnalisée plus accessible. Cette plateforme garantit la cohérence et la stérilité, permettant la production à la demande d’iPSC autologues, dérivées des tissus du patient, sans risque de contamination. Dans ce partenariat, Cellino a fabriqué et livré des lignées d’iPSC provenant de quatre donneurs à Matricelf, qui les a différenciées en tissus neuraux fonctionnels grâce à son processus d’ingénierie tissulaire 3D incorporant un hydrogel dérivé de la matrice extracellulaire (ECM) du patient. Cette approche ‘double autologue’ élimine le besoin d’immunosuppression, car les tissus sont entièrement compatibles avec le système immunitaire du patient. Selon Matricelf, les tissus neuraux résultants ont montré une activité électrique synchronisée, un indicateur clé des réseaux neuronaux fonctionnels. Des tests génétiques et protéiques ont confirmé que ces tissus ingénierisés possèdent les caractéristiques neurales nécessaires pour des applications thérapeutiques. La capacité de produire des iPSC autologues et de les transformer en tissus neuraux fonctionnels est significative, et les implications s’étendent aux maladies neurodégénératives et au déclin lié à l’âge, ouvrant la voie à des traitements potentiels pour des conditions comme la maladie d’Alzheimer et la dégénérescence maculaire. Le PDG de Cellino, Nabiha Saklayen, a déclaré que remplacer les tissus endommagés par des tissus neuraux biologiquement plus jeunes représentait une avancée pour la restauration fonctionnelle des maladies neurodégénératives et du déclin lié à l’âge. Le vieillissement et les blessures proviennent tous deux de la capacité décroissante du corps à s’auto-réparer, et cette percée permet des iPSC dérivées de patients pour restaurer des fonctions autrefois considérées comme irréversibles. Pour les patients blessés à la moelle épinière, cela pourrait signifier un jour la possibilité de marcher à nouveau. De manière plus générale, cela pose les bases du remplacement cellulaire autogène, une étape révolutionnaire vers des thérapies régénératives ciblant le vieillissement et les maladies chroniques au niveau cellulaire. Matricelf prévoit de déposer une demande d’Investigational New Drug (IND) l’année prochaine pour initier des essais cliniques de la thérapie de la moelle épinière. Le succès de ces essais pourrait valider l’approche pour un usage plus large dans le traitement des maladies dégénératives et fournir un modèle potentiel pour de futures thérapies régénératives ciblant des conditions neurologiques complexes et liées à l’âge. Source : https://longevity.technology/news/cellinos-regenerative-medicine-tie-up-with-matricelf-is-a-step-forward-for-longevity/

Immorta Bio : Vers un traitement du vieillissement accéléré induit par la chimiothérapie

Immorta Bio, une entreprise de biotechnologie spécialisée dans la longévité, a récemment annoncé des résultats préliminaires prometteurs démontrant le potentiel de sa technologie d’exosomes personnalisés pour contrer le vieillissement accéléré induit par la chimiothérapie. L’entreprise a déposé une demande de brevet pour cette approche innovante qui utilise des exosomes dérivés des patients afin de régénérer les tissus endommagés et d’atténuer les effets du vieillissement cellulaire causés par les traitements de chimiothérapie. Le PDG d’Immorta, le Dr Boris Reznik, a expliqué que l’accent mis sur le vieillissement associé à la chimiothérapie est motivé par le besoin d’identifier rapidement le potentiel thérapeutique de leurs produits. En se concentrant sur ce type de vieillissement, Immorta espère entrer rapidement dans les essais cliniques et obtenir des données sur l’efficacité anti-vieillissement de son produit. Des résultats positifs dans ce domaine pourraient ouvrir la voie à des traitements pour d’autres causes de vieillissement. La méthode d’Immorta consiste à utiliser les propres cellules du patient pour créer des exosomes régénératifs, appelés ‘cellules régénératives personnelles immortalisées’. Contrairement aux thérapies par exosomes qui dépendent de donneurs jeunes, cette approche extrait le sang du patient et convertit les cellules en ‘cellules régénératives immortalisées’ qui sont ensuite cultivées en laboratoire. Ces cellules sont différenciées en cellules souches mésenchymateuses avec un âge biologique défini, permettant de récolter des exosomes qui agissent comme des nanoparticules régénératives personnalisées. Le Dr Thomas Ichim, directeur scientifique d’Immorta, a souligné le potentiel des exosomes en thérapie, notant qu’ils transfèrent de nombreuses activités régénératives des cellules souches sans les limitations liées à l’administration cellulaire. En plus de son objectif de contrer le vieillissement induit par la chimiothérapie, Immorta a précédemment indiqué que sa technologie pourrait également aider à traiter le cancer en ciblant les cellules sénescentes entourant les tumeurs, un processus qui contribue à la croissance tumorale et à la résistance aux thérapies. La technologie d’exosomes récemment annoncée élargit cette approche en offrant un moyen de traiter les effets du vieillissement liés au traitement du cancer tout en présentant des perspectives prometteuses pour d’autres conditions liées à l’âge. Avec des essais cliniques prévus pour 2025, le pipeline d’Immorta montre deux programmes thérapeutiques principaux qui avancent vers la clinique : l’un cible l’insuffisance hépatique en utilisant des cellules réparatrices PMSC-II et des cellules progénitrices hépatiques PPCH-01, qui ont démontré une efficacité préclinique, et l’autre se concentre sur le cancer du poumon, où la plateforme SenoVax de la société a montré un potentiel dans des modèles précliniques en inactivant immunologiquement les cellules sénescentes favorisant les tumeurs. Source : https://longevity.technology/news/immorta-targets-chemo-associated-accelerated-aging-with-exosomes/

La protéine tau et son rôle dans la maladie d’Alzheimer : isoformes et implications thérapeutiques

La protéine tau joue un rôle crucial dans les maladies neurodégénératives, notamment la maladie d’Alzheimer, en se phosphorylant et en formant des enchevêtrements neurofibrillaires. Ce processus nuit aux neurones et, associé à une inflammation, constitue la pathologie dominante dans les stades avancés de la maladie d’Alzheimer et d’autres tauopathies. Des chercheurs ont réussi à modifier des neurones pour exprimer chacune des six isoformes de tau, montrant que seule une de ces isoformes est responsable de la pathologie. Les enchevêtrements neurofibrillaires, causés par la tau hyperphosphorylée, sont un signe distinctif de la maladie d’Alzheimer et d’autres maladies neurodégénératives. Dans des conditions pathologiques, comme en présence d’oligomères amyloïdes toxiques, la tau subit une hyperphosphorylation qui perturbe la dynamique des microtubules axonaux, entraînant des déficits de transport axonal, une perte de synapses et finalement la mort neuronale ainsi qu’un déclin cognitif. Dans le cerveau humain adulte, six isoformes de tau résultent du splicing alternatif des exons du gène MAPT. Les isoformes tau 1N (1N3R/1N4R) représentent 50 % des tau exprimés tandis que les isoformes 2N sont les moins exprimées (5 % à 10 %). Chez les rongeurs, qui expriment presque exclusivement des isoformes tau 4R, il est difficile de comprendre les mécanismes de la maladie car ces animaux ne développent pas naturellement la démence. Des modèles de tauopathie reposent sur l’expression excessive d’isoformes tau uniques pour étudier ces mécanismes. Ici, des cellules souches pluripotentes induites (hiPSCs) ont été modifiées pour développer des neurones glutamatergiques. Les neurones KO tau montrent des impairments dans la croissance des neurites et la formation du segment initial de l’axone, qui peuvent être restaurés par la réexpression d’isoformes tau individuelles. Les neurones KO tau sont protégés contre la dysfonction neuronale induite par l’AβO et les changements transcriptomiques, le 1N4R étant l’isoforme qui restaure entièrement la vulnérabilité des neurones KO tau. Ce résultat suggère que le 1N4R tau est moins lié aux microtubules et pourrait être une cible thérapeutique potentielle pour la maladie d’Alzheimer. Source : https://www.fightaging.org/archives/2025/03/one-of-the-six-isoforms-of-tau-protein-is-responsible-for-the-harms-done-to-neurons/

Traitement innovant de la dégénérescence maculaire humide : transplantation de cellules souches

La forme humide de la dégénérescence maculaire liée à l’âge (DMLA) se caractérise par des dommages et des dysfonctionnements entraînant une croissance maladaptive de vaisseaux sanguins fuyants dans la rétine, ce qui détruit ses cellules, sa structure et sa fonction. Des chercheurs ont rapporté les résultats d’un essai clinique précoce d’une approche en deux volets pour traiter ce problème, combinant une intervention chirurgicale pour retirer les vaisseaux sanguins anormaux et la transplantation de cellules rétiniennes dérivées de cellules souches afin de remplacer le tissu endommagé. Bien que l’efficacité de cette méthode doive encore être déterminée de manière rigoureuse, les résultats initiaux sont encourageants, du moins pour les patients chez qui la chirurgie a réussi à éliminer les vaisseaux sanguins indésirables. Dans les premiers stades de la DMLA humide, il est possible de traiter les patients avec des médicaments pour réduire la formation de nouveaux vaisseaux sanguins, mais ce traitement est inefficace lorsque la formation de vaisseaux sanguins est déjà avancée. Une nouvelle option de traitement pour ces patients pourrait consister en une intervention chirurgicale pour retirer les vaisseaux sanguins anormaux suivie de la transplantation de cellules rétiniennes dérivées de cellules souches. Dans leur étude clinique, impliquant 10 patients atteints de DMLA humide, les chercheurs ont d’abord développé une méthode pour retirer en toute sécurité les vaisseaux sanguins nouvellement formés, suivie de la transplantation de cellules rétiniennes dérivées de cellules souches afin de remplacer les cellules rétiniennes endommagées ou perdues. La structure rétinienne s’est améliorée chez les patients où les patchs de vaisseaux sanguins ont été complètement retirés lors de la chirurgie, ce qui suggère que les cellules transplantées ont survécu et ont réparé la rétine endommagée. De plus, l’acuité visuelle est restée stable ou s’est améliorée chez ces patients pendant le suivi de 12 mois, avec des effets secondaires limités. En revanche, les patients chez qui les patchs de vaisseaux sanguins n’ont pu être que partiellement retirés ont souffert de saignements persistants et d’inflammation dans l’œil, et la régénération de la rétine a été incomplète, sans amélioration de la vision. Les chercheurs ont conclu que l’élimination complète et sécurisée des patchs de vaisseaux sanguins prévient l’inflammation et crée un environnement favorable à la survie et à l’intégration des transplantations. Des études de suivi avec de plus grands groupes de patients sont nécessaires pour confirmer l’efficacité clinique et le profil de sécurité favorable de ce type de traitement. Source : https://www.fightaging.org/archives/2025/03/cell-therapy-plus-surgery-as-a-treatment-for-wet-macular-degeneration/