Catégorie : Non classé

L’escargot pommier : Une clé pour la régénération oculaire

La recherche sur l’escargot pommier, ou Pomacea canaliculata, a révélé des capacités de régénération oculaire remarquables qui soulèvent des questions fascinantes sur la régénération des yeux chez les humains. Cet escargot d’eau douce, souvent considéré comme envahissant, est maintenant le sujet d’une étude publiée dans Nature Communications, où il est démontré qu’il peut régénérer un œil complet, comprenant la lentille, la rétine, le nerf optique et la cornée, en seulement quatre semaines après une amputation totale. Cette découverte est cruciale, car la perte de vision est l’un des aspects les plus redoutés du vieillissement humain, et la capacité de l’escargot à restaurer des structures oculaires pourrait éclairer les raisons pour lesquelles les yeux humains ne peuvent pas se réparer de manière similaire. Les chercheurs du Stowers Institute for Medical Research, dirigés par le Dr Alejandro Sánchez Alvarado, ont identifié que Pomacea canaliculata possède un génome diploïde et une fertilité tout au long de l’année, ce qui en fait un modèle intéressant pour l’étude de la régénération. De plus, les techniques d’édition génétique comme CRISPR ont été appliquées avec succès à cet organisme, permettant ainsi d’explorer les gènes impliqués dans la régénération oculaire. Contrairement à d’autres modèles comme les poissons-zèbres ou les salamandres, qui peuvent régénérer certaines parties de l’œil, l’escargot pommier est capable de régénérer l’œil entier, ce qui en fait un modèle unique. Les recherches ont également révélé que le processus de régénération se décompose en quatre étapes distinctes, suggérant que la régénération pourrait imiter certaines voies embryologiques. Les implications de cette recherche sont vastes, notamment pour les populations vieillissantes souffrant de pertes de vision liées à l’âge. Les auteurs soulignent que l’utilisation de modèles non conventionnels comme Pomacea est essentielle pour élargir notre compréhension de la biologie régénérative. Bien que l’avenir de cet escargot en tant que modèle standard reste incertain, ses contributions actuelles à la science de la régénération sont déjà significatives. En fin de compte, cette recherche pourrait ouvrir de nouvelles voies pour le traitement des maladies oculaires et des blessures, et démontre que la nature peut offrir des solutions efficaces aux défis biologiques que nous rencontrons. Source : https://longevity.technology/news/more-than-a-snails-pace-toward-eye-regeneration/

Chai Discovery : Une Révolution dans la Découverte de Médicaments grâce à l’IA

Chai Discovery, une startup spécialisée dans le développement de médicaments par intelligence artificielle, a réussi à lever 70 millions de dollars lors d’un tour de financement de série A, portant son financement total à plus de 100 millions de dollars. Fondée par une équipe issue d’OpenAI, Meta, Stripe et Google X, l’entreprise vise à révolutionner la découverte de médicaments en considérant la biologie comme un problème d’information. Son modèle phare, Chai-2, permet de générer des anticorps entièrement nouveaux avec un taux de réussite de près de 20 % en quelques semaines, contrairement aux méthodes traditionnelles qui peuvent prendre des années avec des taux de succès d’environ 0,1 %. Ces anticorps sont conçus spécifiquement pour des antigènes cibles, sans être repensés à partir de bases de données existantes. Le co-fondateur de Chai, Matthew McPartlon, compare le processus à la recherche d’une clé parmi des millions, alors que Chai-2 permet de concevoir exactement la clé nécessaire en fonction de la description de la serrure. Les travaux de Chai Discovery pourraient avoir des implications significatives pour le traitement des maladies liées à l’âge, où des cibles complexes posent des défis aux traitements conventionnels. Joshua Meier, le PDG de Chai, décrit Chai-2 comme un ‘Photoshop pour les protéines’, permettant le développement rapide de thérapies visant des cibles auparavant jugées indomptables. Meier souligne que le progrès dans le développement de médicaments est souvent trop lent en raison d’expérimentations coûteuses et de tâtonnements. Grâce à l’implication d’OpenAI, qui a non seulement investi dans l’entreprise mais a également contribué au développement de son premier modèle, Chai-1, qui a surpassé des outils établis comme AlphaFold3, Chai Discovery dispose d’une crédibilité accrue. De plus, l’arrivée de Mikael Dolsten, ancien directeur scientifique chez Pfizer, sur le conseil d’administration de Chai, renforce encore la légitimité de l’entreprise. Dolsten a exprimé son admiration pour l’ambition de Chai Discovery et le potentiel de Chai-2 pour la conception de médicaments avec des délais d’exécution courts. Source : https://longevity.technology/news/openai-backed-photoshop-for-proteins-lands-70m/

Restauration des cellules souches vieillissantes : Une nouvelle approche pour les thérapies régénératives

Des chercheurs ont découvert que cultiver des cellules vieillissantes dans un milieu jeune les amène à se comporter et à fonctionner plus comme des cellules jeunes, ce qui suggère une nouvelle méthode pour créer des thérapies basées sur les cellules souches. Les cellules souches mésenchymateuses (CSM), capables de se différencier en plusieurs types cellulaires fonctionnels, étaient initialement considérées comme immunisées contre le système immunitaire de l’hôte. Cependant, des expériences récentes ont montré que cette immunité était illusoire et que leurs contributions étaient plutôt dues à leurs effets bénéfiques de signalisation, car ces cellules ont une durée de vie limitée face à un système immunitaire hostile. Pour éviter les risques liés aux cellules allogéniques, il serait idéal d’utiliser des cellules provenant des patients eux-mêmes. Néanmoins, les cellules prélevées sur des patients âgés sont affectées par le vieillissement, et les restaurer à leur état juvénile représente un défi. Dans une étude, les chercheurs ont cultivé des CSM dérivées de tissus adipeux de personnes de plus de 65 ans dans un milieu ECM Plus, composé de cellules souches trouvées dans le liquide amniotique humain. Ce milieu contient divers collagènes, glycoprotéines et protéines de base faisant partie du niche des cellules souches. En utilisant des cellules de la gelée de Wharton comme témoins jeunes, ils ont observé que les CSM âgées cultivées sur ECM Plus présentaient moins de marqueurs de sénescence, un marqueur accru de la jeunesse, des télomères plus longs et moins de signes de stress oxydatif par rapport à celles cultivées sur plastique de culture. De plus, la prolifération était augmentée dans le groupe ECM Plus, qui a produit plus d’unités formant des colonies et a montré une capacité accrue à se différencier en divers types cellulaires, y compris des chondrocytes, des cellules souches neurales, des adipocytes et des ostéoblastes. Les cellules cultivées dans ECM Plus ont également généré davantage d’ostéoblastes capables de créer plus d’os tout en étant moins susceptibles de se transformer en adipocytes. Les chercheurs ont également étudié la réponse des cellules à un environnement inflammatoire, découvrant que celles cultivées sur ECM Plus produisaient davantage de facteurs anti-inflammatoires en présence de TNF-α. En ce qui concerne la fonction mitochondriale et l’expression génique, les CSM cultivées dans ECM Plus montraient des caractéristiques plus juvéniles, avec moins de fuite de protons et une respiration plus efficace. Les bénéfices étaient également observés dans l’expression génique, avec des différences significatives entre les groupes ECM Plus et TCP. Les résultats suggèrent qu’un milieu de culture approprié pourrait être la clé pour utiliser efficacement des traitements dérivés des patients plutôt que des cellules allogéniques potentiellement dangereuses. Cependant, ces études étant uniquement cellulaires, des travaux futurs in vivo seront nécessaires pour évaluer pleinement les capacités des cellules cultivées de cette manière. Source : https://www.lifespan.io/news/a-better-extracellular-matrix-makes-aged-cells-act-youthful/?utm_source=rss&utm_medium=rss&utm_campaign=a-better-extracellular-matrix-makes-aged-cells-act-youthful

Lancement de la Lifespan Alliance : Unir la recherche et l’innovation pour prolonger la vie en bonne santé

Lifespan Research Institute, un institut de recherche à but non lucratif basé à Mountain View, en Californie, annonce le lancement de la Lifespan Alliance, une initiative de parrainage qui rassemble des entreprises et organisations visionnaires engagées à prolonger la durée de vie humaine en bonne santé. Les organisations membres, y compris les sponsors de lancement AgingBiotech.info, Immortal Dragons, Rejuve.bio, Ora Biomedical et Quadrascope, auront l’opportunité de collaborer sur diverses initiatives intégrant science et plaidoyer, dans le but de créer un écosystème de confiance axé sur l’impact réel pour lutter contre les maladies liées à l’âge. Les membres du conseil d’administration de l’institut, Keith Comito et Dr. Oliver Medvedik, ont été nommés respectivement PDG et directeur scientifique pour diriger cette initiative et renforcer les programmes scientifiques et de sensibilisation de l’institut. Ces nominations témoignent de l’engagement de l’institut à allier leadership visionnaire et rigueur scientifique, en s’appuyant sur des décennies d’expérience dans la création d’écosystèmes pour identifier et surmonter les obstacles majeurs de la recherche sur le vieillissement. Keith Comito souligne que la recherche sur le vieillissement se trouve à un point critique, affirmant que les actions d’aujourd’hui façonneront l’avenir des générations futures. L’institut se concentre sur l’unification du public et du domaine autour des initiatives les plus prometteuses pour transformer rapidement la science en thérapies concrètes visant à prolonger la vie humaine en bonne santé. Dans le cadre de son engagement à faire avancer les initiatives ayant le plus grand potentiel en matière de vie saine grâce à la science, à l’innovation et à la collaboration, l’institut a également revitalisé son Conseil consultatif scientifique, avec de nouveaux membres éminents tels que Drs. Felipe Sierra, Irina Conboy et Matt Kaeberlein. Dr. Oliver Medvedik exprime son enthousiasme à faire partie de cette organisation renouvelée et recentrée, soulignant que leur mission unifiée de recherche et de sensibilisation vise à fournir aux parties prenantes des informations précises et exploitables dans le domaine des biosciences de la longévité. L’institut est déterminé à transformer des idées audacieuses en impacts concrets, en avançant dans les thérapies qui traitent le vieillissement comme un processus biologique modifiable, tout en construisant la confiance du public nécessaire pour accélérer l’arrivée de thérapies capables d’étendre la vie humaine en bonne santé. Source : https://www.lifespan.io/news/lifespan-alliance-launch-new-leadership-at-lri/?utm_source=rss&utm_medium=rss&utm_campaign=lifespan-alliance-launch-new-leadership-at-lri

Dysfonction mitochondriale et régénération musculaire liée à l’âge

Chaque cellule contient des centaines de mitochondries, qui sont les descendants de bactéries symbiotiques anciennes. Ces mitochondries ont leur propre ADN, se répliquent pour maintenir leur nombre et sont responsables de la production de l’adénosine triphosphate (ATP), la molécule qui stocke l’énergie chimique nécessaire au fonctionnement des cellules. Comme toutes les structures cellulaires, les mitochondries subissent des dommages constants. Les mitochondries endommagées et dysfonctionnelles sont éliminées par le processus de mitophagie, qui est essentiel pour le maintien de la qualité cellulaire. Cependant, avec l’âge, ce contrôle de qualité s’affaiblit, et l’expression des gènes nécessaires au bon fonctionnement mitochondrial se dégrade. L’ADN mitochondrial subit des dommages qui dégradent davantage sa fonction, perturbant ainsi le fonctionnement des cellules et des tissus, contribuant aux manifestations du vieillissement dégénératif. Bien que ce texte se concentre sur le tissu musculaire, des histoires analogues peuvent être racontées pour tout tissu du corps vieillissant. À mesure que la population mondiale vieillit, le nombre d’individus souffrant de maladies dégénératives liées à l’âge augmente. Avec l’âge, le muscle squelettique subit une infiltration de stress oxydatif progressive, accompagnée de facteurs néfastes tels qu’une synthèse protéique altérée et des mutations de l’ADN mitochondrial, culminant en une dysfonction mitochondriale. Les cellules souches musculaires, essentielles pour la régénération du muscle squelettique, connaissent également un déclin fonctionnel, entraînant des dommages irréversibles à l’intégrité musculaire chez les personnes âgées. Un facteur critique contribuant à ces problèmes est la perte de métabolisme et de fonction mitochondriale dans les cellules souches musculaires. Le système de contrôle de la qualité mitochondriale joue un rôle clé en modulant les anomalies liées au vieillissement dans le métabolisme énergétique et le déséquilibre redox. Les mitochondries répondent aux demandes fonctionnelles par des processus tels que la fission, la fusion et la mitophagie. L’importance de la morphologie et de la dynamique mitochondriale dans les mécanismes de régénération musculaire a été constamment soulignée. Cette revue fournit un résumé complet des avancées récentes dans la compréhension des mécanismes de dysfonction mitochondriale liés au vieillissement et de leur rôle dans l’entrave à la régénération du muscle squelettique. De plus, elle présente de nouvelles perspectives sur les approches thérapeutiques pour traiter les myopathies liées à l’âge. Source : https://www.fightaging.org/archives/2025/08/mitochondrial-dysfunction-in-the-aging-of-muscle-tissue/

L’inefficacité des traitements antiviraux contre l’Alzheimer en lien avec les infections herpétiques

Les preuves concernant l’infection virale persistante, notamment par les virus de l’herpès, comme cause significative de la maladie d’Alzheimer, sont mitigées et souvent contradictoires. Bien qu’il existe des mécanismes clairs par lesquels une infection persistante pourrait contribuer à la neurodégénérescence, seules certaines données épidémiologiques semblent appuyer le rôle d’une infection virale dans la maladie d’Alzheimer. Ce rôle pourrait être marginal, se développer lentement sur une longue période, ou ne concerner qu’un sous-ensemble de patients présentant la biochimie nécessaire pour qu’une infection persistante ait un impact majeur sur les maladies neurodégénératives. Cependant, une fois les essais cliniques montrant qu’un traitement antiviral n’apporte pas d’effet bénéfique, il est probable que les recherches futures soient réduites à un niveau d’effort minimal. Plusieurs études ont trouvé des liens entre les infections herpétiques et la maladie d’Alzheimer, notamment une étude post-mortem qui a révélé que l’ADN du HSV1 était souvent associé à des plaques amyloïdes dans le cerveau de personnes diagnostiquées avec Alzheimer. D’autres études ont montré que les personnes traitées pour des infections herpétiques avaient moins de chances d’être diagnostiquées avec Alzheimer par rapport aux personnes positives au HSV n’ayant pas reçu de traitement antiviral. Cela a suscité l’espoir que les traitements contre l’herpès pourraient ralentir la progression des symptômes d’Alzheimer chez les patients. Toutefois, le premier essai clinique destiné à tester cette hypothèse a révélé qu’un antiviral courant, le valacyclovir, n’influe pas sur l’évolution de la maladie chez les patients au début de la maladie d’Alzheimer. L’essai a inclus 120 adultes, âgés en moyenne de 71 ans, tous diagnostiqués avec une maladie d’Alzheimer précoce ou un léger trouble cognitif, avec des tests d’imagerie ou sanguins indiquant une pathologie d’Alzheimer. Tous les participants avaient des anticorps révélant des infections herpétiques passées (principalement HSV1, certains HSV2). Les participants ont été assignés au hasard à prendre des pilules quotidiennes contenant soit du valacyclovir, soit un placebo. Les chercheurs ont mesuré les fonctions mémorielles des patients et ont réalisé des imageries cérébrales pour rechercher des dépôts d’amyloïde et de tau associés à Alzheimer ainsi que d’autres changements structurels. Après 18 mois, les chercheurs ont constaté que les patients prenant le placebo avaient légèrement mieux performé lors des tests cognitifs que le groupe prenant du valacyclovir, mais aucune autre mesure n’était significativement différente. Les conclusions de l’essai indiquent que les antiviraux ciblant l’herpès ne sont pas efficaces pour traiter la maladie d’Alzheimer précoce et ne peuvent pas être recommandés pour traiter les patients présentant des preuves d’infections antérieures par HSV. Il reste à déterminer si un traitement antiviral à long terme après une infection herpétique peut prévenir la maladie d’Alzheimer, car aucune étude contrôlée prospective n’a été réalisée. Source : https://www.fightaging.org/archives/2025/08/antiviral-treatment-fails-to-slow-the-progression-of-early-stage-alzheimers-disease/

Rôle des macrophages sénescents dans la progression tumorale et les opportunités de traitement

Les macrophages, cellules cruciales du système immunitaire inné, jouent un rôle fondamental dans le maintien et la régénération des tissus de l’organisme. Ils peuvent adopter différents comportements en fonction des circonstances, généralement divisés en macrophages M1, pro-inflammatoires et agressifs, et macrophages M2, anti-inflammatoires et axés sur la maintenance des tissus. Cette distinction est particulièrement pertinente dans le contexte des tissus âgés, endommagés ou cancéreux. Les cancers ont la capacité de reprogrammer les cellules immunitaires pour favoriser leur propre croissance, et les macrophages présents dans les tissus tumoraux, appelés macrophages associés aux tumeurs, sont au cœur de ce processus.

Dans un article de recherche récent, les auteurs explorent l’importance de la sénescence cellulaire des macrophages associés aux tumeurs dans l’accélération de la croissance tumorale. Bien que la sénescence cellulaire dans les tissus normaux soit souvent bénéfique pour la régénération après une blessure, les macrophages sénescents dans le microenvironnement tumoral favorisent en réalité la progression tumorale. En effet, les tumeurs évoluent pour encourager la sénescence des macrophages, ce qui soutient la réplication incontrôlée des cellules tumorales.

La communauté scientifique s’intéresse de près à l’application des sénothérapeutiques dans le traitement du cancer. De nombreux médicaments chimiothérapeutiques qui ont connu du succès par le passé se révèlent être sénothérapeutiques à la lumière des connaissances récentes. Leur capacité à détruire les cellules sénescentes ou à modifier leur comportement explique leur efficacité. Parallèlement, les chercheurs s’efforcent de manipuler les macrophages associés aux tumeurs pour rendre les tumeurs moins agressives, par exemple en incitant les macrophages M2 à adopter un état M1, afin de favoriser l’attaque des cellules cancéreuses plutôt que leur soutien.

Les macrophages jouent des rôles critiques dans le microenvironnement tumoral (TME), où leur plasticité et leur adaptabilité influencent la progression tumorale. Les macrophages M1, généralement présents dans les tissus sains, sont remplacés dans le TME par des macrophages M2, qui facilitent la progression tumorale par le remodelage de la matrice extracellulaire, l’angiogenèse et l’immunosuppression. Ainsi, les macrophages associés aux tumeurs sont centraux dans la promotion de la croissance, de l’invasion et de la métastase tumorale.

La sénescence cellulaire, initialement considérée comme un mécanisme de suppression tumorale, s’avère paradoxalement promouvoir la progression tumorale, notamment par le biais des macrophages sénescents. Ces cellules, après exposition à des stimuli spécifiques, subissent un vieillissement cellulaire, se caractérisant par l’activation de marqueurs comme p16INK4a et le développement d’un phénotype sécréteur associé à la sénescence (SASP). Les macrophages sénescents manifestent des déficiences fonctionnelles, telles qu’une inflammation chronique et une présentation d’antigènes diminuée, contribuant à un environnement immunosuppresseur propice à la croissance tumorale.

Le SASP, qui comprend des cytokines, des chimiokines et des facteurs de croissance, perturbe l’environnement immunitaire et favorise la tumorigenèse. En particulier, l’IL-6 est un facteur clé du SASP qui contribue à un milieu pro-inflammatoire et pro-tumoral. Des preuves émergentes soulignent que les macrophages sénescents aggravent la progression tumorale par la sécrétion de SASP et la dysrégulation immunitaire. Cela souligne l’importance de comprendre les mécanismes sous-jacents. Les stratégies thérapeutiques ciblant les macrophages sénescents, telles que les sénolytiques, sénomorphiques et les immunothérapies, notamment les cellules T à récepteur antigénique chimérique (CAR-T), offrent des pistes prometteuses pour stopper la croissance tumorale et inverser les effets nocifs du TME vieillissant. Les recherches futures devraient se concentrer sur l’optimisation de ces traitements et sur l’éclaircissement des interactions entre macrophages sénescents et cellules tumorales pour améliorer les résultats cliniques. Source : https://www.fightaging.org/archives/2025/08/senescent-macrophages-accelerate-tumor-growth/

Impact de la nicotine sur la fonction motrice et le métabolisme chez les souris âgées

Une étude récente a démontré que la consommation de nicotine à long terme a un impact positif sur la fonction motrice chez des souris mâles. Les effets bénéfiques seraient médiés par le métabolisme des sphingolipides et de la NAD+. Bien que le tabagisme soit largement associé à des risques accrus de cancer et de mortalité prématurée, il existe des études épidémiologiques suggérant des effets positifs de la nicotine sur certains troubles inflammatoires et neurodégénératifs, comme la maladie de Parkinson. Les effets bénéfiques de la nicotine seraient plus marqués à des concentrations inférieures à celles rencontrées lors du tabagisme, ce qui souligne l’importance d’étudier les effets dépendants de la dose. Dans cette étude, les chercheurs ont ajouté de la nicotine à l’eau de boisson des souris, à faible ou forte dose, pendant 22 mois. Les souris âgées ayant reçu de la nicotine ont montré une augmentation de l’activité locomotrice, de la force motrice et une réduction des comportements anxieux, en particulier chez celles ayant reçu les doses les plus élevées. Ces souris avaient des comportements similaires à ceux des jeunes souris. Les analyses métaboliques ont révélé des changements dans la distribution des tissus adipeux et des modifications des métabolites énergétiques, suggérant que la nicotine modifie les voies métaboliques liées à l’énergie. Les chercheurs ont introduit un score composite, le Behavior-Metabolome Age Score (BMAge), pour quantifier les effets de la nicotine sur le vieillissement biologique, montrant que les souris traitées avec des doses élevées de nicotine avaient un score similaire à celui des jeunes animaux. De plus, la nicotine a également modifié la composition du microbiote intestinal, favorisant la croissance de microbes bénéfiques. Les résultats suggèrent que la disponibilité accrue de NAD+ par la nicotine améliore le métabolisme énergétique chez les souris âgées, ce qui est lié à une performance motrice améliorée. Cependant, les chercheurs mettent en garde contre la généralisation de ces résultats à l’homme, en raison des risques connus associés à la nicotine et de son potentiel addictif. Des différences potentielles selon le sexe n’ont pas été abordées dans cette étude, et des résultats antérieurs ont montré des effets parfois contradictoires de la nicotine, soulignant la dépendance contextuelle de ses effets biologiques. Source : https://www.lifespan.io/news/nicotine-consumption-improves-motor-functions-in-male-mice/?utm_source=rss&utm_medium=rss&utm_campaign=nicotine-consumption-improves-motor-functions-in-male-mice

Impact de l’hypertension sur le cerveau et la mémoire : une étude expérimentale

L’hypertension, ou pression artérielle élevée, est une condition nocive qui affecte les tissus de tout le corps, notamment le cerveau. La pression accrue endommage directement la structure des tissus, perturbe leur fonction et modifie le comportement des cellules de manière défavorable. Cela a des conséquences particulièrement graves sur le cerveau, qui a une capacité limitée à se régénérer après la rupture de petits vaisseaux sanguins et la mort cellulaire qui en résulte. De manière plus subtile, l’augmentation de la pression perturbe le fonctionnement normal de la barrière hémato-encéphalique, ce qui permet la fuite de cellules et de molécules inappropriées dans le cerveau, provoquant une inflammation persistante, qui contribue de manière significative aux conditions neurodégénératives. Les recherches montrent que l’hypertension augmente le risque de troubles cognitifs et favorise l’inflammation vasculaire et rénale. Des études ont été menées pour tester si l’infiltration de cellules immunitaires se produit dans le cerveau pendant l’hypertension et si cela est associé à des déficits cognitifs. Des souris mâles de la souche C57Bl/6 ont été soumises à l’angiotensine II ou à l’aldostérone pour modéliser l’hypertension, ce qui a entraîné une augmentation de la pression artérielle, une dysfonction de la barrière hémato-encéphalique, une accumulation de leucocytes dans le cerveau et un impair de la mémoire de travail. Lorsque l’hydralazine, un médicament antihypertenseur, a été co-administré avec l’angiotensine II, il a empêché le développement de ces changements. Cependant, dans un groupe séparé de souris où les changements induits par l’angiotensine II avaient déjà été établis, l’intervention avec l’hydralazine a réduit la pression artérielle mais n’a pas inversé l’inflammation cérébrale ou le déficit cognitif. De plus, l’infusion d’angiotensine II a modifié le profil transcriptomique de l’ensemble du cerveau, ainsi que spécifiquement dans l’hippocampe, et le co-traitement avec l’hydralazine a modifié ces changements. En conclusion, l’hypertension expérimentale entraîne une inflammation cérébrale et est associée à une mémoire de travail altérée. Les déficits cognitifs qui se développent pendant l’hypertension peuvent être inhibés, mais ne sont pas facilement réversibles par la thérapie antihypertensive. Source : https://www.fightaging.org/archives/2025/08/hypertension-allows-harmful-immune-cell-infiltration-of-the-brain/

Impact de l’infiltration graisseuse intramusculaire sur la fonction musculaire et la régénération

La formation de dépôts graisseux dans les tissus musculaires est un phénomène bien connu associé au vieillissement et à divers troubles musculaires. Des chercheurs se penchent sur la manière dont cette infiltration de graisse nuit à la fonction musculaire, en mettant l’accent sur la capacité régénérative des muscles. Actuellement, l’activité physique est le moyen le plus fiable pour prévenir ou réduire cette infiltration graisseuse, mais plusieurs médicaments de perte de poids en développement, améliorant les agonistes des récepteurs GLP-1, pourraient également s’avérer efficaces sans réduire l’apport calorique ni causer de perte de masse musculaire. Le tissu adipeux joue un rôle à la fois de réserve d’énergie et d’organe endocrinien. Toutefois, les différents dépôts graisseux, tels que la graisse sous-cutanée, viscérale et intramusculaire, affichent des différences métaboliques et phénotypiques marquées. L’accumulation de graisse intramusculaire (IMAT) est un marqueur pathologique de dystrophies musculaires et se retrouve également dans une gamme de troubles métaboliques, y compris le diabète, l’obésité et la sarcopénie. Cette infiltration progressive d’IMAT est étroitement associée à la perte de masse musculaire, à des dysfonctionnements métaboliques, à la progression de la maladie et à l’altération de la mobilité des patients. L’origine cellulaire de l’IMAT provient d’une population de cellules souches situées dans l’interstitium musculaire, appelées progéniteurs fibro-adipogéniques (FAPs). Dans un muscle sain, les FAPs sont essentiels pour maintenir la masse musculaire durant l’homéostasie et jouent un rôle central dans la régénération musculaire. Les FAPs sécrètent des facteurs pro-myogéniques pour aider les cellules souches musculaires (MuSCs) dans leur processus de différenciation en fibres musculaires. Cependant, avec l’âge et la maladie, les FAPs peuvent également se différencier en adipocytes, entraînant la formation d’IMAT ou en myofibroblastes, conduisant à la fibrose. Pour comprendre l’influence de l’IMAT sur le muscle squelettique, un modèle murin conditionnel, appelé mFATBLOCK, a été créé pour bloquer la formation d’IMAT en supprimant le récepteur gamma activé par les proliférateurs des peroxysomes (Pparγ) des FAPs. Cette suppression n’a eu aucun effet dans des conditions normales mais a réussi à prévenir l’accumulation d’IMAT après une lésion adipogénique. Mécaniquement, les données suggèrent que l’IMAT agit comme une barrière physique, empêchant la formation de nouvelles myofibres naissantes durant la régénération précoce, ainsi que l’hypertrophie des myofibres durant la phase régénérative ultérieure. Par conséquent, cela entraîne un muscle fonctionnellement affaibli, avec moins de myofibres et des myofibres plus petites. Source : https://www.fightaging.org/archives/2025/08/how-age-related-fat-infiltration-of-muscle-harms-regeneration/