Étiquette : thérapie cellulaire

Ciblage des cellules sénescentes par les cellules T gamma delta pour améliorer les résultats de la fibrose pulmonaire idiopathique

Des scientifiques de l’Institut de recherche sur la longévité ont découvert qu’un sous-ensemble de cellules T cible efficacement les cellules sénescentes et améliore les résultats dans un modèle murin de fibrose pulmonaire idiopathique. La sénescence cellulaire, qui se produit lorsque des cellules soumises à un stress cessent de se diviser et commencent à émettre des signaux pro-inflammatoires, joue un rôle double. Bien qu’elle soit bénéfique dans certaines situations telles que le développement embryonnaire et la cicatrisation des plaies, l’accumulation de cellules sénescentes avec l’âge contribue à divers phénotypes pathologiques, ce qui lui a valu une place sur la liste des caractéristiques du vieillissement. Même dans un organisme âgé, les cellules sénescentes sont rares et hétérogènes, rendant leur ciblage difficile. Le système immunitaire, bien que capable de cibler ces cellules, subit un déclin lié à l’âge, ce qui le rend moins efficace. Une étude récente a décrit l’utilisation d’un sous-ensemble distinct de cellules T gamma delta (γδ) pour cibler les cellules sénescentes. Les cellules γδ T, bien qu’appartenant au système immunitaire adaptatif, possèdent des propriétés innées leur permettant de reconnaître rapidement les cellules stressées. Les chercheurs ont isolé des cellules mononucléaires du sang périphérique et ont sélectionné les cellules γδ T Vγ9Vδ2, les plus abondantes dans le sang humain. Ils ont constaté que ces cellules tuaient efficacement les fibroblastes et les cellules endothéliales sénescentes tout en épargnant les cellules non sénescentes. Les mécanismes de ce ciblage impliquent des récepteurs spécifiques qui se lient aux molécules de stress présentes sur les cellules sénescentes. Dans un modèle murin de fibrose pulmonaire idiopathique, les souris traitées avec des cellules γδ T ont montré une réduction de l’inflammation et une meilleure survie par rapport aux témoins. Cette recherche ouvre des perspectives pour l’utilisation des cellules γδ T comme outils thérapeutiques contre les maladies liées à l’âge, en ciblant les cellules sénescentes. Source : https://www.lifespan.io/news/gamma-delta-t-cells-show-promise-against-cellular-senescence/?utm_source=rss&utm_medium=rss&utm_campaign=gamma-delta-t-cells-show-promise-against-cellular-senescence

L’Avenir Prometteur de la Médecine Régénérative et des Cellules Souches Pluripotentes Induites

Les auteurs de cet article de revue ont une vision optimiste de l’avenir de la médecine régénérative, en soulignant la capacité de générer des cellules souches pluripotentes induites (iPSCs) à partir de n’importe quel échantillon cellulaire du patient. Cependant, ils appellent à des attentes réalistes concernant les délais. Près de deux décennies se sont écoulées depuis la découverte de la première méthode de reprogrammation des cellules adultes en iPSCs, mais peu de progrès a été réalisé pour amener les thérapies à des essais cliniques initiaux. Le principal défi réside dans le fait que travailler avec des cellules est coûteux et complexe, bien plus que le développement de médicaments moléculaires. Des coûts plus élevés signifient moins de programmes et un avancement plus lent. Les maladies liées au vieillissement impliquent souvent la dysfonction ou la perte de types cellulaires spécifiques, entraînant une dégénérescence des organes et des tissus. Grâce à leurs caractéristiques « jeunes », les iPSCs offrent une solution prometteuse en permettant la reprogrammation de cellules adultes dans un état pluripotent, qui peut ensuite être dirigé pour se différencier en divers types cellulaires nécessaires pour remplacer des cellules endommagées ou dysfonctionnelles dans les corps des personnes âgées. De plus, l’avènement des iPSCs a révolutionné la modélisation des maladies et la compréhension des processus humains, en surmontant les limitations des modèles animaux conventionnels et des cellules humaines primaires. Malgré le potentiel prometteur de la technologie iPSC, plusieurs défis subsistent avant que son plein potentiel thérapeutique puisse être réalisé. Ceux-ci incluent la garantie de la sécurité et de la stabilité des cellules dérivées des iPSCs, la surmontée des problèmes potentiels de rejet immunitaire et le raffinement des protocoles de différenciation pour produire des types cellulaires pleinement fonctionnels et matures. De plus, l’établissement de protocoles robustes pour la production à grande échelle et le contrôle de qualité rigoureux sera essentiel pour la traduction clinique réussie des thérapies basées sur les iPSCs. Le domaine de la thérapie cellulaire basée sur les iPSCs progresse rapidement, avec des techniques de génie génétique et de manipulation cellulaire qui améliorent considérablement la fonctionnalité et le potentiel thérapeutique des cellules dérivées des iPSCs. À mesure que la recherche progresse, l’intégration de la technologie iPSC de pointe avec les découvertes en biologie du vieillissement promet de révolutionner les traitements des maladies liées au vieillissement. Au-delà du simple traitement des symptômes du vieillissement, les iPSCs offrent un potentiel transformateur pour intervenir dans les processus fondamentaux du vieillissement, annonçant un nouveau paradigme de la médecine régénérative axé sur l’extension à la fois de la durée de vie et de la période de santé. À mesure que ces technologies avancent, il est crucial de maintenir un accent sur les considérations éthiques et les cadres réglementaires afin de garantir que ces thérapies révolutionnaires soient développées de manière responsable et équitable. Source : https://www.fightaging.org/archives/2025/05/the-promise-of-induced-pluripotent-stem-cells-in-regenerative-medicine/

Stately Bio : Une Révolution dans la Médecine Régénérative grâce à l’Imagerie Alimentée par l’Apprentissage Machine

Stately Bio, une startup de biotechnologie basée à Palo Alto, a été fondée en 2022 par Frank Li, un ancien chercheur de Calico Life Sciences, dans le but de transformer la médecine régénérative. Après trois années en mode furtif, la société a récemment levé 12 millions de dollars de financement initial pour développer sa plateforme d’imagerie de cellules vivantes alimentée par l’apprentissage machine (ML). Cette technologie vise à surmonter un obstacle majeur dans le domaine des thérapies cellulaires : la difficulté de surveiller les cellules sur une période prolongée sans les détruire. Les méthodes traditionnelles nécessitaient la mort des cellules pour analyser leur état interne, ce qui limitait l’observation de leur évolution. En revanche, la plateforme de Stately Bio utilise une imagerie de cellules vivantes sans marquage pour examiner le développement cellulaire de manière dynamique. Les algorithmes de ML interprètent les données afin d’identifier les types de cellules et de surveiller leur différenciation sans introduire de marqueurs génétiques ou chimiques. Ce processus permet une observation continue et une analyse du comportement cellulaire, ce qui conduit à un meilleur contrôle de la production thérapeutique et à une amélioration de la qualité et de la cohérence des cellules. Frank Li a déclaré que ce financement permettra à Stately de développer sa technologie et de transformer le paysage de la médecine régénérative, rendant les thérapies cellulaires plus rapides à développer, plus abordables et accessibles à tous. Stately Bio affirme avoir produit des cellules hépatiques dont la performance est trois à dix fois supérieure à celle des alternatives actuelles dans plusieurs fonctions métaboliques. Ces cellules améliorées sont explorées pour des applications dans le dépistage de toxicité médicamenteuse, le modélisation de maladies et des applications thérapeutiques potentielles. La société a déjà démontré sa technologie dans des études collaboratives, notamment un projet récent avec le New York Blood Center, où sa plateforme a surpassé les méthodes standards telles que la cytométrie en flux pour identifier les sous-populations de cellules immunitaires dérivées de cellules souches. Le tour de financement a été dirigé par AIX Ventures, avec la participation d’autres sociétés de capital-risque ainsi que de personnalités notables telles que Jeff Dean de Google DeepMind. Stately Bio compte utiliser ces fonds pour étendre sa plateforme et développer sa propre pipeline de thérapeutiques dérivées de cellules souches. Cette approche révolutionnaire vise à résoudre un goulot d’étranglement critique qui a longtemps limité les percées dans la médecine régénérative, permettant le développement plus rapide de traitements cellulaires plus sûrs et plus efficaces. Source : https://longevity.technology/news/stately-bio-launches-to-enhance-cell-therapy-with-ml-powered-imaging/

Microglies humaines modifiées par CRISPR : Une avancée dans le traitement de la maladie d’Alzheimer et d’autres maladies du SNC

Une équipe de chercheurs de l’Université de Californie, Irvine, a développé une méthode innovante pour administrer des protéines thérapeutiques au cerveau en utilisant des microglies humaines modifiées, dérivées de cellules souches pluripotentes induites (iPSCs). Ces cellules modifiées servent de systèmes de livraison de médicaments vivants, capables de détecter l’accumulation de plaques amyloïdes, un signe distinctif de la maladie d’Alzheimer, et de répondre en produisant une enzyme dégradant l’amyloïde, la néprilysine, à proximité de la pathologie. L’un des défis majeurs dans le traitement des maladies neurodégénératives est la barrière hémato-encéphalique (BHE), qui limite l’efficacité de l’administration systémique des médicaments. L’approche développée par le groupe de l’UC Irvine contourne cette barrière en transplantant des microglies déjà présentes dans le système nerveux central (SNC), qui peuvent réagir de manière dynamique aux états pathologiques. Les microglies modifiées utilisent le promoteur CD9, un interrupteur génétique réactif à la pathologie, pour activer l’expression de la néprilysine uniquement à proximité des plaques amyloïdes. Cette étude, publiée dans la revue Cell Stem Cell, démontre le potentiel des microglies humaines modifiées comme une plateforme dynamique de livraison de médicaments à l’échelle du cerveau. En associant des microglies dérivées d’iPSC modifiées par CRISPR avec des promoteurs réactifs à la pathologie, l’équipe a développé un système capable de détecter les plaques amyloïdes et de répondre par une livraison ciblée d’enzymes thérapeutiques, une avancée tant recherchée dans la recherche sur l’Alzheimer. Ce qui est particulièrement intéressant, c’est la nature autorégulatrice de la thérapie, avec une sécrétion de néprilysine proportionnelle à la charge de la maladie, et sa capacité à atténuer non seulement la charge de plaques, mais aussi les signes de neuroinflammation et de perte synaptique, des résultats étroitement liés au déclin cognitif. Ce ciblage précis pourrait être crucial pour éviter les effets secondaires systémiques qui ont entravé les approches biologiques précédentes. Cependant, plusieurs obstacles restent à surmonter avant la traduction clinique : la durabilité de l’effet chez l’humain, la différenciation et l’édition à grande échelle des iPSC, et les voies réglementaires pour les thérapies cellulaires vivantes dans le SNC. De plus, bien que la transplantation autologue – utilisant les propres cellules d’un patient – offre une voie vers l’immunocompatibilité, cela limite plutôt la scalabilité. Ce qui est nécessaire ensuite, c’est une exploration minutieuse de la sécurité, des méthodes de livraison alternatives et peut-être une expansion à d’autres maladies du SNC liées à l’âge, comme la maladie de Parkinson ou la sclérose en plaques, des domaines où cette plateforme polyvalente montre des promesses précoces. En tant que preuve de concept, ce travail élargit considérablement les outils pour cibler la neurodégénérescence dans le cerveau vieillissant, avec des implications significatives pour la durée de santé et la longévité. Pour évaluer l’efficacité, les chercheurs ont utilisé un modèle murin de la maladie d’Alzheimer génétiquement modifié pour permettre l’engraftement de microglies humaines dans tout le cerveau. Ces souris ont montré une expression de néprilysine réactive à la pathologie spécifiquement aux sites des plaques amyloïdes, entraînant des réductions significatives des formes solubles et insolubles de l’amyloïde-bêta, y compris les oligomères neurotoxiques les plus étroitement associés à la dysfonction synaptique. Il est important de noter que le bénéfice thérapeutique ne se limitait pas à la proximité des cellules transplantées. « Remarquablement, nous avons découvert que le placement des microglies dans des zones cérébrales spécifiques pouvait réduire les niveaux d’amyloïde toxique et d’autres neuropathologies associées à la maladie d’Alzheimer dans tout le cerveau », a déclaré Jean Paul Chadarevian, chercheur postdoctoral au laboratoire de Blurton-Jones et premier auteur de l’étude. « Et parce que la protéine thérapeutique n’était produite qu’en réponse aux plaques amyloïdes, cette approche était très ciblée mais largement efficace. » De plus, des analyses ont révélé des effets bénéfiques s’étendant à de multiples pathologies secondaires. Des protéines synaptiques telles que la synaptophysine et le PSD-95 ont été préservées, les marqueurs de neuroinflammation tels que le GFAP et les cytokines pro-inflammatoires ont été réduits, et la chaîne légère de neurofilaments plasmatique – un biomarqueur circulant de dommage neuronal – a diminué de manière significative chez les animaux traités. La conception de l’étude va au-delà de la maladie d’Alzheimer ; les chercheurs ont également testé les microglies modifiées dans des modèles murins de métastases cérébrales et de démyélinisation. Dans ces contextes, les microglies ont adopté des états transcriptionnels distincts en réponse à la pathologie spécifique de la maladie, suggérant que la même plateforme de livraison pourrait être adaptée pour traiter d’autres maladies du SNC. Les cellules modifiées ont montré des preuves de réponse à des signaux associés aux tumeurs ou spécifiques à la démyélinisation, les positionnant comme des véhicules polyvalents pour une livraison précise dans divers environnements neuropathologiques. Comme l’a expliqué Mathew Blurton-Jones, professeur de neurobiologie et de comportement à l’UC Irvine et co-auteur de l’étude : « Livrer des biologiques au cerveau a longtemps été un défi majeur en raison de la barrière hémato-encéphalique. Nous avons développé un système de livraison vivant et programmable qui contourne ce problème en résidant dans le cerveau lui-même et en ne répondant que lorsque et où il est nécessaire. » Dans cette approche, l’ingénierie CRISPR a été utilisée pour intégrer des gènes thérapeutiques en aval de promoteurs natifs, garantissant que des protéines telles que la néprilysine ne soient exprimées que sous les signaux moléculaires de la maladie. Contrairement aux vecteurs viraux ou aux perfusions biologiques continues, qui peuvent provoquer des réponses immunitaires ou des effets hors cible, le système microglial offre le potentiel d’un contrôle spatial et temporel du traitement au sein du SNC. « Ce travail ouvre la voie à une toute nouvelle classe de thérapies cérébrales », a déclaré Robert Spitale, professeur de sciences pharmaceutiques à l’UC Irvine et co-auteur de l’étude. « Au lieu d’utiliser des médicaments synthétiques ou des vecteurs viraux, nous faisons appel aux cellules immunitaires du cerveau comme véhicules de livraison de précision. » Bien que les résultats représentent une avancée significative dans le domaine du traitement des maladies neurodégénératives, leur traduction en utilisation clinique nécessitera encore des travaux supplémentaires. Les complexités immunologiques et logistiques de la thérapie cellulaire autologue, la variabilité potentielle des iPSC dérivées des patients et la sécurité à long terme des cellules modifiées par génome dans le cerveau sont toutes des questions critiques. Néanmoins, la démonstration que les microglies humaines peuvent être exploitées in vivo pour livrer des charges thérapeutiques de manière sélective et durable marque une avancée importante dans le développement de stratégies régénératives pour prolonger la durée de vie en bonne santé du SNC. Les efforts futurs exploreront probablement des applications élargies à d’autres conditions neurodégénératives, des améliorations des méthodes de livraison et la possibilité d’interventions multiplexées. À mesure que le domaine passe de la preuve de concept à l’application pratique, les microglies modifiées pourraient jouer un rôle croissant dans la définition de la prochaine génération de thérapies axées sur la longévité. Source : https://longevity.technology/news/engineered-microglia-offer-precision-delivery-for-brain-therapies/

La production de mitochondries : avancées et défis dans la thérapie clinique

Les mitochondries sont des organites essentiels, souvent décrites comme les centrales énergétiques de la cellule, car elles produisent l’adénosine triphosphate (ATP), la molécule qui stocke l’énergie chimique nécessaire aux processus biochimiques cellulaires. Cependant, la fonction mitochondriale diminue avec l’âge, en partie à cause des dommages à l’ADN mitochondrial et des changements dans l’expression génique nucléaire qui affectent les protéines nécessaires au bon fonctionnement des mitochondries. Cette défaillance est particulièrement marquante dans les tissus ayant de fortes exigences énergétiques, comme les muscles et le cerveau, et contribue au déclin lié à l’âge. Des études sur des souris ont montré que la transplantation de mitochondries issues de cultures cellulaires peut entraîner des bénéfices durables. Bien que le processus de vieillissement qui réduit la fonction mitochondriale soit progressif, des mitochondries jeunes peuvent améliorer cette fonction pendant une période prolongée. Toutefois, un défi majeur réside dans la production fiable des grandes quantités de mitochondries nécessaires pour une utilisation clinique chez les personnes plus âgées. Plusieurs entreprises, dont Cellvie et Mitrix Bio, travaillent sur cette problématique. Un groupe académique a récemment décrit une approche potentielle, bien que celle-ci soit destinée à une injection locale dans le cartilage. L’objectif de perfusions de mitochondries de remplacement à l’échelle corporelle nécessitera une augmentation de l’échelle de production qui reste à prouver. La transplantation mitochondriale est une thérapie clinique prometteuse, mais son application généralisée est limitée par la disponibilité restreinte de mitochondries saines, avec des doses requises atteignant jusqu’à 10^9 mitochondries par injection et par patient. Cela nécessite des méthodes durables pour produire des mitochondries humaines de haute qualité. Une étude récente a mis en évidence une stratégie de production de mitochondries très efficace en manipulant la mitobiogenèse et en équilibrant les organites dans les cellules souches mésenchymateuses humaines (MSCs). En utilisant un milieu de culture optimisé, les chercheurs ont atteint une augmentation de 854 fois la production de mitochondries par rapport à la culture normale de MSC en 15 jours. Ces mitochondries, non seulement largement produites, ont montré une fonction supérieure tant avant qu’après leur isolement, avec des niveaux de production d’ATP atteignant 5,71 fois ceux des mitochondries normales. Les mécanismes sous-jacents impliquent l’activation de la voie AMPK, favorisant une prolifération accrue et une mitobiogenèse tout en supprimant les activités énergivores. De plus, la fonction in vivo de ces mitochondries a été validée dans un modèle murin d’arthrose, entraînant une régénération significative du cartilage sur une période de 12 semaines. Cette étude a ainsi présenté une nouvelle stratégie pour la fabrication de mitochondries humaines prêtes à l’emploi et a fourni des aperçus sur les mécanismes moléculaires régissant la synthèse des organites. Source : https://www.fightaging.org/archives/2025/03/an-approach-to-manufacture-large-numbers-of-mitochondria-for-transplantation/

Immorta Bio : Leveraging Autologous Cell Therapy for Anti-Aging Solutions

Immorta Bio développe des solutions de thérapie cellulaire autologue et d’immunothérapie pour combattre le vieillissement et améliorer la régénération cellulaire. Le vieillissement est un facteur de risque majeur pour de nombreuses maladies, entraînant la détérioration des organes et une augmentation du risque d’initiation de maladies. Les technologies d’Immorta Bio visent à exploiter la puissance des cellules souches jeunes et des cellules immunitaires améliorées du corps pour faire face aux cancers et aux maladies liées à l’âge. Le Dr Thomas Ichim, président et directeur scientifique d’Immorta Bio, explique que la thérapie cellulaire existe depuis longtemps, mais qu’il reste des défis à relever, notamment le risque de maladie du greffon contre l’hôte lors des transplantations de cellules souches sanguines. Pour surmonter ces obstacles, Immorta se concentre sur l’utilisation de cellules autologues, c’est-à-dire provenant du patient lui-même, afin de minimiser les risques. Ichim souligne que les cellules autologues peuvent offrir des réponses thérapeutiques plus efficaces et que leur approche peut générer des données prometteuses. Ils utilisent la technologie des cellules souches pluripotentes induites (iPSC) pour produire des cellules souches immortelles à partir du sang du patient, créant ainsi une réserve de cellules pouvant être utilisées pour régénérer différents tissus. Immorta vise également à traiter des indications telles que l’insuffisance hépatique avec ses cellules dérivées autologues. La plateforme SenoVax d’Immorta se concentre sur l’immunothérapie sénolytique, qui utilise les cellules dendritiques du patient pour créer des cellules immunitaires ciblées. Cette thérapie a montré des résultats positifs dans des modèles animaux de divers cancers et pourrait également être appliquée à la régénération d’organes. Ichim explique que la capacité du système immunitaire à éliminer les cellules sénescentes diminue avec l’âge, et que les tumeurs peuvent accélérer la sénescence. En immunisant contre les cellules sénescentes, Immorta Bio espère développer une thérapie anti-âge, sous réserve de l’approbation de la FDA. Ils ont également observé une synergie entre leur immunothérapie sénolytique et l’administration de cellules régénératrices dans le traitement de l’insuffisance hépatique. Ichim mentionne des recherches antérieures qui indiquent que le corps a une capacité innée de régénération, qui est inhibée par les cellules sénescentes. En éliminant ces cellules, Immorta vise à favoriser la régénération cellulaire. Cependant, le coût de la thérapie cellulaire reste un défi majeur, et Immorta explore des solutions pour réduire ces coûts tout en augmentant l’efficacité. À long terme, Immorta Bio prévoit de devenir un collaborateur et un licencié, se concentrant sur l’avancement de ses idées vers des applications cliniques tout en établissant des partenariats stratégiques. Leur objectif est de rendre leur technologie plus accessible et de créer des cellules régénératrices personnalisées pouvant être utilisées dans divers contextes. Source : https://longevity.technology/news/harnessing-the-power-of-personalized-cell-therapy/

Impact du Vieillissement sur la Fonction des Glandes Salivaires et Potentiel Thérapeutique des Exosomes Dérivés de Cellules Souches

La dysfonction des glandes salivaires est un des nombreux problèmes liés au vieillissement, souvent ignoré, sauf par ceux qui en souffrent. Les glandes salivaires, structures complexes, sont affectées par les mécanismes du vieillissement, entraînant une production insuffisante de salive. Cela peut causer des difficultés pour manger chez les personnes âgées et nuire à l’équilibre du microbiome oral. Une étude récente a mis en lumière l’accumulation de cellules sénescentes, qui jouent un rôle clé dans les dysfonctionnements liés à l’âge, en sécrétant des signaux inflammatoires qui dégradent la structure et la fonction des tissus. La salive est essentielle à la santé bucco-dentaire, participant à la lubrification, au goût, à la mastication, à la déglutition et à la défense immunitaire initiale. Les recherches montrent que les personnes âgées souffrent d’une diminution de la sécrétion salivaire, ce qui entraîne des symptômes tels que la dysphagie, un risque accru de caries dentaires et une dysbiose du microbiote oral. L’accumulation de cellules sénescentes, en particulier celles positives pour p16Ink4a, est liée aux réponses inflammatoires et à une réduction de l’espérance de vie. En revanche, l’élimination de ces cellules peut améliorer la fonction des tissus et la santé. Les jonctions serrées, complexes d’adhésion cellulaire, régulent le transport des matériaux à travers le chemin paracellulaire et jouent un rôle crucial dans la sécrétion salivaire. Des études récentes ont montré que la dysfonction des jonctions serrées contribue aux anomalies de la sécrétion salivaire dans des maladies comme le diabète. Ce texte se concentre sur l’étude des mécanismes de dysfonctionnement submandibulaire liés à l’âge et évalue le potentiel thérapeutique des exosomes dérivés de cellules souches de pulpe dentaire (DPSC-exos). Les résultats révèlent que le taux de salive stimulé était significativement réduit chez les souris vieillissantes naturellement et celles induites par le D-galactose par rapport aux souris témoins. Une atrophie acinaire et une fibrose périductale ont été observées dans les glandes submandibulaires et parotides des souris vieillissantes, tandis que les glandes sublinguales n’ont montré aucune altération notable. L’injection d’exosomes DPSC dans les glandes submandibulaires des souris D-gal a amélioré le débit salivaire, réduit l’atrophie acinaire et diminué l’activité SA-β-gal. L’étude a mis en évidence que l’augmentation de la sénescence des glandes submandibulaires chez les souris vieillissantes peut entraîner une diminution de la sécrétion salivaire en perturbant l’expression et la distribution des molécules des jonctions serrées. De plus, l’injection d’exosomes DPSC améliore la dysfonction sécrétoire submandibulaire. Ces résultats pourraient ouvrir de nouvelles pistes pour des cibles thérapeutiques novatrices concernant les dysfonctions des glandes submandibulaires liées au vieillissement. Source : https://www.fightaging.org/archives/2025/01/senescent-cells-implicated-in-loss-of-salivary-secretion-in-aging/

Inauguration de l’Installation GMP Agrandie au Roswell Park Comprehensive Cancer Center

Le Gouverneur de New York, Kathy Hochul, et les responsables du Roswell Park Comprehensive Cancer Center se sont réunis pour célébrer l’ouverture de l’installation nouvellement agrandie de fabrication de cellules et d’ingénierie (GMP) de Roswell Park. Cette expansion, qui porte la superficie de l’installation GMP à 11 000 pieds carrés, comprend 20 salles blanches réparties sur deux bâtiments ainsi qu’un étage entier au sein du Roswell Park Cancer Cell Center. Désormais la plus grande installation GMP académique de l’État de New York, cet accomplissement marque une étape transformative pour la recherche et le traitement du cancer.

L’expansion offre des équipements de thérapie cellulaire de pointe, des capacités de fabrication et un contrôle de qualité complet, fournissant un ensemble de ressources allant de la recherche préclinique à la fabrication clinique, en passant par les essais cliniques et leur mise en œuvre. Les meilleurs spécialistes dans tous les aspects de la thérapie cellulaire et génique dirigeront les travaux dans ce hub d’innovation, y compris des membres de l’équipe Roswell Park qui ont contribué au développement de trois des six thérapies CAR T-cell approuvées par la FDA pour le traitement du cancer.

Candace S. Johnson, PDG du Roswell Park Comprehensive Cancer Center, a déclaré que cette installation à la pointe de la technologie permet à Roswell Park de fabriquer des thérapies personnalisées utilisant les propres cellules des patients sur place. Elle souligne que cela donnera aux médecins et scientifiques de classe mondiale les outils et ressources nécessaires pour faire progresser les soins du cancer et permettra également de collaborer avec des organisations de recherche et des entreprises pharmaceutiques pour favoriser de nouveaux produits et développements.

La conception de cette installation multi-usages contribuera à développer des thérapies CAR T-cell révolutionnaires et soutiendra également de petites entreprises biopharmaceutiques, facilitant l’avancement de traitements qui pourraient autrement être freinés par des contraintes de financement ou de production. Cela garantira que les traitements les plus prometteurs puissent atteindre les patients atteints de cancer plus rapidement.

Yeong “Christopher” Choi, directeur technique de l’installation GMP de Roswell Park, a souligné l’engagement des experts à guider ces développements à travers chaque étape du processus, en veillant à la qualité, à l’efficacité et à la conformité, tout en restant concentré sur l’objectif ultime : les soins et le traitement des patients. L’infrastructure soigneusement planifiée est conçue pour faciliter l’accès aux traitements d’immunothérapie les plus prometteurs et est prête à devenir la plus grande installation GMP académique de l’État de New York, bénéficiant des connaissances des experts mondialement reconnus en thérapie cellulaire de Roswell Park.

Renier Brentjens, MD, PhD, l’un des pionniers de la thérapie CAR T-cell, a constitué une équipe de scientifiques, d’ingénieurs et d’oncologues de premier plan dédiée à l’avancement de ces traitements, à améliorer leur sécurité et leur efficacité, et à les rendre plus largement disponibles. Cinq essais cliniques CAR T sont prévus pour commencer en 2025, utilisant l’expansion de l’installation pour créer ces traitements personnalisés.

Brentjens a déclaré que ces thérapies ont un potentiel remarquable pour sauver des vies. L’installation GMP permet à Roswell Park de tracer véritablement la voie pour passer des recherches au chevet des patients et leur fournir les traitements dont ils ont besoin aussi rapidement que possible. Pour en savoir plus sur les ressources uniques disponibles au seul centre de cancer complet désigné par le National Cancer Institute dans le New York Upstate, ainsi que sur la nouvelle technologie au sein de l’installation GMP Engineering & Cell Manufacturing Facility, il est conseillé de visiter le site de Roswell Park. Depuis la première recherche sur la chimiothérapie jusqu’au biomarqueur PSA du cancer de la prostate, le Roswell Park Comprehensive Cancer Center génère des innovations qui façonnent la détection, le traitement et la prévention du cancer dans le monde entier. La mission de Roswell Park est d’éliminer l’emprise du cancer sur l’humanité, avec une équipe de 4 000 personnes qui rendent les soins et services centrés sur le patient accessibles à travers l’État de New York et au-delà. Fondé en 1898, Roswell Park était parmi les trois premiers centres de cancer aux États-Unis à devenir un centre de cancer complet désigné par le National Cancer Institute et est le seul à détenir cette désignation dans le New York Upstate. Source : https://www.lifespan.io/news/cutting-edge-facility-expands-to-support-cancer-therapy/?utm_source=rss&utm_medium=rss&utm_campaign=cutting-edge-facility-expands-to-support-cancer-therapy

Inauguration de l’installation GMP agrandie au Roswell Park Comprehensive Cancer Center

Le gouverneur de New York, Kathy Hochul, et les dirigeants du Roswell Park Comprehensive Cancer Center se sont réunis pour célébrer l’inauguration de l’installation de fabrication de cellules et d’ingénierie, récemment agrandie, de Roswell Park. Cette expansion de 11 000 pieds carrés comprend 20 salles blanches réparties sur deux bâtiments et un étage entier dans le Roswell Park Cancer Cell Center. Avec cette expansion, le centre devient la plus grande installation GMP académique de l’État de New York, marquant une avancée significative pour la recherche et le traitement du cancer. L’installation permet de fournir des équipements de thérapie cellulaire à la pointe de la technologie, des capacités de fabrication et un contrôle qualité complet, englobant la recherche préclinique, la fabrication clinique, les essais cliniques et l’implémentation. Des spécialistes de premier plan dans tous les domaines de la thérapie cellulaire et génique dirigeront les travaux dans ce pôle d’innovation, incluant des membres de l’équipe de Roswell Park qui ont contribué au développement de trois des six thérapies CAR T-cell approuvées par la FDA. Candace S. Johnson, PDG de Roswell Park, souligne que cette installation de pointe permettra de fabriquer des thérapies personnalisées à partir des cellules des patients, tout en offrant des ressources aux médecins et scientifiques de classe mondiale. Le design de l’installation multifonctionnelle favorisera également la croissance de thérapies CAR T-cell innovantes et soutiendra de petites entreprises biotechnologiques, permettant d’accélérer l’accès aux traitements prometteurs pour les patients atteints de cancer. Yeong “Christopher” Choi, directeur technique de l’installation GMP, insiste sur l’engagement des experts à guider le développement de ces thérapies à chaque étape, en garantissant qualité et conformité. Renier Brentjens, pionnier de la thérapie CAR T-cell, est déterminé à améliorer la sécurité et l’efficacité de ces traitements. Cinq essais cliniques de CAR T sont prévus pour 2025, utilisant les nouvelles installations pour créer des traitements sur mesure. Le centre Roswell Park, fondé en 1898, est un leader dans l’innovation contre le cancer, offrant des soins accessibles à travers l’État de New York. Pour en savoir plus sur les ressources uniques et les nouvelles technologies de l’installation, il est possible de visiter le site web de Roswell Park. Source : https://www.lifespan.io/news/cutting-edge-facility-expands-to-support-cancer-therapy/?utm_source=rss&utm_medium=rss&utm_campaign=cutting-edge-facility-expands-to-support-cancer-therapy

MUVON : Une technologie de régénération musculaire prometteuse pour la santé des femmes

MUVON Therapeutics, une entreprise suisse de biotechnologie, a récemment partagé des résultats intermédiaires positifs de son essai clinique de phase 2, qui étudie une thérapie de régénération des tissus musculaires squelettiques pour traiter l’incontinence urinaire de stress chez les femmes. Les résultats préliminaires, basés sur des données de 10 patientes suivies pendant au moins six mois après l’injection du produit, ont conduit à la recommandation de la poursuite de l’étude par le Conseil international de surveillance de la sécurité des données. MUVON prévoit de publier les résultats finaux de l’étude d’ici le troisième trimestre de 2025. Dr Deana Mohr, la co-fondatrice et PDG de MUVON, a partagé son parcours inspirant dans le domaine de la médecine régénérative, qui a débuté lors de ses études de doctorat à l’ETH Zurich. Elle a été frappée par les dommages musculaires causés par l’accouchement, ce qui l’a poussée à se concentrer sur l’aide aux femmes souffrant de ces effets débilitants, en particulier l’incontinence urinaire de stress, qui touche jusqu’à 40 % des femmes de plus de 40 ans. Mohr a mené des expériences sur des animaux, observant des résultats prometteurs qui ont conduit à l’approbation des essais chez l’homme avant même sa défense de thèse, ce qui a permis de fonder MUVON en 2020. L’accent mis par MUVON sur la régénération musculaire personnalisée, en se concentrant sur les muscles petits mais cruciaux, la distingue des autres entreprises de médecine régénérative qui se concentrent souvent sur des maladies musculaires génétiques et des muscles plus grands. Le processus consiste à prélever une biopsie musculaire, à isoler les cellules précursors musculaires, et à les injecter dans le muscle endommagé. Cette approche autologue et non modifiée génétiquement vise à assurer la sécurité et l’acceptation par les patients. MUVON aspire à offrir des solutions de médecine régénérative à un coût abordable, visant à rendre ces traitements accessibles à un large public. Avec des données prometteuses en phase 1 et un essai en phase 2 en cours, Mohr est optimiste quant à l’obtention d’une première thérapie approuvée. Elle prévoit la réalisation d’un essai multicentrique à grande échelle pour confirmer l’efficacité et la sécurité du traitement avant de rechercher l’approbation commerciale en Europe et aux États-Unis. MUVON a également réussi à lever des fonds non dilutifs significatifs pour soutenir ses travaux cliniques et envisage de lever 20 millions de dollars supplémentaires avant la publication des résultats finaux de la phase 2. Mohr voit un potentiel pour la technologie de MUVON afin d’adresser d’autres conditions musculaires dans un avenir proche, soulignant l’importance de la régénération musculaire pour améliorer la résilience physique et la qualité de vie, en particulier chez les populations vieillissantes. Source : https://longevity.technology/news/personalized-approach-to-muscle-regeneration-holds-promise-for-longevity/?utm_source=rss&utm_medium=rss&utm_campaign=personalized-approach-to-muscle-regeneration-holds-promise-for-longevity