Étiquette : système immunitaire

Cibler la protéine WSTF pour combattre l’inflammation chronique liée au vieillissement

L’inflammation chronique liée au vieillissement est un facteur majeur contribuant au développement et à la progression des maladies liées à l’âge. Le système immunitaire réagit de manière maladaptée aux formes de dommages moléculaires et de dysfonctionnements caractéristiques du vieillissement, entraînant des conséquences néfastes à long terme. Bien que l’inflammation à court terme soit nécessaire pour des situations telles que l’infection, la suppression du cancer et la régénération après une blessure, une inflammation soutenue et non résolue perturbe la structure et la fonction des tissus. L’un des plus grands défis pour trouver des moyens de supprimer l’inflammation à long terme réside dans le fait que celle-ci utilise les mêmes systèmes de régulation que l’inflammation à court terme. Par conséquent, les approches réussies pour réduire l’inflammation indésirable pourraient également nuire à l’efficacité du système immunitaire. Si une méthode pour contourner ce problème était trouvée, cela pourrait ouvrir la voie à des thérapies visant à réduire l’inflammation liée à l’âge sans nuire aux fonctions essentielles du système immunitaire. Une étude récente a identifié une protéine appelée WSTF qui pourrait être ciblée pour bloquer l’inflammation chronique. Cette stratégie ne devrait pas interférer avec l’inflammation aiguë, permettant ainsi au système immunitaire de continuer à répondre adéquatement aux menaces à court terme, comme les infections virales ou bactériennes. Les chercheurs ont découvert que WSTF interagit avec d’autres protéines à l’intérieur des noyaux cellulaires, ce qui entraîne son excrétion et sa dégradation. Étant donné que WSTF est responsable de la dissimulation des gènes pro-inflammatoires, cette éviction du noyau révèle ces gènes et amplifie ainsi l’inflammation. Les chercheurs ont confirmé que la perte de WSTF pouvait promouvoir l’inflammation dans des modèles murins de vieillissement et de cancer. À l’aide de cellules humaines, ils ont observé que la perte de WSTF ne se produisait qu’en cas d’inflammation chronique, pas aiguë. En utilisant ces résultats, les chercheurs ont conçu un traitement restaurateur de WSTF pour supprimer l’inflammation chronique et ont observé un succès préliminaire dans des modèles murins de vieillissement, de stéatose hépatique associée à une dysfonction métabolique (MASH) et d’arthrose. L’examen d’échantillons de tissus de patients atteints de MASH ou d’arthrose a révélé que WSTF était perdu dans les foies des patients atteints de MASH, mais pas dans ceux des donneurs en bonne santé. En utilisant des cellules des genoux de patients arthrosiques subissant une chirurgie de remplacement articulaire, les chercheurs ont montré qu’un traitement restaurateur de WSTF réduisait l’inflammation chronique des cellules enflammées du genou. Ces résultats mettent en lumière le potentiel de développement de nouveaux traitements ciblant WSTF pour combattre les maladies inflammatoires chroniques. Source : https://www.fightaging.org/archives/2025/07/a-possible-approach-to-suppressing-only-chronic-inflammation-not-acute-inflammation/

L’Impact Moléculaire du Tabagisme et son Lien avec le Vieillissement Accéléré

Des chercheurs ont analysé les motifs moléculaires provenant de différents tissus obtenus chez plus de 700 personnes et ont appris que le tabagisme agit comme un accélérateur de vieillissement et implique des changements moléculaires dans des tissus au-delà de ceux directement exposés à la fumée de cigarette. Malgré les campagnes visant à réduire le tabagisme, cette pratique demeure courante et est considérée comme la principale cause de mortalité évitable dans le monde, entraînant 8 millions de décès par an. La mortalité liée au tabagisme est accrue en raison d’un risque accru de maladies respiratoires, cardiovasculaires, métaboliques, auto-immunes, rénales, infectieuses et de cancers. Les études précédentes ont principalement abordé les effets du tabagisme en se concentrant sur les voies respiratoires et le sang entier. Cependant, cette étude a élargi l’investigation à l’impact des cigarettes sur plusieurs tissus humains, utilisant le projet Genotype Tissue Expression (GTEx) qui contient des données de 46 types de tissus humains de 717 individus. Les chercheurs ont comparé l’expression des gènes dans différents tissus entre fumeurs et non-fumeurs. Le nombre de gènes exprimés différemment entre fumeurs et non-fumeurs variait selon les tissus, les plus grandes différences se produisant dans les poumons, le pancréas, la thyroïde et les cellules tapissant l’œsophage. La plupart des changements étaient spécifiques au tissu, 86 % des gènes montrant des changements liés au tabagisme étant altérés dans un seul tissu. Seuls quelques gènes dont l’expression a été régulée à la hausse par le tabagisme étaient communs à neuf tissus différents. Un sous-ensemble de ces gènes avait déjà été signalé comme étant up-régulé par l’exposition directe aux hydrocarbures aromatiques polycycliques (HAP), des produits chimiques formés lors du tabagisme. Cette connexion suggère que des composés toxiques issus du tabagisme atteignent également des tissus non directement exposés à la fumée. Un autre sous-ensemble de gènes altérés par le tabagisme dans plusieurs tissus est lié aux fonctions du système immunitaire et à l’inflammation. En plus de l’épigénétique, l’expression génétique peut être affectée par des changements de splicing. Les chercheurs ont observé des événements de splicing alternatif dans 17 tissus de fumeurs, les poumons, la thyroïde et le cœur étant les plus affectés. Environ la moitié des splicing alternatifs ont conduit à l’inclusion ou à l’exclusion d’un exon, entraînant des changements dans la protéine. L’autre moitié des événements de splicing alternatif a entraîné la perte de protéines fonctionnelles correctement codées. Une analyse plus approfondie a été axée sur les quatre tissus montrant le plus de changements liés au tabagisme en expression génique : le poumon, la thyroïde, le pancréas et la muqueuse œsophagienne. Une analyse d’images de ces tissus a suggéré des changements structurels, y compris au niveau cellulaire. Par exemple, dans le tissu thyroïdien, les chercheurs ont observé de plus gros follicules contenant du colloïde, les unités de stockage des hormones thyroïdiennes inactives, ce qui est cohérent avec l’association précédemment rapportée entre le tabagisme et la croissance irrégulière de la glande thyroïde. Les chercheurs suggèrent que le thiocyanate présent dans la fumée de cigarette pourrait jouer un rôle ici, car il inhibe l’absorption d’iode par la glande thyroïdienne, entraînant des problèmes dans la production d’hormones thyroïdiennes. Des recherches antérieures ont observé des similitudes entre les changements d’expression génique liés au tabagisme et au vieillissement dans les voies respiratoires. Ces chercheurs ont élargi l’analyse à différents tissus. Huit tissus ont montré que le chevauchement entre les gènes différentiellement exprimés liés au vieillissement et au tabagisme est plus élevé que ce qui serait attendu par hasard. Les changements dans l’expression des gènes vont dans la même direction, de nombreux gènes étant associés au système immunitaire et à l’inflammation. Au-delà de ces changements dans l’expression des gènes, le tabagisme a également induit des changements dans les motifs de méthylation. En comparant les sites méthylés aux motifs d’expression génique, il a été révélé que, dans l’ensemble, le tabagisme impactait la méthylation de l’ADN et l’expression génique de manière indépendante. Cependant, il y avait également certains motifs partagés entre les gènes dont l’expression est associée au tabagisme et le motif d’hypométhylation lié au tabagisme. Dans les deux groupes, les chercheurs ont noté une enrichissement dans les changements de fonctionnement liés au système immunitaire, suggérant une activation du système immunitaire. La plupart des observations décrites jusqu’ici dans cette étude étaient des associations, et non des liens causaux. Pour établir la causalité, les chercheurs se sont appuyés sur les résultats d’une étude précédente qui a identifié des sites de méthylation spécifiques ayant un effet causal sur les phénotypes liés au vieillissement. Le chevauchement des motifs de méthylation liés au tabagisme avec des sites de méthylation ayant un effet causal sur les phénotypes liés au vieillissement a montré un chevauchement substantiel dans les tissus pulmonaires. Ces résultats suggèrent un effet causal entre le tabagisme et le vieillissement accéléré des tissus, agissant à travers la méthylation de l’ADN sur des sites ayant un impact causal sur le vieillissement. Une analyse plus approfondie de différents sites de méthylation par quelques horloges épigénétiques suggérait que l’accélération de l’âge dans les poumons résulte de perturbations à des sites de méthylation protecteurs, c’est-à-dire des sites qui contribuent à une longévité saine. Les fumeurs sont toujours conseillés d’arrêter de fumer pour améliorer leurs résultats de santé ; cependant, l’arrêt impacte-t-il les changements d’expression génique et les motifs de méthylation de l’ADN ? Les chercheurs ont utilisé des données de fumeurs et de non-fumeurs et les ont comparées à des personnes ayant arrêté de fumer. Cette analyse a suggéré une réversibilité partielle parmi la plupart des gènes, du splicing et des événements de méthylation. Cependant, les chercheurs ont observé des changements d’expression à des gènes plus réversibles que non réversibles, rendant les ex-fumeurs plus similaires aux personnes qui n’ont jamais fumé en termes d’expression génique. Dans la méthylation de l’ADN, il y avait moins de sites réversibles que non réversibles, rendant les ex-fumeurs plus similaires aux fumeurs. En analysant les effets sur l’expression génique et la méthylation de l’ADN partagés entre le tabagisme et le vieillissement, les chercheurs ont noté que chez les personnes ayant arrêté de fumer, les sites de méthylation non réversibles dans les poumons étaient enrichis en sites de méthylation associés à des signatures de vieillissement, mais ce n’était pas le cas pour les sites réversibles et partiellement réversibles, suggérant que les effets du tabagisme qui affectent la méthylation de l’ADN en commun avec le vieillissement sont plus persistants dans le temps. Ce n’était pas le cas pour les changements d’expression génique. Dans l’ensemble, les résultats de cette étude soutiennent l’hypothèse selon laquelle le tabagisme entraîne un vieillissement accéléré, avec une dysrégulation du système immunitaire et de l’inflammation ayant un fort impact sur les deux processus. Bien que l’arrêt puisse aider à renverser certains des changements liés au tabagisme, il existe des signatures moléculaires qui pourraient persister longtemps. Source : https://www.lifespan.io/news/molecular-similarities-between-cigarette-smoking-and-aging/?utm_source=rss&utm_medium=rss&utm_campaign=molecular-similarities-between-cigarette-smoking-and-aging

L’inflammaging : Comprendre le lien entre inflammation et vieillissement

Le domaine de la longévité a du mal à nommer des concepts, mais l’un des termes notables est « inflammaging », qui désigne l’inflammation chronique de bas grade associée au vieillissement. L’inflammation, réaction omniprésente du système immunitaire face à divers stress, est reconnue comme un moteur majeur de nombreuses maladies liées à l’âge et pourrait être un facteur limitant pour la durée de vie maximale de notre espèce. Le Dr David Furman, spécialiste de l’inflammation à Stanford et au Buck Institute for Research on Aging, est une autorité en la matière. Son équipe a développé une horloge de vieillissement liée à l’inflammation, qu’il espère commercialiser, tout en minimisant les expositions environnementales qui provoquent l’inflammation.

Originaire d’Argentine, son parcours a débuté lorsqu’il a décidé de créer un impact positif sur l’humanité. Après une conversation avec son père, il a choisi d’étudier la biologie et la biochimie, se focalisant sur l’immunologie. Son intérêt pour le lien entre inflammation et maladies liées à l’âge a émergé dans les années 2000. Il a rejoint Stanford en 2008 pour diriger le projet Thousand Immunomes, qui explore le système immunitaire à l’aide d’une approche multi-omique. L’analyse de grandes quantités de données l’a amené à se concentrer sur le vieillissement et la longévité, ce qui l’a conduit à rejoindre le Buck Institute en 2019.

L’importance de l’inflammation dans le vieillissement a été peu reconnue jusqu’à récemment, mais des études montrent que l’inflammation accélère le vieillissement. Par exemple, une étude a montré que des cellules cancéreuses se développent plus rapidement en présence d’interleukine-6. De même, l’inflammation est liée à des maladies cardiovasculaires et neurodégénératives, changeant notre compréhension des maladies liées à l’âge.

Furman insiste sur l’importance d’intervenir précocement pour prévenir les maladies. Sa recherche porte sur l’identification de signes précoces de maladies à partir de changements moléculaires, permettant de prédire la mortalité chez des individus asymptomatiques. Les modifications épigénétiques peuvent également jouer un rôle dans l’inflammaging, avec des impacts potentiels sur les générations futures.

L’horloge de vieillissement qu’il a développée, appelée iAge, utilise des réseaux de protéines pour prédire l’âge immunitaire d’une personne. Les résultats montrent que des individus centenaires présentent un âge inflammatoire beaucoup plus jeune que leur âge chronologique. Cela suggère que les centenaires possèdent des profils immunitaires distincts, leur permettant de mieux gérer l’inflammation.

Furman propose que mimer le système immunitaire des centenaires pourrait contribuer à prolonger la durée de vie en bonne santé. Par ailleurs, il souligne l’importance d’un environnement sain pour contrôler l’inflammation, ayant personnellement modifié son mode de vie pour réduire son propre niveau d’inflammation. Il aborde également le rôle des choix de vie et des environnements dans le développement de l’inflammation, plaidant pour une approche préventive intégrant ces facteurs.

Enfin, il mentionne son entreprise, Edifice Health, qui vise à commercialiser l’horloge iAge, soulignant les inefficacités de la recherche académique et la nécessité de traduire les découvertes scientifiques en solutions concrètes pour améliorer la santé de la population. Source : https://www.lifespan.io/news/dr-david-furman-on-inflammation-and-aging/?utm_source=rss&utm_medium=rss&utm_campaign=dr-david-furman-on-inflammation-and-aging

Athérosclérose : Mécanismes, Impacts et Nouvelles Approches Thérapeutiques

L’athérosclérose est une condition caractérisée par la formation de plaques grasses dans les parois des artères, ce qui constitue une des principales causes de mortalité chez les humains, engendrant des événements tels que les crises cardiaques, les AVC et l’insuffisance cardiaque. Une fois qu’une plaque atteint une certaine taille, les mécanismes de sa formation deviennent moins significatifs par rapport à un cycle de rétroaction simple. L’environnement de la plaque est inflammatoire et endommagé, attirant les macrophages, des cellules du système immunitaire, qui tentent d’absorber le cholestérol et les débris cellulaires, mais finissent par être submergés. Ce processus entraîne la mort des macrophages, contribuant ainsi à l’accumulation de la plaque, qui devient un véritable cimetière pour ces cellules. Des recherches visent à améliorer la résilience des macrophages afin qu’ils puissent mieux gérer l’excès de cholestérol et réduire la formation de plaques. Un des axes de recherche concerne l’enzyme IDO1, qui est activée lors de l’inflammation et interfère avec le métabolisme du cholestérol dans les macrophages. En bloquant IDO1, les macrophages récupèrent leur capacité à absorber le cholestérol, ce qui pourrait constituer une nouvelle voie de prévention des maladies cardiaques. De plus, une autre enzyme, la synthase de l’oxyde nitrique (NOS), semble aggraver les effets de l’IDO1, suggérant que son inhibition pourrait également aider à gérer les problèmes de cholestérol liés à l’inflammation. Des études montrent que l’expression du récepteur SR-BI, essentiel pour le transport inversé du cholestérol, est réduite lors de l’activation de NF-κB, ce qui affecte l’homéostasie du cholestérol. La régulation de SR-BI par IDO1 et son rôle dans l’inflammation mettent en lumière la complexité de la dysfonction des macrophages et son impact sur les maladies cardiovasculaires et l’athérosclérose. En modifiant ces voies métaboliques, il pourrait être possible de favoriser une meilleure réponse des macrophages, réduisant ainsi le risque de maladies associées à l’athérosclérose. Source : https://www.fightaging.org/archives/2025/07/an-approach-to-reduce-inflammatory-behavior-in-macrophages-improving-function/

La lutte contre les maladies infectieuses chez les personnes âgées : défis et opportunités

Les maladies infectieuses représentent une cause majeure de mortalité tardive, conséquence du déclin lié à l’âge de la fonction immunitaire. L’investissement considérable en temps et en financement pour améliorer l’efficacité des vaccins chez les personnes âgées illustre les coûts associés à la gestion des conséquences du vieillissement. Le développement de nouveaux vaccins et de meilleures techniques de vaccination est un processus coûteux. Cependant, inciter le système immunitaire vieillissant à redoubler d’efforts grâce à des adjuvants et à d’autres techniques de vaccination plus sophistiquées ne peut pas produire le même degré de bénéfice qu’une vaccination plus simple chez un adulte plus jeune, car le système immunitaire est intrinsèquement limité par le vieillissement. C’est l’une des nombreuses raisons pour lesquelles la revitalisation des fonctions jeunes est un objectif bien plus pertinent. Les personnes âgées (65 ans et plus) constituent le groupe d’âge à la croissance la plus rapide dans le monde aujourd’hui. Permettre aux personnes âgées de vivre de manière autonome, de rester socialement engagées et de gérer ou de prévenir les maladies chroniques contribue à réduire les coûts de santé et à améliorer la qualité de vie. Les maladies infectieuses sont une cause majeure de morbidité et de mortalité dans cette population. En 2021, la COVID-19 était la troisième cause de décès chez les personnes de plus de 65 ans dans l’UE, représentant 10,9 % de tous les décès, soulignant ainsi l’impact dévastateur des maladies infectieuses sur les populations âgées. Les co-morbidités, telles que les maladies chroniques cardiaques ou pulmonaires et le diabète, augmentent également le risque de infections sévères. La morbidité globale due aux maladies infectieuses chez les adultes plus âgés est souvent sous-estimée. En plus de l’impact immédiat de la maladie aiguë, plusieurs autres risques et séquelles sont associés aux infections dans ce groupe d’âge. Beaucoup de personnes âgées ne récupèrent pas complètement après un épisode aigu d’infection. Une étude au Canada a rapporté une mortalité de 12 % chez les patients âgés de 65 ans et plus hospitalisés pour une infection grippale, et 20 % ont souffert d’une diminution de leur statut fonctionnel après récupération. Ainsi, la prévention des maladies infectieuses est une mesure importante pour garantir un vieillissement en bonne santé et préserver la qualité de vie. Des vaccins contre la grippe et la pneumonie sont disponibles depuis longtemps. Cette revue se concentre sur les développements récents concernant les vaccins pour les personnes âgées, y compris les stratégies visant à améliorer et à faire progresser les vaccins existants et le développement récent de vaccins contre des agents pathogènes supplémentaires, tels que le virus respiratoire syncytial. Il reste encore de nombreux agents pathogènes pour lesquels des vaccins sont très souhaitables pour les personnes âgées. Les changements liés à l’âge du système immunitaire peuvent altérer l’immunogénicité et l’effet protecteur des vaccins, ce qui rend nécessaire la mise en place de stratégies spécifiques pour protéger cette population vulnérable. Source : https://www.fightaging.org/archives/2025/07/vaccination-research-and-development-as-an-example-of-the-expense-of-trying-to-cope-with-aging/

Impact de la signalisation cGAS-STING sur le vieillissement et l’inflammation cutanée

Le texte aborde le phénomène de fuite de fragments d’ADN, provenant soit du noyau, soit des mitochondries, dans le cytosol des cellules, qui est un indicateur de stress cellulaire, de dysfonctionnement et de dommages. Cette fuite d’ADN est reconnue par le système immunitaire inné, qui déclenche des signaux inflammatoires pour alerter l’organisme. Bien que cette réaction soit une défense contre des infections bactériennes et virales, elle peut également réagir à l’ADN mal localisé des cellules elles-mêmes. Cela joue un rôle crucial dans la conversion des dommages moléculaires et du stress en un appel à l’aide pour le système immunitaire à un endroit spécifique. La voie de détection de l’ADN cytosolique impliquant cGAS et STING est un des nombreux mécanismes immunitaires innés qui détectent les dommages moléculaires. cGAS agit comme un capteur d’ADN dans le cytosol, et son interaction avec STING entraîne des changements dans l’état cellulaire et la signalisation inflammatoire. Les chercheurs s’intéressent de plus en plus à cette voie cGAS-STING comme cible pour atténuer la suractivation maladaptive du système immunitaire dans les tissus vieillissants et les maladies inflammatoires. Cependant, cette interaction est également essentielle pour l’activation bénéfique du système immunitaire, ce qui complique les efforts visant à supprimer agressivement ces systèmes régulateurs impliqués dans l’inflammation chronique liée à l’âge. Des approches plus efficaces sont nécessaires pour éliminer les dommages liés à l’âge qui causent l’activation de STING. Le texte évoque aussi le phénomène du photo-vieillissement, qui est induit par l’exposition excessive de la peau aux radiations UV. Cette exposition accélère le processus de vieillissement et entraîne un état de photo-vieillissement, avec des altérations pathologiques similaires à celles observées lors du vieillissement chronologique. Les radiations UV, notamment UVA et UVB, déclenchent la sénescence cellulaire et un état inflammatoire chronique dans la peau, favorisant le stress oxydatif et la fuite d’ADN double brin (dsDNA) des noyaux et mitochondries dans le cytoplasme des kératinocytes et fibroblastes. L’ADN cytosolique est reconnu comme un signal de danger spécifique qui stimule les capteurs d’ADN cytoplasmique. L’activation de la signalisation cGAS-STING est un mécanisme de défense majeur contre les blessures tissulaires. Des preuves abondent que l’exposition aux UV stimule la signalisation cGAS-STING, favorisant la sénescence cellulaire et remodelant le réseau immunitaire local et systémique. Cette signalisation active les voies de signalisation IRF3 et NF-κB, entraînant des réponses pro-inflammatoires et immunosuppressives. De plus, la signalisation cGAS-STING stimule les réponses inflammatoires par l’activation des inflammasomes NLRP3. Les fibroblastes sénescents sécrètent des cytokines, chimiokines et facteurs de stimulation des colonies, induisant la différenciation myéloïde et le recrutement des cellules immunitaires dans la peau enflammée. Le photo-vieillissement est associé à un état immunosuppresseur dans la peau, dû à une expansion des cellules immunosuppressives, telles que les cellules T régulatrices. La signalisation cGAS-STING induite par les UV stimule également l’expression de PD-L1, un ligand pour un récepteur de point de contrôle immunitaire inhibiteur, entraînant l’épuisement des cellules immunitaires effectrices. Il est clairement établi que la signalisation cGAS-STING peut également accélérer le vieillissement chronologique en remodelant le réseau immunitaire. Source : https://www.fightaging.org/archives/2025/07/inflammatory-cgas-sting-signaling-as-a-component-of-photoaging-of-skin/

L’impact du complément C3 sur la démence et les perspectives thérapeutiques

Les chercheurs ont découvert que des quantités excessives de la protéine immunitaire complément C3, qui augmente avec l’âge, sont responsables de la démence dans un modèle murin. Le système complémentaire joue un rôle clé dans l’élimination des protéines mal repliées et des fragments cellulaires du cerveau. Des déficiences en C3 ou son récepteur entraînent des déficits cognitifs sévères dans des modèles murins. De plus, des études montrent que chez les humains, le C3 augmente avec l’âge et est corrélé à la diminution du volume du lobe frontal chez les patients atteints de démence frontotemporale. Les chercheurs ont donc étudié la biochimie fondamentale de C3. Dans leurs expériences, des souris génétiquement modifiées pour surexprimer C3 ont montré des comportements altérés, comme une capacité réduite à apprendre des réponses à la peur et une diminution de l’activité neuronale dans certaines régions du cerveau. Ces effets négatifs étaient liés à une signalisation insulinique altérée, aggravée par des conditions telles que le diabète et l’obésité. En ajoutant des anticorps anti-C3 dans le cerveau de souris vieillissantes, les chercheurs ont observé une amélioration des performances cognitives dans certains tests de mémoire. Bien que cette étude n’ait pas testé de thérapie applicable aux humains, elle ouvre la voie à des recherches futures sur l’utilisation du C3 comme cible thérapeutique contre le déclin cognitif lié à l’âge. Source : https://www.lifespan.io/news/researchers-identify-a-new-dementia-target/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-identify-a-new-dementia-target

Rôle de l’α-synuclein et des cellules T dans la détection précoce de la maladie de Parkinson

La protéine α-synuclein joue un rôle central dans la maladie de Parkinson, en se mal repliant et en se propageant d’un neurone à l’autre dans le système nerveux, provoquant ainsi la pathologie associée à cette maladie. Des études montrent que chez les patients atteints de Parkinson, les cellules T présentent une réactivité accrue envers l’α-synuclein, ce qui pourrait contribuer à l’inflammation et à la progression de la maladie. Fait intéressant, cette réactivité est mesurable avant même l’apparition des symptômes évidents de la maladie, ce qui soulève la possibilité d’un test sanguin permettant de détecter la maladie de Parkinson à ses stades les plus précoces. Les chercheurs ont également longtemps soupçonné un rôle du système immunitaire dans la progression de la maladie de Parkinson, notamment en raison de la fréquence accrue des cellules gliales activées et des cellules T infiltrantes dans la substantia nigra. Des données antérieures indiquent que les donneurs atteints de Parkinson présentent des réponses T cellulaires accrues envers PINK1 et l’α-synuclein, qui sont deux protéines associées aux corps de Lewy. La réactivité des cellules T envers l’α-synuclein est particulièrement marquée à l’approche de l’apparition de la maladie, suggérant que les cellules T autoreactives pourraient jouer un rôle dans la pathogenèse de la maladie de Parkinson. Cependant, on ignore si cette autoreactivité des cellules T est présente durant la phase prodromale de la maladie. Dans cette étude, les chercheurs ont examiné les réponses des cellules T envers PINK1 et l’α-synuclein chez des donneurs à haut risque de développer la maladie de Parkinson (maladie prodromale), en les comparant à des donneurs atteints de Parkinson et à des témoins sains. Ils ont constaté que la réactivité des cellules T envers ces deux autoantigènes était détectable chez les donneurs prodromaux à des niveaux comparables à ceux observés chez les individus diagnostiqués cliniquement. En accord avec l’incidence accrue de la maladie de Parkinson chez les hommes, les chercheurs ont également observé que les hommes atteints de Parkinson avaient une réactivité T cellulaire élevée par rapport aux témoins sains, tandis que chez les donneurs prodromaux, les hommes et les femmes présentaient tous deux des réponses T cellulaires élevées. Ces tendances divergentes dans la réactivité soulignent la nécessité d’études supplémentaires sur l’impact du sexe biologique sur la neuroinflammation et la progression de la maladie de Parkinson. Source : https://www.fightaging.org/archives/2025/06/t-cell-reactivity-as-an-early-marker-of-parkinsons-disease/

Rôle des microglies et dysfonction mitochondriale dans les maladies neurodégénératives liées à l’âge

Les microglies sont des cellules immunitaires innées résidant dans le cerveau, jouant un rôle crucial dans le maintien de l’homéostasie cérébrale et dans le bon fonctionnement des réseaux neuronaux. En vieillissant, ces cellules deviennent plus inflammatoires et actives, ce qui peut contribuer à l’apparition et à la progression de conditions neurodégénératives, telles que la maladie d’Alzheimer. Une des causes connues de cette inflammation microgliale est la dysfonction mitochondriale qui se produit au niveau cellulaire. Pour évaluer l’impact de la dysfonction mitochondriale sur les microglies, il serait idéal de corriger cette dysfonction, cependant, les approches actuellement disponibles pour améliorer la fonction mitochondriale, comme les dérivés de la vitamine B3, ne sont pas suffisamment puissantes. Des thérapies de transplantation mitochondriale pourraient être nécessaires pour déterminer si la correction des mitochondries peut ralentir ou inverser de manière significative les conditions neurodégénératives. Des études récentes ont mis en lumière que la dysfonction des microglies est impliquée dans la pathogenèse de diverses maladies neurodégénératives liées à l’âge. Le vieillissement et ces maladies sont liés à une altération de la fonction mitochondriale et à un changement métabolique des microglies, passant de la phosphorylation oxydative à la glycolyse, ce qui pourrait contribuer à une activation microgliale prolongée et à la neuroinflammation. De plus, la fuite de l’ADN mitochondrial dans le cytoplasme est impliquée dans l’activation des réponses inflammatoires et la perturbation de la fonction cérébrale. Cette revue résume les avancées récentes concernant les changements métaboliques des microglies, notamment la glycolyse et la dysfonction mitochondriale, et explore le potentiel de cibler le métabolisme microglial comme approche thérapeutique novatrice pour les modifications de la fonction cérébrale et les maladies neurodégénératives associées au vieillissement. Source : https://www.fightaging.org/archives/2025/06/aged-microglia-exhibit-mitochondrial-dysfunction/

Infinity Bio : Une avancée majeure dans le profilage des anticorps pour comprendre l’immunité et le vieillissement

Infinity Bio, une biotechnologie américaine fondée en 2023 et basée à Baltimore, a récemment clôturé un tour de financement de série A de 8 millions de dollars pour élargir sa plateforme d’intelligence du système immunitaire. La société développe une technologie de profilage d’anticorps de haute qualité et évolutive, visant à améliorer la compréhension de l’inflammation, de l’immunité et des mécanismes des maladies, y compris celles liées à l’âge. La technologie propriétaire de l’entreprise, appelée MIPSA (Molecular Indexing of Proteins by Self Assembly), permet une analyse approfondie du ‘réactome’ des anticorps, c’est-à-dire l’éventail complet des anticorps présents dans le système immunitaire d’un individu. Développée au sein de l’Université Johns Hopkins, MIPSA intègre des principes de génomique, de protéomique et de bioinformatique pour fournir des aperçus à haute résolution sur les réponses immunitaires. Grâce à cette technologie, les chercheurs peuvent examiner comment les anticorps interagissent avec des milliers de cibles antigéniques simultanément, le tout dans un seul essai. Cela soutient des applications variées, y compris la découverte de biomarqueurs, le développement thérapeutique, la conception de vaccins et l’optimisation des anticorps monoclonaux, avec un potentiel significatif dans les applications biotechnologiques liées à la longévité. Ben Larman, le fondateur scientifique d’Infinity Bio et professeur associé de pathologie à Johns Hopkins, souligne qu’il est de plus en plus reconnu que des processus inflammatoires anormaux contribuent au vieillissement accéléré des organes et à la réduction de la durée de vie en bonne santé. Pour mieux comprendre la nature de ces réponses immunitaires, il est essentiel d’identifier leurs cibles moléculaires, telles que les infections chroniques, les irritants environnementaux, les composants du microbiome et les réactions auto-immunes. Infinity Bio affirme que sa technologie fournit la clarté nécessaire en testant les anticorps contre de vastes panneaux de cibles d’anticorps pour établir le réactome d’anticorps de chaque individu. Larman s’attend à ce que des avancées majeures dans le domaine se produisent à mesure que l’adoption et l’intérêt pour le réactome d’anticorps augmentent parmi les immunologistes, les épidémiologistes et les entreprises biopharmaceutiques. Avec le financement récemment obtenu, Infinity Bio prévoit d’élargir ses opérations commerciales et de faire évoluer sa technologie pour répondre à la demande croissante des institutions académiques, des agences gouvernementales et du secteur biopharmaceutique. Leur installation de 9 000 pieds carrés est déjà capable de traiter des milliers d’échantillons par semaine, soutenant à la fois la recherche et le développement clinique. Parallèlement à ce financement, Infinity Bio a renforcé sa position sur le marché en acquérant les actifs de la société de profilage immunitaire Serimmune. Cette acquisition devrait alimenter le lancement de nouveaux services dans la seconde moitié de 2025. Le tour de financement a été mené par Illumina Ventures, le bras d’investissement du géant de la génomique Illumina, qui a récemment démontré son engagement envers le multi-omics. Dr Malek Faham d’Illumina Ventures a salué la capacité scientifique d’Infinity Bio à fournir des aperçus sur le système immunitaire grâce à sa plateforme de profilage du réactome d’anticorps. Ce financement vise à accélérer l’innovation de la plateforme, à stimuler la croissance commerciale et à favoriser le développement de nouvelles offres de services. Source : https://longevity.technology/news/infinity-bio-lands-funding-to-harness-the-reactome-against-disease/