Étiquette : vieillissement

Lutte contre le Vieillissement : Mécanismes, Biomarqueurs et Thérapies Innovantes

Fight Aging! est une publication qui se concentre sur la lutte contre les maladies liées à l’âge, en utilisant les avancées de la médecine moderne pour contrôler les mécanismes du vieillissement. Le bulletin hebdomadaire est envoyé à des milliers d’abonnés. Le fondateur, Reason, propose également des services de consultation stratégique dans le secteur de la longévité, visant à éclairer les investisseurs et les entrepreneurs sur les complexités de ce domaine. Les articles au sein de la publication traitent divers sujets tels que le vieillissement ovarien, les biomarqueurs fluides pour les maladies neurodégénératives, et l’impact de la sénescence cellulaire sur la santé. Par exemple, la recherche sur le vieillissement ovarien examine comment la sénescence cellulaire peut influencer la fertilité et la menopause, et propose des thérapies potentielles pour inverser ces effets. D’autres articles explorent l’utilisation de biomarqueurs dans le diagnostic précoce des maladies neurodégénératives comme la maladie d’Alzheimer, mettant l’accent sur l’importance de tests sanguins non invasifs. De plus, des études montrent comment les vésicules extracellulaires du cerveau peuvent favoriser la régénération cutanée sans cicatrices, ainsi que le rôle de l’expression de l’IGF-1 dans la perte de cheveux liée à l’âge. Les recherches sur la structure de l’ADN entre différentes espèces de rats révèlent des différences qui pourraient expliquer leur longévité. Des thérapies basées sur la régulation de la SIRT6, un gène lié à la longévité, sont en cours de développement, tout comme l’exploration de la relation entre le microbiote intestinal et les maladies neurodégénératives. Les études montrent également que la vaccination contre le zona est corrélée à un risque réduit de démence, soulignant l’importance des vaccins dans la santé des personnes âgées. Enfin, des interventions telles que la restriction calorique et des médicaments mimétiques de la restriction calorique montrent des promesses pour restaurer des métabolismes lipidiques plus jeunes. Ces recherches mettent en lumière l’importance de comprendre les mécanismes du vieillissement afin de développer des traitements efficaces pour améliorer la longévité et la qualité de vie des individus vieillissants. Source : https://www.fightaging.org/archives/2025/04/fight-aging-newsletter-april-14th-2025/

Impact de la restriction calorique sur le métabolisme lipidique et le vieillissement : Une étude sur les souris

La restriction calorique est une pratique qui améliore la santé et prolonge la vie, avec des effets plus notables sur l’espérance de vie des espèces à courte durée de vie, comme les souris, par rapport aux espèces à longue durée de vie, telles que les humains. Les chercheurs se penchent sur les changements dans les lipides chez les souris résultant de la restriction calorique et de divers médicaments mimétiques de la restriction calorique. On s’attend évidemment à ce que les tissus graisseux changent considérablement à la suite d’un régime hypocalorique maintenu dans le temps, mais les niveaux de lipides et les distributions de différents lipides changent dans tout le corps. Les médicaments mimétiques de la restriction calorique ne capturent qu’une fraction des effets globaux de la restriction calorique, mais tendent tout de même à orienter les résultats dans une direction similaire. Une observation intéressante est que, dans l’ensemble, ces changements ressemblent à un rajeunissement, déplaçant les mesures du métabolisme lipidique vers un résultat plus jeune. La restriction calorique est associée à un vieillissement lent chez les organismes modèles. De plus, certains médicaments ont également montré qu’ils ralentissaient le vieillissement chez les rongeurs. Pour mieux comprendre les mécanismes métaboliques impliqués dans l’augmentation de la durée de vie, nous avons analysé les différences métabolomiques dans six organes de souris de 12 mois en utilisant cinq interventions conduisant à une longévité prolongée, spécifiquement la restriction calorique, 17-α estradiol, et les mimétiques de restriction calorique tels que la rapamycine, le canagliflozin et l’acarbose. Ces interventions ont généralement des effets plus forts chez les mâles que chez les femelles. En utilisant le test de tendance de Jonckheere pour associer l’augmentation des durées de vie moyennes aux changements métaboliques pour chaque sexe, nous avons trouvé un dimorphisme sexuel dans le métabolisme du plasma, du foie, du muscle gastrocnémien, des reins et de la graisse inguinale. Le plasma a montré la tendance la plus forte des composés exprimés différemment, soulignant les avantages potentiels du plasma pour suivre le vieillissement en bonne santé. Grâce à une analyse d’enrichissement chimique, nous avons constaté que la majorité de ces composés affectés étaient des lipides, en particulier dans les tissus mâles, ainsi que des différences significatives dans les tendances des acides aminés, particulièrement évidentes dans les reins. Nous avons également trouvé de forts effets métabolomiques dans les tissus adipeux. La graisse inguinale a présenté des augmentations surprenantes des lipides neutres avec des chaînes latérales polyinsaturées chez les souris mâles. Chez les souris femelles, la graisse gonadique a montré des tendances proportionnelles à l’effet d’extension de la durée de vie à travers plusieurs classes de lipides, en particulier les phospholipides. Fait intéressant, pour la plupart des tissus, nous avons trouvé des changements similaires induits par les interventions prolongatrices de durée de vie par rapport aux différences métabolomiques entre les souris non traitées de 12 mois et celles de 4 mois. Cette découverte implique que les traitements prolongateurs de durée de vie tendent à inverser les phénotypes métaboliques vers un stade biologiquement plus jeune. Source : https://www.fightaging.org/archives/2025/04/calorie-restriction-and-calorie-restriction-mimetic-drugs-restore-more-youthful-lipid-metabolism/

L’impact de la supplémentation en HMB sur la longévité et la fonction musculaire : Études sur des espèces à courte durée de vie

Le texte présente une analyse des interventions susceptibles d’améliorer la longévité et la fonction musculaire chez les espèces à courte durée de vie, en se basant sur des données humaines et animales. Les interventions sur le métabolisme, telles que la restriction calorique, montrent une extension significative de la vie. La supplémentation en β-hydroxy-β-méthylbutyrate (HMB) est mise en avant comme une méthode pour mimétiser les effets bénéfiques de l’exercice physique et de la restriction calorique. L’HMB, dérivé de l’acide aminé leucine, est reconnu pour ses effets positifs sur la composition corporelle et la fonction musculaire, notamment chez les personnes âgées. Des études montrent que l’HMB peut améliorer la masse corporelle maigre et réduire la perte de masse musculaire durant des périodes de repos au lit. Les mécanismes d’action de l’HMB incluent l’activation de la synthèse protéique via le complexe mTORC1 et la réduction de la dégradation des protéines musculaires. L’étude explore également l’utilisation de Drosophila comme organisme modèle pour étudier les effets de l’HMB sur le vieillissement musculaire. Les résultats montrent que la supplémentation en HMB améliore la capacité de vol des mouches, ralentit le déclin associé à l’âge et prolonge leur durée de vie. Les mouches nourries avec HMB conservent une meilleure morphologie des mitochondries, similaire à celle des jeunes mouches, ce qui souligne l’impact positif de l’HMB sur la santé musculaire et la longévité. En conclusion, ces résultats indiquent que l’HMB pourrait être une intervention efficace pour atténuer le déclin musculaire lié à l’âge et prolonger la vie. Source : https://www.fightaging.org/archives/2025/04/%ce%b2-hydroxy-%ce%b2-methylbutyrate-improves-health-and-slightly-extends-life-span-in-flies/

L’impact de la structure de l’ADN sur la longévité : Perspectives et découvertes

La structure de l’ADN dans le noyau cellulaire joue un rôle essentiel dans la transcription des gènes et, par conséquent, dans la production d’ARN et de protéines. Ce processus est influencé par la configuration de l’ADN nucléaire, qui peut être modifiée par des facteurs tels que la méthylation et les modifications des protéines histones, affectant ainsi l’accessibilité des régions de l’ADN. Les chercheurs explorent des perspectives moins courantes sur la structure de l’ADN, notamment en lien avec le vieillissement et la longévité, grâce à des techniques de spectroscopie qui permettent de visualiser des variantes structurelles de l’ADN. Bien que l’ADN soit souvent présenté sous la forme de la double hélice B, il existe aussi des formes A et Z qui ont des implications significatives pour la stabilité et la flexibilité de l’ADN, ainsi que pour les interactions avec les protéines. Une étude récente a examiné la relation entre les changements conformels de l’ADN et la durée de vie de deux espèces de rongeurs : le rat aveugle anatolien et le rat commun. Les résultats montrent que les transitions entre les formes B et A, ainsi que Z, étaient plus fréquentes chez le rat aveugle, suggérant un lien entre la structure unique de son ADN et sa longévité. Malgré ces découvertes, il n’existe pas encore de lien direct établi entre les modifications structurales de l’ADN et les dommages associés au vieillissement, limitant les applications potentielles pour le développement de thérapies de rajeunissement. Les implications de ces recherches soulignent la nécessité de mieux comprendre comment les variations dans les conformations de l’ADN et leurs composantes pourraient influencer la longévité des organismes, en ouvrant de nouvelles voies de recherche sur les aspects biomoléculaires du vieillissement. Source : https://www.fightaging.org/archives/2025/04/structural-features-of-dna-differ-between-short-lived-rats-and-long-lived-blind-mole-rats/

L’inflammaging : Comprendre l’inflammation chronique liée au vieillissement

L’inflammation à court terme est nécessaire pour répondre aux infections ou aux blessures, mais lorsque cette inflammation devient chronique, elle peut nuire aux tissus et à leur fonctionnement normal. Cette inflammation chronique, également connue sous le nom d’inflammaging, est un aspect du vieillissement et contribue à l’apparition et à la progression des maladies liées à l’âge. Il semble difficile d’éviter cette inflammation chronique liée à l’âge, à moins de traiter les dommages cellulaires et tissulaires qui en sont la cause. En effet, bien que l’on puisse atténuer certains signaux inflammatoires, cela pourrait également réduire l’inflammation à court terme qui est essentielle pour la défense contre les infections et la régénération des blessures. Le lien entre le vieillissement et l’inflammation périphérique est complexe et multifactoriel, impliquant de nombreux mécanismes moléculaires qui entraînent un état d’inflammation chronique de faible intensité. Contrairement à l’inflammation aiguë, qui est une réponse temporaire, l’inflammaging est un état persistant qui résulte de l’accumulation de facteurs internes et externes au cours de la vie. Ce processus est marqué par une activation soutenue des voies immunitaires, une production accrue de cytokines pro-inflammatoires et une déséquilibre de l’homéostasie immunitaire, contribuant à un déclin fonctionnel progressif lié à l’âge. Le vieillissement impacte plusieurs organes périphériques tels que le foie, les tissus adipeux, les muscles squelettiques et le tractus gastro-intestinal, qui jouent tous un rôle essentiel dans la modulation de l’inflammation systémique. La dysfonction progressive de ces organes avec l’âge est principalement causée par des altérations moléculaires et cellulaires, y compris le stress oxydatif, l’instabilité génomique, les changements épigénétiques, le dysfonctionnement mitochondrial et la sénescence cellulaire. Tous ces facteurs créent un microenvironnement inflammatoire qui entraîne des dommages tissulaires, contribuant ainsi à l’apparition et à la progression de nombreuses maladies liées à l’âge, telles que les troubles cardiovasculaires, les conditions neurodégénératives et le cancer. Au niveau moléculaire, l’inflammaging implique un réseau complexe de médiateurs inflammatoires, y compris les cytokines, les protéines de phase aiguë et les motifs moléculaires associés aux dommages (DAMPs), activant diverses voies de signalisation intracellulaire. Une caractéristique fondamentale de l’inflammaging est le phénotype sécrétoire associé à la sénescence (SASP). Avec le vieillissement, les cellules sénescentes s’accumulent dans plusieurs tissus, favorisant un environnement pro-inflammatoire qui active le système immunitaire et entraîne un remodelage des tissus. Un autre facteur dans l’inflammaging est la dysbiose du microbiote intestinal, qui est de plus en plus reconnue comme un régulateur significatif de l’inflammation systémique chez les individus âgés. Les altérations liées à l’âge de la composition du microbiote intestinal peuvent entraîner une augmentation de la perméabilité intestinale, facilitant la translocation des endotoxines bactériennes, telles que le lipopolysaccharide (LPS), dans la circulation. Ce processus déclenche une activation soutenue des cellules immunitaires, renforçant encore l’inflammation systémique. Source : https://www.fightaging.org/archives/2025/04/chronic-inflammation-is-central-to-aging/

Impact de l’IGF-1 sur le Vieillissement des Follicules Pileux : Vers des Interventions Thérapeutiques

Le vieillissement est un processus complexe caractérisé par l’accumulation de dommages et de dysfonctionnements spécifiques dans les tissus et les organes. Bien que certaines interventions puissent provoquer des effets similaires à un vieillissement prématuré, il est essentiel de distinguer ces effets des véritables mécanismes du vieillissement normal. Dans une étude récente, des chercheurs ont examiné l’impact de l’expression accrue de l’IGF-1 (facteur de croissance insulinomimétique 1) sur le vieillissement des follicules pileux. Ils ont découvert que cette augmentation de l’IGF-1 dans la peau favorisait la sénescence cellulaire, un état où les cellules perdent leur capacité à se diviser et à fonctionner correctement. En utilisant des souris transgéniques exprimant l’IGF-1 humain, les chercheurs ont observé un vieillissement prématuré des follicules pileux, se traduisant par un grisonnement et une perte de cheveux accélérés. Des analyses de séquençage d’ARN monocellulaire ont révélé une augmentation des marqueurs de sénescence et du phénotype sécrétoire associé à la sénescence (SASP) dans les cellules souches des follicules pileux, accompagnée d’une diminution de la croissance des cheveux et d’une épuisement des cellules souches. Ces résultats suggèrent que des niveaux excessifs d’IGF-1 entraînent la sénescence des cellules souches des follicules pileux, perturbant ainsi l’homéostasie des follicules. Néanmoins, des interventions ciblant la signalisation de l’IGF-1, telles que l’inhibition de l’activation de p53 ou des traitements sénolytiques pour éliminer les cellules sénescentes, ont montré une réduction des marqueurs de sénescence et une restauration de la fonction des follicules pileux. Ces découvertes offrent des perspectives intéressantes pour des interventions thérapeutiques visant à rajeunir les cellules souches vieillissantes et à promouvoir la santé des follicules pileux. Source : https://www.fightaging.org/archives/2025/04/igf-1-expression-in-skin-can-drive-age-related-hair-loss/

TMEM65 : Une protéine clé pour la régulation du calcium mitochondrial et ses implications thérapeutiques

Une équipe de scientifiques a identifié une protéine de membrane mitochondriale, TMEM65, comme un élément clé dans le maintien de l’équilibre calcique cellulaire, avec des implications potentielles pour le traitement des maladies cardiovasculaires et neurodégénératives. Les résultats, publiés dans la revue Nature Metabolism, montrent comment TMEM65 régule NCLX, l’échangeur sodium-calcium mitochondrial, offrant un nouvel éclairage sur la façon dont les perturbations dans la gestion du calcium contribuent à la pathologie liée à l’âge. Les mitochondries jouent un rôle central dans la production d’énergie et la survie cellulaire, mais leur fonction peut être gravement compromise lorsque le calcium s’accumule à des niveaux pathologiques. NCLX est essentiel pour maintenir l’homéostasie calcique au sein des mitochondries en extrudant les ions calcium en échange de sodium; cependant, peu d’informations étaient disponibles sur la régulation de cet échangeur. Selon l’équipe de recherche, la complexité de la structure de NCLX a historiquement entravé les efforts pour disséquer sa régulation. Dr John W. Elrod, auteur principal et professeur au Lewis Katz School of Medicine de l’Université Temple à Philadelphie, a déclaré que leur étude a adopté une approche différente, utilisant le marquage à la biotine, ce qui leur a permis de suivre les interactions de NCLX avec d’autres protéines dans des cellules intactes. Cette étude éclaire un mécanisme longtemps insaisissable régulant l’efflux calcique mitochondrial, un point de contrôle émergent dans la biologie du vieillissement. En identifiant TMEM65 comme un activateur direct de NCLX, l’étude offre une image plus claire de la façon dont la dysrégulation calcique contribue à la dysfonction liée à l’âge dans le cœur, le cerveau et le muscle squelettique. Les implications pour la géroscience sont claires : la surexpression de TMEM65 protège contre la mort cellulaire induite par le calcium, ouvrant la voie à de nouvelles stratégies thérapeutiques pour éviter l’effondrement mitochondrial dans les tissus vieillissants. Bien que les résultats soient précliniques et axés sur des modèles murins, ils marquent une avancée stratégiquement importante. L’application du marquage de proximité pour cartographier l’interactome de NCLX représente une plateforme puissante pour de futures interventions spécifiques aux tissus. Cependant, une prudence est de mise. La complexité de la dynamique calcique mitochondriale – et leur enchevêtrement avec d’autres caractéristiques du vieillissement – signifie que la modulation de TMEM65 doit être étudiée attentivement dans divers contextes, y compris des modèles humains. À mesure que les chercheurs travaillent à la modulation sûre et ciblée de cette voie, TMEM65 pourrait émerger comme un levier prometteur pour changer la trajectoire du vieillissement à son cœur métabolique. L’équipe a employé la biotinylation de proximité – une technique protéomique avancée qui permet d’identifier les protéines à proximité d’une protéine cible dans des cellules vivantes – pour rechercher des régulateurs de NCLX. Parmi les protéines interagissantes découvertes, TMEM65 s’est démarqué. Bien que précédemment non caractérisé, TMEM65 est intégré dans la membrane mitochondriale et a émergé comme un interacteur direct et fonctionnellement significatif de NCLX. Cette connexion clinique a poussé les chercheurs à mener des investigations plus approfondies; en utilisant des modèles génétiques chez la souris, ils ont démontré qu’une carence en TMEM65 entraînait un surcroît de calcium mitochondrial, une mort cellulaire, une dysfonction neuromusculaire et des signes de vieillissement prématuré. En revanche, la surexpression de TMEM65 était protectrice – préservant l’intégrité mitochondriale et la fonction cellulaire dans des conditions de stress calcique. Ces découvertes suggèrent que le complexe TMEM65-NCLX joue un rôle central dans la protection de la fonction mitochondriale pendant le vieillissement et les maladies. Étant donné que les tissus cardiaques et neuronaux dépendent fortement de l’efficacité mitochondriale, le potentiel thérapeutique de cibler ce complexe pourrait s’étendre à plusieurs conditions associées à l’âge. TMEM65 est considéré comme une cible thérapeutique prometteuse. Comprendre comment augmenter ou modifier son interaction avec NCLX pourrait offrir une option de traitement importante pour les patients touchés par des maladies impliquant une accumulation de calcium pathologique dans les mitochondries. La recherche a une pertinence particulière pour des conditions telles que l’insuffisance cardiaque et la maladie d’Alzheimer, qui sont toutes deux connues pour impliquer une dysfonction mitochondriale et une gestion calcique altérée. Dans des modèles murins, des modifications de l’expression de TMEM65 ont eu un impact sur les marqueurs de la fonction cardiaque et de la neurodégénération, soulignant davantage sa pertinence systémique. Amy J. Goldberg, MD, FACS, doyenne du Lewis Katz School of Medicine, a souligné l’importance plus large des résultats. Cette découverte illustre la science transformative qui se déroule au Lewis Katz School of Medicine. En approfondissant notre compréhension de la fonction mitochondriale, nos chercheurs ouvrent la voie à des traitements innovants qui pourraient avoir un impact profond sur les patients souffrant d’insuffisance cardiaque, de la maladie d’Alzheimer et au-delà. Bien que l’étude offre une base mécanistique claire, d’autres recherches sont nécessaires pour évaluer la sécurité et l’efficacité des thérapies basées sur TMEM65. Des questions demeurent sur la façon dont cette voie se comporte à travers différents tissus et états pathologiques chez les humains, et comment la modulation pharmacologique pourrait être réalisée sans perturber les gradients d’ions essentiels. Néanmoins, l’identification de TMEM65 comme régulateur de l’efflux calcique mitochondrial représente une avancée significative dans l’élucidation de l’architecture moléculaire du vieillissement et des maladies. À mesure que les chercheurs continuent de déchiffrer la chorégraphie cellulaire de la régulation du calcium, cette découverte pourrait aider à informer une nouvelle classe d’interventions ciblant la résilience mitochondriale face au stress lié à l’âge. Source : https://longevity.technology/news/new-mitochondrial-regulator-may-aid-aging-disease-therapies/

L’épissage de l’ARN, le vieillissement et le potentiel du doxifluridine dans l’extension de la durée de vie

Le texte aborde le processus d’épissage de l’ARN, qui est fondamental pour la formation d’ARN à partir de séquences d’introns et d’exons dans les gènes. Ce processus d’épissage est crucial car il permet à un gène donné d’être assemblé en différentes formes d’ARN, selon les éléments qui sont inclus ou exclus. Il est également mentionné que la balance des différents ARN produits par un gène évolue avec l’âge, ce qui peut entraîner des dysfonctionnements. Dans une recherche visant à identifier des composés capables de réduire la dérégulation liée à l’âge dans l’épissage de l’ARN chez les nématodes, les chercheurs ont découvert un composé qui réussit à atteindre cet objectif et à prolonger la vie en manipulant les activités des microbes intestinaux. Cependant, la compréhension des mécanismes de cette extension de la vie prendra plus de temps que la découverte de la méthode elle-même, et il est précisé que ce composé spécifique pourrait ne pas être pertinent pour les souris ou les humains en raison des différences significatives dans le microbiome intestinal entre les animaux inférieurs et les mammifères. Les résultats de l’étude révèlent également que le vieillissement est associé à des défauts d’épissage alternatif, qui ont des implications larges sur les troubles liés à l’âge, mais que les médicaments capables de corriger ces défauts et d’étendre la durée de vie n’ont pas été systématiquement explorés. À l’aide d’un système de rapporteur d’épissage fluorescent double, les chercheurs ont effectué un dépistage à grande échelle de composés chez C. elegans et ont identifié le doxifluridine, un dérivé de fluoropyrimidine utilisé en chimiothérapie, comme un agent capable de restaurer les défauts d’épissage liés à l’âge et de prolonger la durée de vie. En combinant le séquençage de l’ADN bactérien, la protéomique, la métabolomique et un système de dépistage en trois étapes, ils ont également révélé que le métabolisme des ribonucléotides par les bactéries joue un rôle essentiel dans la conversion et l’efficacité du doxifluridine. Ce dernier augmente également la production de métabolites bactériens, tels que l’acide linoléique et l’agmatine, contribuant à prolonger la durée de vie de l’hôte. En somme, les résultats identifient le doxifluridine comme un composé prometteur pour corriger les défauts d’épissage liés au vieillissement et prolonger la durée de vie, tout en mettant en lumière l’interaction complexe entre le médicament, les bactéries et l’hôte. Source : https://www.fightaging.org/archives/2025/04/doxyfluridine-manipulates-gut-microbe-actitivies-to-extend-life-in-nematodes/

Régénération Cutanée et Relation Cerveau-Peau : Vers une Thérapie sans Cicatrices

La recherche sur la relation entre la peau et le cerveau présente un intérêt particulier, même si le développement de thérapies basées sur ces découvertes semble complexe. L’article en accès libre décrit comment les vésicules extracellulaires produites par des cellules cérébrales peuvent influencer le comportement des cellules de la peau, offrant ainsi une possibilité de régénération sans cicatrices après des blessures. Cependant, pour transformer cette découverte en thérapie, il est nécessaire de mieux comprendre les mécanismes de signalisation impliqués ou de développer des tissus organoïdes cérébraux humains à grande échelle pour la collecte de vésicules. Les vésicules ont été directement extraites de tissus cérébraux, mais il reste des incertitudes quant aux cellules spécifiques qui les produisent et aux types de vésicules qui sont réellement efficaces. D’autres options, telles que l’accès à un grand volume de liquide céphalo-rachidien provenant de jeunes sujets, semblent peu pratiques. Par conséquent, il convient de considérer cette recherche comme un outil qui pourrait améliorer notre compréhension des cibles pour inhiber la cicatrisation des tissus cutanés, tout en reconnaissant que des recherches supplémentaires seront nécessaires pour établir une base thérapeutique pratique.

L’axe cerveau-peau, qui est bien documenté dans la littérature, souligne que ces deux organes proviennent de la même couche germinale. Les réseaux neuroendocriniens ont été largement reconnus, notamment avec la découverte du facteur de libération de la corticotropine (CRF), qui est un acteur clé dans l’axe hypothalamo-hypophyso-surrénalien (HPA). La peau, en tant qu’organe neuroendocrinien, exprime divers hormones cérébrales et pituitaires, ainsi que plusieurs neuropeptides, pour réguler l’homéostasie locale en réponse au stress. Cependant, des états mentaux anormaux, tels que le stress, peuvent accélérer le vieillissement cutané.

Il demeure incertain si le maintien d’un cerveau jeune et en bonne santé peut favoriser la guérison des blessures cutanées chez les personnes âgées. Bien que l’interaction complexe entre le cerveau et la peau soit visible dans des altérations phénotypiques cellulaires, les mécanismes sous-jacents restent à élucider. Les vésicules extracellulaires (EVs) sont des vésicules liées à la membrane qui transportent des matériaux d’une cellule à une autre. Les EVs provenant de sujets âgés sont des médiateurs de la détérioration progressive des tissus liés à l’âge. Récemment, les thérapies par vésicules extracellulaires ont montré un potentiel prometteur dans le domaine du vieillissement.

Cette étude hypothétise que les EVs dérivées du cerveau régulent le métabolisme et les fonctions des fibrocytes liés au vieillissement en fournissant des protéines mitochondriales. Des vésicules extracellulaires dérivées du cerveau jeunes (YBEVs) ont été identifiées, et un hydrogel composite incorporant ces YBEVs a été créé, favorisant une guérison sans cicatrices chez les peaux âgées. Les résultats montrent que les YBEVs réduisent l’expression de la sénescence et des protéines associées à l’inflammation, et restaurent même la fonction des cellules sénescentes. De plus, en favorisant la déposition de collagène, l’angiogenèse, la régénération épidermique et dermique, ainsi que la folliculogenèse, ce hydrogel a accéléré la guérison sans cicatrices des blessures cutanées chez des rats âgés, égalant même les résultats observés chez des jeunes rats.

Une analyse protéomique ultérieure a révélé la présence de nombreuses protéines au sein des YBEVs, dont certaines pourraient jouer un rôle dans la régulation de l’apport énergétique cutané, notamment à travers la phosphorylation oxydative et la fonction mitochondriale. En conclusion, ces résultats suggèrent qu’un cerveau jeune pourrait potentiellement atténuer le vieillissement de la peau, et l’hydrogel proposé contenant des YBEVs émerge comme une stratégie prometteuse pour traiter les déficiences liées à l’âge dans la guérison cutanée. Source : https://www.fightaging.org/archives/2025/04/extracellular-vesicles-from-the-brain-promote-regeneration-without-scarring-in-skin/

L’acide gras C15:0 : Un potentiel essentiel pour la longévité et la santé cellulaire

Le livre « The Longevity Nutrient: The Unexpected Fat That Holds the Key to Healthy Aging » de Dr. Stephanie Venn-Watson explore l’importance d’un acide gras saturé souvent négligé, l’acide pentadécanoïque (C15:0), dans le maintien de la santé cellulaire et de la résilience. Cette découverte a été impulsée par des recherches sur les dauphins, où Venn-Watson a cherché à comprendre pourquoi certains d’entre eux vieillissaient mieux. Son analyse métabolomique a révélé que C15:0 était un marqueur commun lié à des trajectoires de vieillissement plus lentes. Ce nutriment, présent naturellement dans les produits laitiers entiers et certains poissons, aurait été sous-estimé en raison des recommandations de santé publique prônant la réduction des graisses saturées. Venn-Watson suggère que le manque de C15:0 pourrait contribuer à un syndrome qu’elle appelle le « Syndrome de Fragilité Cellulaire », qui pourrait expliquer l’augmentation des maladies métaboliques et du vieillissement précoce, en particulier chez les jeunes. Le livre discute également des mécanismes d’action de C15:0, qui active des voies biologiques associées à la longévité et améliore l’intégrité des membranes cellulaires. En outre, il aborde la défaillance moderne dans les régimes alimentaires et l’idée que la diminution des sources naturelles de C15:0 peut avoir des conséquences inattendues sur la santé. Bien que les recherches soient prometteuses, des études à long terme sont nécessaires pour établir des recommandations solides, mais le livre de Venn-Watson offre une analyse approfondie de la nutrition, de la biologie cellulaire et du vieillissement, remettant en question les idées reçues sur les graisses saturées et soulignant l’importance de C15:0. La communauté de la longévité a bien accueilli le livre, signalant son impact potentiel sur la manière dont nous comprenons et abordons le vieillissement et les maladies associées. Source : https://longevity.technology/news/the-essential-fat-that-may-hold-the-key-to-slowing-biological-aging/