Étiquette : C. elegans

Découverte d’une voie régulatrice de l’agrégation des protéines dans les maladies neurodégénératives liées à l’âge

Les scientifiques ont récemment découvert une voie qui régule l’agrégation des protéines, un phénomène lié à plusieurs maladies neurodégénératives liées à l’âge. La plupart des maladies neurodégénératives, comme la sclérose latérale amyotrophique (SLA), la maladie de Huntington et la maladie d’Alzheimer, partagent des similitudes, notamment l’agrégation anormale des protéines, en dépit de la diversité des protéines impliquées. Cette agrégation est un des signes caractéristiques du vieillissement, souvent associé à une perte de la protéostase. Des recherches menées par l’Université de Cologne, publiées dans *Nature Aging*, ont révélé des mécanismes communs qui pourraient expliquer ces maladies. En utilisant des modèles de vers nématodes (*C. elegans*), les chercheurs ont identifié une voie de signalisation impliquant les protéines EPS-8 et RAC. Il a été observé qu’avec l’âge, l’accumulation d’EPS-8 active la signalisation de RAC, ce qui réduit la durée de vie des vers. L’étude a montré que la réduction de l’expression des gènes *eps-8* et *rac* entraînait une diminution significative de l’agrégation des protéines associées à des maladies, sans réduire la quantité totale de protéines, indiquant que cette action prévenait spécifiquement le phénomène de regroupement. De plus, la santé neuronale des vers a été préservée, ce qui a été démontré par des tests comportementaux. Les chercheurs ont également mis en lien l’accumulation d’EPS-8 avec une enzyme déubiquitinante, l’USP-4, dont les niveaux augmentent avec l’âge et contribuent à la dégradation des protéines. En réduisant *usp-4* chez les vers âgés, ils ont observé une diminution de l’agrégation des protéines et une augmentation de l’espérance de vie. Pour valider ces résultats chez l’humain, des expériences similaires ont été effectuées sur des neurones moteurs dérivés de cellules souches pluripotentes induites d’un patient atteint de SLA, montrant que la réduction de *EPS-8* ou *USP-4* diminuait l’agrégation des protéines mutantes et réduisait les formes de mort cellulaire. Ce travail ouvre de nouvelles perspectives sur les mécanismes moléculaires liant le vieillissement à des maladies comme la SLA et la maladie de Huntington, contribuant ainsi à l’éclaircissement des facteurs de risque liés à l’âge dans ces pathologies. Source : https://www.lifespan.io/news/a-mechanism-behind-protein-aggregation-discovered/?utm_source=rss&utm_medium=rss&utm_campaign=a-mechanism-behind-protein-aggregation-discovered

Rôle des gènes Sestrins dans la longévité et la restriction calorique : perspectives et implications

La recherche sur la biologie cellulaire implique souvent la désactivation de gènes afin d’observer leur rôle dans divers processus. Cette méthode peut s’avérer complexe, car les cellules disposent de plusieurs mécanismes pour atteindre un même but, ce qui rend difficile l’analyse des conséquences de la suppression d’un gène. Néanmoins, lorsque l’on identifie un gène essentiel, cela contribue à la compréhension des mécanismes biochimiques sous-jacents. L’article en accès libre de ce jour illustre cette recherche appliquée à la restriction calorique, qui est un avancement progressif dans la compréhension des bénéfices d’une diminution de l’apport calorique. La restriction calorique active des processus de maintenance cellulaire favorisant la résilience, la santé et la longévité. Cette réponse au jeûne a évolué très tôt dans l’histoire de la vie, se manifestant de manière similaire dans des organismes variés allant de la levure aux humains. Dans toutes ces espèces, la restriction calorique entraîne des changements profonds dans la biochimie cellulaire, rendant difficile l’identification des mécanismes de contrôle. Au fil des ans, des chercheurs ont établi que l’autophagie est indispensable pour que la restriction calorique prolonge la vie, tout en identifiant des gènes régulateurs importants comme mTOR. Cependant, il reste beaucoup à découvrir. Il semble plausible que cette importante recherche et le développement de médicaments mimétiques de la restriction calorique ne soient qu’une note de bas de page dans l’extension future de la durée de vie humaine en bonne santé. La restriction calorique n’a pas le même effet sur la longévité chez les espèces à longue espérance de vie que chez celles à courte espérance. Les souris soumises à une restriction calorique peuvent vivre jusqu’à 40 % plus longtemps, tandis que les humains ne gagnent probablement que quelques années. Les raisons de cette différence demeurent une question ouverte, mais il se pourrait que les espèces à longue vie possèdent déjà la plupart des améliorations métaboliques induites par la restriction calorique. L’article met également en lumière le rôle des Sestrins, des protéines réactives au stress qui régulent l’homéostasie cellulaire. Les génomes des vertébrés possèdent trois gènes Sestrin, tandis que les invertébrés n’en ont qu’un. De nombreux stress tels que l’hypoxie, le stress oxydatif et la privation de nutriments induisent l’expression des Sestrins. Cette expression, orchestrée par divers facteurs de transcription, est cruciale pour la régulation de la viabilité cellulaire face aux stress. Des recherches antérieures ont établi que les Sestrins jouent un rôle majeur dans l’inhibition de mTORC1, un capteur environnemental qui intègre des signaux de nutriments et de stress pour réguler les décisions cellulaires. L’application d’inhibiteurs spécifiques de mTORC1, comme le rapamycine, a montré un effet positif sur la longévité de plusieurs organismes. Cette étude vise à élucider l’influence du gène sesn-1 sur la modulation de la durée de vie durant la restriction calorique chez le nématode modèle C. elegans. Les résultats révèlent que le sesn-1 est essentiel pour l’extension de la durée de vie sous restriction calorique, principalement via la répression de mTORC1 et l’activation de l’autophagie. De plus, le sesn-1 joue un rôle essentiel dans l’amélioration de la résilience au stress chez les nématodes, notamment en ce qui concerne la détection des nutriments. Cette recherche souligne les implications profondes des Sestrins dans le vieillissement et la résistance au stress, ouvrant des pistes thérapeutiques pour la prévention et le traitement des troubles associés à l’âge. Source : https://www.fightaging.org/archives/2025/08/sestrin-1-is-required-for-calorie-restriction-to-extend-life-in-nematode-worms/

Réponse hypoxique et longévité : Mécanismes de régulation du vieillissement chez les cellules

Les cellules réagissent à une large gamme de stress de manière assez similaire. Que ce soit le froid, la chaleur, le manque de nutriments, le manque d’oxygène, la présence de toxines ou l’irradiation, ces facteurs peuvent avoir différents capteurs et réponses initiales, mais ces réponses convergent vers une augmentation des processus de maintenance et de réparation, tels que l’autophagie. Lorsque le stress et les dommages qui en résultent sont légers, cette augmentation de la maintenance et de la réparation produit un bénéfice net. Des stress légers répétés ou constants peuvent ainsi ralentir modestement le vieillissement en rendant les cellules plus résilientes aux formes de dommages et de dysfonctionnements qui apparaissent plus tard dans la vie. Une réponse coordonnée au stress est cruciale pour promouvoir la santé à court et à long terme d’un organisme. La perception du stress, souvent à travers le système nerveux, peut entraîner des changements physiologiques fondamentaux pour maintenir l’homéostasie. L’activation de la réponse à l’hypoxie, c’est-à-dire le manque d’oxygène, prolonge la durée de vie et la santé chez le ver nématode C. elegans. Cependant, malgré certains impacts positifs, les effets négatifs de la réponse hypoxique dans des tissus spécifiques empêchent la traduction de ces bénéfices chez les mammifères. Il est donc impératif d’identifier quels composants de cette réponse favorisent la longévité. Dans cette étude, les chercheurs interrogent la voie de signalisation de la réponse hypoxique non autonome des cellules. Ils constatent que la signalisation médiée par HIF-1 dans les neurones sérotoninergiques ADF est à la fois nécessaire et suffisante pour l’extension de la durée de vie. La signalisation à travers le récepteur de la sérotonine SER-7 dans les interneurones GABAergiques RIS est nécessaire dans ce processus. Les résultats soulignent également l’implication de molécules de signalisation neuronale supplémentaires, y compris les neurotransmetteurs tyramine et GABA, ainsi que le neuropeptide NLP-17, dans la médiation des effets de longévité. Enfin, l’étude démontre que les neurones sensibles à l’oxygène et au dioxyde de carbone agissent en aval de HIF-1 dans ce circuit. Ces insights développent un circuit expliquant comment la réponse hypoxique module de manière non autonome l’âge et suggèrent des cibles précieuses pour moduler le vieillissement chez les mammifères. Source : https://www.fightaging.org/archives/2025/07/further-exploring-how-the-hypoxic-response-slows-aging/

Nouvelles Perspectives sur le Vieillissement et la Régénération : Vers une Compréhension Dynamique

L’étude du vieillissement est un domaine complexe qui implique non seulement la théorie mais aussi l’application de technologies visant à réparer les dommages spécifiques dans les tissus vieillissants. Bien que des avancées significatives aient été réalisées dans la manipulation de la durée de vie d’organismes modèles comme C. elegans et les souris, les mécanismes fondamentaux du vieillissement humain restent encore largement débattus. L’absence d’une plateforme computationnelle complète pour prédire le vieillissement dans des systèmes multicellulaires complique encore davantage la recherche. L’hypothèse avancée est que le vieillissement peut survenir même en l’absence de dommages cellulaires ou génétiques accumulés, en raison d’un système homéodynamique sans but anatomique, qui commence alors à se dégrader. Cette dégradation est favorisée par l’évolution qui privilégie le développement à la morphostase, laissant peu de place au renforcement des objectifs anatomiques après le développement. À l’aide d’un modèle in silico de morphogenèse homéostatique, plusieurs découvertes clés sont mises en avant : (1) le vieillissement émerge naturellement après le développement en raison de l’absence d’un objectif régénératif évolué ; (2) des facteurs tels que la mal-différenciation cellulaire et les échecs de communication accélèrent le vieillissement, mais ne sont pas ses causes principales ; (3) le vieillissement est lié à une augmentation du stockage d’information active et de l’entropie de transfert ; (4) malgré la perte d’organes, une information spatiale subsiste dans les tissus cybernétiques, offrant une mémoire des structures perdues qui peut être réactivée pour la restauration des organes ; et (5) les stratégies de régénération optimisées montrent que la restauration est plus efficace lorsque l’information régénérative comprend des modèles différentiels des cellules affectées et des tissus voisins. Ces résultats offrent une nouvelle perspective sur la dynamique du vieillissement, avec des implications significatives pour la recherche sur la longévité et la médecine régénérative. Source : https://www.fightaging.org/archives/2025/07/theorizing-on-aging-as-lack-of-prioritization-on-maintenance/

Magnitude Biosciences : Une avancée dans la découverte de médicaments pour la longévité grâce à la plateforme WormGazer

Magnitude Biosciences, une organisation de recherche sous contrat basée au Royaume-Uni, a obtenu plus de 700 000 £ en financement combiné pour faire avancer sa plateforme de découverte de médicaments à haut débit, nommée WormGazer. Cette plateforme utilise le modèle de nématode transparent, C elegans, pour réaliser des tests in vivo, permettant une analyse automatisée et non invasive des effets des composés sur le vieillissement, la neurodégénérescence, la santé et la toxicité, tout en maintenant les organismes dans un environnement naturel et libre de mouvement. Le financement soutiendra l’expansion d’un système de biophotonique développé par des professeurs de l’Université de Durham, qui permet une évaluation plus précise et efficace des composés ciblant le vieillissement. En intégrant des systèmes robotiques, des systèmes de culture liquide et un apprentissage automatique avancé, WormGazer pourra évaluer des milliers de composés chaque semaine, réduisant ainsi les délais et coûts des études précliniques. Magnitude vise à aider les entreprises pharmaceutiques, de nutrition et de suppléments de santé à identifier plus rapidement des composés, tout en diminuant leur dépendance à des modèles de test mammifères. Le PDG de Magnitude, Dr Fozia Saleem, a déclaré que ce financement représente un catalyseur pour un changement mondial dans l’approche du vieillissement et des maladies liées à l’âge, permettant un dépistage rapide et évolutif in vivo. L’investissement a été dirigé par Maven Capital Partners, avec le soutien de Northstar Ventures et un financement de Innovate UK. Avec cette expansion, Magnitude prévoit de créer de nouveaux postes hautement qualifiés dans les domaines de la robotique, de l’ingénierie logicielle et des sciences biologiques, dans le but d’accélérer le développement mondial des thérapies axées sur la longévité. Source : https://longevity.technology/news/magnitude-biosciences-lands-funding-to-accelerate-longevity-drug-development/

Le rôle du facteur de transcription EB (TFEB) dans la promotion de la protéostasie et ses implications pour le vieillissement

Dans une étude publiée dans Aging Cell, des chercheurs ont examiné comment le facteur de transcription EB (TFEB) favorise la protéostasie dans un modèle de vieillissement commun. La protéostasie, essentielle pour le bon fonctionnement des protéines, est maintenue par un système de contrôle qualité qui utilise un réseau de chaperons et co-chaperons, responsables du repliement, du déroulement et de la destruction des protéines mal repliées. Parmi les éléments clés de ce système se trouve la coenzyme A (CoA), impliquée dans diverses réactions biochimiques essentielles, y compris la gestion des protéines. Les chercheurs ont mis en évidence que la réduction de la production de PanK, une enzyme cruciale pour la synthèse de la CoA, n’entraîne pas de diminution de la durée de vie des vers C. elegans, mais plutôt des améliorations dans leur capacité à gérer des maladies liées à la protéostasie. Ils ont observé que les vers présentant une mutation génétique entraînant une expansion de PolyQ, un trouble de protéostasie, avaient moins de foyers d’agrégation musculaire et une meilleure activité motrice lorsque leur production de PanK était réduite. De plus, des expériences sur des protéines étiquetées ont montré que la réduction de PanK améliorait le traitement des protéines mal repliées. Les vers présentant moins de PanK réussissaient mieux à gérer le stress chimique et thermique. Ces résultats ont également été confirmés dans des cellules humaines, où les cellules cancéreuses traitées avec un inhibiteur de PanK ont mieux survécu au stress thermique. Ces effets bénéfiques étaient liés à des niveaux réduits de CoA. En parallèle, les chercheurs ont examiné le rôle des clusters de fer et de soufre (ISCs) associés à la CoA et ont découvert que la réduction de la production d’ISCs améliorait également la protéostasie. Ils ont identifié que la diminution de CoA et des ISCs due à la réduction de PanK activait TFEB, ce qui entraînait des effets bénéfiques sur le repliement des protéines par le biais des chaperons. Bien que l’étude ait fourni des détails sur les mécanismes biochimiques, elle reste préliminaire, car aucune des interventions n’a entraîné d’augmentation significative de la durée de vie des vers. Les chercheurs notent que des travaux supplémentaires sur des modèles de vers et de souris seront nécessaires pour évaluer si le renforcement direct des chaperons pourrait constituer un traitement efficace pour des troubles de la protéostasie tels que la maladie d’Alzheimer et la maladie de Parkinson. Source : https://www.lifespan.io/news/limiting-one-protein-maintenance-pathway-enhances-another/?utm_source=rss&utm_medium=rss&utm_campaign=limiting-one-protein-maintenance-pathway-enhances-another

L’épissage de l’ARN, le vieillissement et le potentiel du doxifluridine dans l’extension de la durée de vie

Le texte aborde le processus d’épissage de l’ARN, qui est fondamental pour la formation d’ARN à partir de séquences d’introns et d’exons dans les gènes. Ce processus d’épissage est crucial car il permet à un gène donné d’être assemblé en différentes formes d’ARN, selon les éléments qui sont inclus ou exclus. Il est également mentionné que la balance des différents ARN produits par un gène évolue avec l’âge, ce qui peut entraîner des dysfonctionnements. Dans une recherche visant à identifier des composés capables de réduire la dérégulation liée à l’âge dans l’épissage de l’ARN chez les nématodes, les chercheurs ont découvert un composé qui réussit à atteindre cet objectif et à prolonger la vie en manipulant les activités des microbes intestinaux. Cependant, la compréhension des mécanismes de cette extension de la vie prendra plus de temps que la découverte de la méthode elle-même, et il est précisé que ce composé spécifique pourrait ne pas être pertinent pour les souris ou les humains en raison des différences significatives dans le microbiome intestinal entre les animaux inférieurs et les mammifères. Les résultats de l’étude révèlent également que le vieillissement est associé à des défauts d’épissage alternatif, qui ont des implications larges sur les troubles liés à l’âge, mais que les médicaments capables de corriger ces défauts et d’étendre la durée de vie n’ont pas été systématiquement explorés. À l’aide d’un système de rapporteur d’épissage fluorescent double, les chercheurs ont effectué un dépistage à grande échelle de composés chez C. elegans et ont identifié le doxifluridine, un dérivé de fluoropyrimidine utilisé en chimiothérapie, comme un agent capable de restaurer les défauts d’épissage liés à l’âge et de prolonger la durée de vie. En combinant le séquençage de l’ADN bactérien, la protéomique, la métabolomique et un système de dépistage en trois étapes, ils ont également révélé que le métabolisme des ribonucléotides par les bactéries joue un rôle essentiel dans la conversion et l’efficacité du doxifluridine. Ce dernier augmente également la production de métabolites bactériens, tels que l’acide linoléique et l’agmatine, contribuant à prolonger la durée de vie de l’hôte. En somme, les résultats identifient le doxifluridine comme un composé prometteur pour corriger les défauts d’épissage liés au vieillissement et prolonger la durée de vie, tout en mettant en lumière l’interaction complexe entre le médicament, les bactéries et l’hôte. Source : https://www.fightaging.org/archives/2025/04/doxyfluridine-manipulates-gut-microbe-actitivies-to-extend-life-in-nematodes/