Étiquette : stress oxydatif

Lésion cérébrale traumatique et risque accru de maladie d’Alzheimer : le rôle de la vasculature cérébrale

Les survivants d’une lésion cérébrale traumatique (TBI) présentent un risque accru de développer la maladie d’Alzheimer en raison de changements spécifiques dans la vasculature du cerveau blessé. Ces modifications semblent accélérer la déposition d’amyloïde-β, soutenant l’hypothèse de la cascade amyloïde, qui postule que l’agrégation d’amyloïde-β constitue la pathologie fondamentale de la maladie d’Alzheimer. Les lésions cérébrales traumatiques entraînent souvent une régulation altérée du flux sanguin cérébral, résultant de changements pathologiques dans les cellules musculaires lisses vasculaires (VSMCs) des parois artérielles. Ces changements peuvent contribuer au développement de divers troubles neurodégénératifs, notamment ceux ressemblant à la maladie d’Alzheimer, qui incluent l’agrégation d’amyloïde-β. Malgré leur importance, les mécanismes physiopathologiques responsables de la dysfonction des VSMCs après une TBI ont été peu étudiés. Dans cette étude, il a été démontré que la TBI humaine aiguë entraîne des changements pathologiques précoces dans les artères leptomeningeales, associés à une diminution des marqueurs VSMC tels que NOTCH3 et l’actine musculaire lisse alpha (α-SMA). Ces changements ont coïncidé avec une augmentation de l’agrégation de peptides amyloïdes de longueur variable, y compris Aβ1-40/42, Aβ1-16, et le fragment dérivé de la β-sécrétase (βCTF) causé par un traitement altéré de la protéine précurseur amyloïde (APP) dans les VSMCs. L’agrégation des peptides Aβ1-40/42 a également été observée dans les artères leptomeningeales de jeunes patients ayant subi une TBI. Les changements pathologiques ont également inclus des niveaux plus élevés de β-sécrétase (BACE1) dans les artères leptomeningeales, probablement causés par une hypoxie et un stress oxydatif, comme le montrent des études in vitro sur des VSMCs humains. Il a été constaté que l’inhibition de BACE1 restaurait non seulement la signalisation de NOTCH3, mais normalisait également les niveaux d’ADAM10 in vitro. De plus, une étude sur des souris soumises à un modèle expérimental de TBI a montré une réduction de l’activité d’ADAM10 et une diminution de NOTCH3, accompagnées d’une augmentation des niveaux de βCTF (C99). Cette étude apporte des preuves de changements précoces post-traumatiques dans les VSMCs des artères leptomeningeales, qui peuvent contribuer à la dysfonction vasculaire et exacerber les mécanismes de blessure secondaire après une TBI. Source : https://www.fightaging.org/archives/2025/02/brain-injury-accelerates-later-amyloid-aggregation-to-increase-risk-of-alzheimers-disease/

Rôle des cellules immunitaires et du stress oxydatif dans la maladie d’Alzheimer

Les cellules immunitaires dans un environnement inflammatoire produisent une quantité beaucoup plus importante de molécules oxydantes, ce qui explique pourquoi des niveaux accrus d’inflammation chronique et de stress oxydatif sont souvent liés chez les personnes âgées. Cette étude examine ce mécanisme dans le contexte de la maladie d’Alzheimer, soulignant comment l’inflammation peut induire des changements épigénétiques néfastes dans les populations cellulaires du cerveau, ces changements étant en partie une réaction à un environnement de stress oxydatif accru. Il est largement admis que la neuroinflammation chronique joue un rôle dans le développement de la maladie d’Alzheimer (MA), bien que les mécanismes spécifiques restent flous. L’inflammation chronique de bas grade est une caractéristique du vieillissement, et l’inflammation systémique est liée à l’apparition de la MA. De nombreuses études suggèrent un rôle effecteur des cellules immunitaires dans la pathologie de la MA. Bien que l’étendue à laquelle les cellules immunitaires périphériques, telles que les neutrophiles, peuvent entrer dans le cerveau demeure incertaine et difficile à mesurer dans le temps, les signes de stress oxydatif sont évidents et contribuent clairement à l’étiologie de la MA. Les sources de stress oxydatif sont nombreuses dans la MA et incluent des mitochondries dysfonctionnelles, des neurones et des cellules endothéliales, mais les cellules immunitaires émergent comme une source abondante et potentiellement modifiable. Les microglies, cellules immunitaires spécialisées de la lignée myéloïde, résident principalement dans le système nerveux central et représentent jusqu’à 15 % de tous les types cellulaires présents dans le cerveau. Leur fonction principale est la surveillance et le maintien du système nerveux central en éliminant les cellules mortes et mourantes, ainsi que les plaques. Les microglies expriment la NOX, une enzyme qui produit du superoxyde, entraînant la formation d’une gamme d’espèces oxydantes. Les oxydants dérivés des cellules immunitaires diffèrent considérablement par leur spécificité et leur réactivité, produisant une variété d’espèces radicalaires et non radicalaires qui peuvent influencer divers processus cellulaires et moléculaires, mais peuvent également causer des lésions tissulaires. Le stress oxydatif peut altérer la santé neuronale, tant par des dommages directs à l’ADN et la mort cellulaire que par des moyens plus subtils, en manipulant des enzymes clés et des cofacteurs ayant le potentiel de modifier la régulation épigénétique des gènes associés à l’apparition et à la progression de la maladie d’Alzheimer. Des études supplémentaires sont nécessaires pour explorer l’impact des oxydants dérivés des cellules immunitaires sur les profils de méthylation de l’ADN dans le cerveau vieillissant, dans le but de découvrir des agents thérapeutiques ciblés immunomodulateurs, épigénétiques ou mitochondriaux dans le traitement de la MA. À mesure que la population mondiale vieillit, il devient de plus en plus important de trouver des biomarqueurs fiables de stress oxydatif chez les personnes d’âge moyen, avant l’apparition de maladies liées à l’âge, telles que la MA, avec l’objectif ultime de prolonger la durée de vie en bonne santé des individus au fur et à mesure qu’ils vieillissent. Source : https://www.fightaging.org/archives/2025/02/epigenetic-changes-driven-by-oxidative-stress-in-the-aging-brain/

Variabilité de la Fréquence Cardiaque et Vieillissement : Liens avec le Stress Oxydatif et la Régulation Autonome

Les chercheurs examinent les changements liés à l’âge dans la variabilité de la fréquence cardiaque (VFC) et son lien avec le métabolisme oxydatif. Ils soulignent que le stress oxydatif, causé par des molécules oxydantes excessives, nuit à la fonction cellulaire et à la santé des tissus, surtout chez les personnes âgées. Le stress oxydatif est également associé à une signalisation inflammatoire excessive. Bien que la consommation d’antioxydants soit souvent envisagée comme solution, la complexité des mécanismes impliqués rend la suppression du stress oxydatif plus complexe. Des approches comme la suppression de l’inflammation et l’ingénierie d’antioxydants ciblés montrent des promesses, mais les résultats restent modestes. Il est de plus en plus reconnu qu’une production modérée de radicaux libres joue un rôle physiologique essentiel dans la signalisation cellulaire et peut déclencher des mécanismes de défense antioxydante. Cette réponse hormétique favorise une meilleure réserve métabolique fonctionnelle et est liée au vieillissement en bonne santé, ainsi qu’aux interventions anti-âge. Cependant, une production excessive de radicaux libres contribue au stress oxydatif et à l’âge avancé. Ainsi, il est crucial de rechercher des biomarqueurs permettant d’évaluer efficacement l’homéostasie redox pour suivre le vieillissement en bonne santé. Les auteurs avancent l’hypothèse que la VFC, mesurant les variations de temps entre les ondes R d’un électrocardiogramme, est en grande partie définie par l’homéostasie redox et peut donc servir de biomarqueur du vieillissement. Cette hypothèse repose sur des preuves expérimentales suggérant des liens mécanistes entre la régulation autonome et la charge oxydative. Ils introduisent également des études sur l’effet modulateur du capteur d’oxygène H2S sur la fonction cardiovasculaire et l’activité du nœud sinusal, ainsi que des interactions entre le système nerveux autonome et la réponse immunitaire, soutenant l’idée d’une interaction entre la production de ROS et la régulation autonome, et par conséquent, la VFC. Cependant, des études supplémentaires sont nécessaires pour améliorer la compréhension de la communication entre la fonction mitochondriale et la régulation autonome. Source : https://www.fightaging.org/archives/2025/02/heart-rate-variability-as-a-proxy-measure-for-oxidative-stress/

Impact du stress oxydatif et du traitement DDO1002 sur les cellules souches hématopoïétiques dans le vieillissement

Le stress oxydatif et l’inflammation sont des phénomènes interconnectés qui jouent un rôle clé dans le processus de vieillissement. Les cellules produisent naturellement des molécules oxydantes, notamment par le biais des activités mitochondriales, et ont développé divers mécanismes antioxydants pour se défendre. Une activation accrue de ces mécanismes peut réduire l’inflammation chronique liée à l’âge, améliorer la fonction tissulaire et même prolonger modestement la durée de vie, comme l’ont montré des études sur des espèces à durée de vie courte. Cet article se concentre sur le NRF2, un régulateur des activités antioxydantes dans les cellules. Les cellules souches hématopoïétiques (CSH) possèdent une remarquable capacité d’auto-renouvellement et de différenciation en une variété de cellules sanguines et immunitaires, essentielles aux fonctions physiologiques. Le stress oxydatif, caractérisé par une augmentation des espèces réactives de l’oxygène (ROS), entraîne des dommages cellulaires, y compris des lésions de l’ADN, une dysrégulation du cycle cellulaire et une sénescence cellulaire prématurée, affectant finalement la fonction des CSH. DDO1002, un puissant inhibiteur de la voie NRF2-KEAP1, module l’expression des gènes antioxydants, mais l’impact de ce composé sur le déclin hématopoïétique post-irradiation totale du corps (TBI) et dans le cadre du vieillissement doit encore être précisé. L’étude a mis en évidence le rôle de DDO1002 dans la modulation de l’activité NRF2, qui active à son tour la cascade de signalisation de l’élément de réponse antioxydante (ARE). Cette activation peut réduire les niveaux intracellulaires de ROS, atténuant ainsi la sénescence cellulaire. De plus, DDO1002 a démontré son efficacité à atténuer les dommages à l’ADN et à prévenir l’apoptose des CSH, soulignant son potentiel pour réduire les blessures hématopoïétiques causées par TBI. Les essais de transplantation compétitifs ont révélé que l’administration de DDO1002 peut améliorer la reconstitution et la capacité d’auto-renouvellement des CSH chez les souris âgées. L’analyse de séquençage à cellule unique a montré que le traitement par DDO1002 atténuait les voies de signalisation inflammatoire intracellulaire et les voies des ROS dans les CSH âgées, suggérant son potentiel à restaurer la viabilité de ces cellules. En conséquence, DDO1002 active efficacement la voie NRF2-ARE, retardant la sénescence cellulaire et améliorant l’hématopoïèse altérée, démontrant ainsi son potentiel en tant qu’agent thérapeutique pour les troubles hématopoïétiques liés à l’âge. Source : https://www.fightaging.org/archives/2025/02/targeting-nrf2-regulation-of-antioxidant-activities-to-treat-aspects-of-aging/

Telomir-1 : Un composé prometteur pour inverser le stress oxydatif et lutter contre les maladies dégénératives

Telomir Pharmaceuticals a récemment présenté des résultats prometteurs issus des essais précliniques de son composé de petite molécule, Telomir-1, qui démontre la capacité de ce dernier à inverser complètement le stress oxydatif induit par le cuivre dans des lignées cellulaires humaines et à fournir une protection significative contre la toxicité cellulaire. Ce développement pourrait avoir des implications majeures pour la compréhension et le traitement des maladies liées à l’âge et des conditions exacerbées par le stress oxydatif. Les télomères, qui sont les caps protecteurs aux extrémités des chromosomes, jouent un rôle crucial dans la santé cellulaire et la longévité. Avec l’âge, les télomères se raccourcissent, ce qui réduit la capacité des cellules à se diviser et à se réparer efficacement, contribuant ainsi au vieillissement et à une vulnérabilité accrue au stress oxydatif. Ce dernier est un facteur clé dans le développement de nombreuses maladies telles que la maladie d’Alzheimer, le cancer, les troubles cardiovasculaires et le diabète, et il amplifie également la gravité des infections virales en déclenchant inflammation et dommages cellulaires. L’aptitude de Telomir-1 à normaliser les niveaux d’espèces réactives de l’oxygène (ERO) représente une avancée significative dans la lutte contre le stress oxydatif. Les ERO, souvent produites en réponse à des stress environnementaux ou à des maladies, endommagent des composants cellulaires essentiels, accélérant ainsi la progression des maladies dégénératives. Les résultats des études montrent que Telomir-1 pourrait avoir des effets régulateurs uniques à des doses beaucoup plus faibles que celles requises pour la chélation des ions cuivre, ce qui souligne son potentiel au-delà d’une simple liaison aux ions métalliques. Ce composé pourrait s’avérer utile dans le traitement de la maladie de Wilson et d’autres maladies liées à la dysrégulation du cuivre. En outre, les applications potentielles de Telomir-1 pourraient s’étendre à des maladies telles que la maladie d’Alzheimer, qui est partiellement causée par le stress oxydatif lié à la déformation des protéines et aux dommages cellulaires. La capacité du composé à atténuer ces dommages offre l’espoir d’un ralentissement de la progression de la maladie. La dégénérescence maculaire liée à l’âge (DMLA), une cause majeure de cécité, pourrait également bénéficier de l’effet protecteur de Telomir-1 sur les cellules rétiniennes. Les implications de ce composé s’étendent également aux cancers et aux maladies cardiovasculaires, où le stress oxydatif contribue à la croissance tumorale, aux dommages à l’ADN et à la dysfonction vasculaire. En plus des maladies dégénératives, Telomir Pharmaceuticals explore également le potentiel de Telomir-1 pour atténuer les effets du stress oxydatif lors des infections virales, y compris la grippe aviaire. Les infections virales exploitent souvent le stress oxydatif pour améliorer leur réplication, entraînant une inflammation sévère et des dommages tissulaires. La capacité de Telomir-1 à inverser ces effets pourrait jouer un rôle crucial dans la réduction de la gravité des épidémies, un point que le monde post-pandémique pourrait prendre en compte. Erez Aminov, PDG de Telomir, a déclaré que Telomir-1, avec son mécanisme de régulation unique et ses nombreuses applications, est plus qu’un simple traitement – c’est une plateforme qui pourrait transformer les soins de santé pour des millions de personnes. Bien que Telomir-1 soit encore en développement préclinique, son potentiel à traiter le stress oxydatif au niveau moléculaire en fait un candidat prometteur pour relever certains des défis de santé les plus pressants liés au vieillissement et aux maladies. L’entreprise prévoit d’avancer ses recherches vers des essais cliniques, en explorant les applications du composé dans les maladies dégénératives et les infections virales. Source : https://longevity.technology/news/telomir-1-shows-promise-in-addressing-oxidative-stress-in-trial/?utm_source=rss&utm_medium=rss&utm_campaign=telomir-1-shows-promise-in-addressing-oxidative-stress-in-trial

Le rôle de GATA4 dans la sénescence des cellules souches mésenchymateuses : Implications pour la médecine régénérative

Au cours des dernières années, le facteur de transcription GATA4 a été associé à divers problèmes liés à l’âge, notamment le phénomène de cicatrisation dans le tissu cardiaque. Plus généralement, GATA4 est lié à la sénescence cellulaire, un problème majeur du vieillissement. Les cellules sénescentes s’accumulent avec l’âge, perturbant la structure et la fonction des tissus par le biais de signaux pro-inflammatoires. La sénescence dans des populations cellulaires spécifiques, telles que les cellules souches, compromet leur capacité à soutenir et à maintenir les tissus. Dans ce contexte, des chercheurs examinent le rôle de GATA4 dans la sénescence des cellules souches mésenchymateuses (CSM) de manière spécifique. Les CSM sont des cellules progénitrices multipotentes avec un potentiel de différenciation vers diverses lignées cellulaires, ce qui les rend attrayantes pour la médecine régénérative. Un des facteurs majeurs contribuant à la dysfonction des CSM liée à l’âge est la sénescence cellulaire, caractérisée par un arrêt de croissance relativement irréversible et des changements dans les propriétés fonctionnelles. GATA4 est identifié comme un régulateur critique dans la biologie des CSM. Initialement reconnu comme un régulateur clé du développement cardiaque, GATA4 a été lié à plusieurs aspects des processus cellulaires, y compris la prolifération et la différenciation des cellules souches. Les preuves accumulées suggèrent que le signal nucléaire de GATA4 dans le processus de traits liés à la sénescence des CSM pourrait contribuer aux altérations induites par l’âge dans le comportement des CSM. L’expression de GATA4 diminue avec l’âge dans les CSM, ce qui est associé à une augmentation des niveaux d’expression des marqueurs de sénescence et à un potentiel régénératif altéré. Au niveau mécanistique, GATA4 régule l’expression des gènes impliqués dans la régulation du cycle cellulaire, la réparation de l’ADN et la réponse au stress oxydatif, influençant ainsi le phénotype de sénescence dans les CSM. Ces découvertes soulignent la fonction critique de GATA4 dans l’homéostasie des CSM et suggèrent une cible prometteuse pour restaurer la fonction des cellules souches lors du vieillissement et des maladies. Une meilleure compréhension des mécanismes moléculaires sous-jacents à la modulation de la sénescence des CSM par GATA4 offrirait une opportunité de développer de nouvelles thérapies pour revitaliser les CSM âgées, augmentant ainsi leur fonction régénérative à des fins thérapeutiques en médecine régénérative. Source : https://www.fightaging.org/archives/2025/01/gata4-in-mesenchymal-stem-cell-senescence/

L’ergothioneine : une promesse pour lutter contre les maladies liées à l’âge et améliorer la santé musculaire

Une étude récente publiée dans la revue Cell Metabolism a démontré que l’ergothioneine, un composé naturel présent dans les champignons et les aliments fermentés, améliore la durée de vie en bonne santé chez les animaux âgés en augmentant leur mobilité, leur endurance et leur résistance au stress, tout en protégeant contre les dommages cellulaires. Cette recherche, conduite par l’Institut Leibniz pour les sciences analytiques (ISAS) en collaboration avec plusieurs institutions internationales, a mis en lumière l’impact de l’ergothioneine sur les biomarqueurs liés à l’âge, offrant des perspectives prometteuses pour des conditions telles que la sarcopénie et d’autres maladies liées à l’âge. Dr Miloš Filipović, responsable du groupe de recherche ERC Sulfaging à l’ISAS, a souligné que ces analyses apportent enfin des éclaircissements sur le mécanisme de l’ergothioneine et son potentiel thérapeutique pour prévenir les maladies liées à l’âge. Cette étude souligne également l’accent croissant mis sur la durée de vie en bonne santé plutôt que sur la longévité dans la recherche sur le vieillissement, mettant en avant l’importance de maintenir la santé physique et cellulaire à mesure que nous vieillissons. Les résultats indiquent que l’ergothioneine pourrait représenter une avancée importante pour relever les défis des maladies liées à l’âge, comme la maladie d’Alzheimer et la sarcopénie, et pour prolonger les années de vie en bonne santé, d’autant plus que cette molécule est déjà largement disponible sous forme de complément alimentaire. L’équipe de recherche, comprenant des scientifiques de l’Université de Belgrade, de l’Université de Heidelberg et de l’Université de Cambridge, a étudié les effets de l’ergothioneine sur plusieurs modèles animaux, y compris le nématode Caenorhabditis elegans et des rats. Les traitements administrés aux nématodes à partir de l’âge adulte ont non seulement prolongé leur durée de vie, mais ont également amélioré leur mobilité et leur résistance au stress, tout en réduisant les biomarqueurs de vieillissement. Dr Dunja Petrovic, dont le travail doctoral à l’ISAS a été central pour cette publication, a noté que les résultats montrent une amélioration significative des performances par rapport au groupe témoin, sans effets secondaires indésirables. Les chercheurs ont également observé des améliorations significatives de l’endurance, de la masse musculaire et de la vascularisation chez des rats traités avec de l’ergothioneine. Au cours d’une période de trois semaines, des rats de neuf mois ont reçu des doses quotidiennes de 10 milligrammes d’ergothioneine, équivalentes à environ 4,5 grammes de champignons à huîtres séchés. En plus d’une endurance accrue, les chercheurs ont rapporté une augmentation des cellules souches musculaires et la formation de nouveaux petits vaisseaux sanguins dans les tissus musculaires, soulignant son rôle potentiel dans la prévention de la sarcopénie. En utilisant la spectrométrie de masse et des analyses de cultures cellulaires, l’équipe a découvert le mécanisme moléculaire derrière ces observations. L’ergothioneine sert de substrat alternatif pour l’enzyme cystathionine-γ-lyase (CSE), un acteur clé dans la production d’hydrogène sulfuré (H₂S), une molécule de signalisation qui protège les cellules du stress oxydatif par un processus connu sous le nom de persulfidation. La réduction de la persulfidation a été associée au vieillissement et à des maladies telles que les maladies cardiovasculaires et neurodégénératives. Les chercheurs ont constaté que l’ergothioneine augmentait la persulfidation d’une enzyme spécifique, la glycérol-3-phosphate déshydrogénase (GPDH), ce qui à son tour élevait les niveaux de NAD+, un coenzyme connu pour son rôle dans la promotion de la longévité et de la santé métabolique. Bien que le corps humain ne puisse pas produire d’ergothioneine, ce mécanisme d’utilisation spécifique suggère qu’il est très important pour notre santé. Cette étude fait suite à des travaux antérieurs qui ont montré que la persulfidation diminue avec l’âge mais peut être positivement influencée par des interventions alimentaires. En stimulant ce processus cellulaire critique, l’ergothioneine émerge comme un outil potentiel pour atténuer les effets du vieillissement au niveau moléculaire. Pour explorer davantage ses bénéfices, les chercheurs ont mené une étude à court terme avec de jeunes rats, leur administrant de l’ergothioneine quotidiennement pendant cinq jours. Les résultats ont révélé une augmentation notable de l’endurance et des niveaux de NAD+ dans le sérum sanguin, suggérant le potentiel du composé à améliorer les performances physiques. Encouragés par ces résultats, Filipović et son équipe prévoient d’étendre leurs recherches à des essais chez l’homme pour évaluer si l’ergothioneine pourrait offrir des avantages similaires en termes de performances physiques et de résistance au déclin lié à l’âge. En fournissant des éclaircissements sur le mécanisme moléculaire de l’ergothioneine, cette étude pourrait ouvrir la voie à des thérapies capables de ralentir ou de prévenir les maladies liées à l’âge et d’améliorer la qualité de vie. Avec des recherches supplémentaires, ce composé pourrait détenir des promesses pour maintenir la durée de vie en bonne santé chez les humains, en s’attaquant à des défis tels que la sarcopénie, le déclin cardiovasculaire et la neurodégénérescence. Source : https://longevity.technology/news/research-shows-ergothioneine-improves-healthspan-in-aged-animals/?utm_source=rss&utm_medium=rss&utm_campaign=research-shows-ergothioneine-improves-healthspan-in-aged-animals

Impact de la Dysfonction Mitochondriale sur la Dégénérescence des Disques Intervertébraux

La recherche actuelle examine l’impact de la perte de fonction mitochondriale liée à l’âge sur la maladie dégénérative du disque intervertébral. Bien que cette perte de fonction soit un facteur contributif, il est difficile d’évaluer son importance par rapport à d’autres facteurs de vieillissement, tels que l’inflammation chronique. La dégénérescence des disques intervertébraux est la maladie musculosquelettique la plus courante et est la principale cause de douleurs lombaires, ce qui représente un risque majeur pour la santé publique et augmente le fardeau économique des individus. Cette dégénérescence est caractérisée par l’apoptose des cellules du nucleus pulposus, la dégradation de la matrice extracellulaire et des changements dans la structure du disque. Elle progresse avec l’âge et est influencée par des facteurs tels que la surcharge mécanique, le stress oxydatif et la génétique. Les mitochondries, qui sont les centrales énergétiques des cellules, jouent également un rôle dans diverses fonctions cellulaires, comme l’homéostasie du calcium, la régulation de la prolifération cellulaire et le contrôle de l’apoptose. Le système de contrôle de la qualité mitochondriale implique plusieurs mécanismes, tels que la régulation des gènes mitochondriaux et la mitophagie. De nombreuses études ont montré que la dysfonction mitochondriale est un facteur clé dans le mécanisme pathologique du vieillissement et de la dégénérescence des disques intervertébraux. Par conséquent, équilibrer le contrôle de la qualité mitochondriale est crucial pour retarder et traiter cette dégénérescence. Cet article décrit en détail le mécanisme moléculaire du contrôle de la qualité mitochondriale, notamment la biogenèse mitochondriale et la mitophagie, puis examine comment la dysfonction mitochondriale contribue à la dégénérescence des disques. Enfin, il passe en revue les recherches actuelles sur les traitements ciblant les mitochondries pour la dégénérescence discale, dans l’espoir de fournir des perspectives innovantes pour cette condition. Source : https://www.fightaging.org/archives/2025/01/considering-mitochondrial-dysfunction-as-a-contributing-cause-of-intervertebral-disc-degeneration/

Avancées dans la recherche sur le vieillissement : Telomir-1 et ses promesses contre la progeria

Telomir Pharmaceuticals a récemment annoncé des résultats prometteurs d’une étude préclinique sur le Telomir-1, une molécule développée pour traiter les mécanismes cellulaires de l’âge, en particulier dans les modèles de progeria. La progeria, qui touche moins de 400 enfants dans le monde, est une condition génétique rare entraînant un vieillissement prématuré dû à l’accumulation de progerin, une protéine défectueuse. Les telomères, qui protègent les chromosomes, se raccourcissent avec le temps, un phénomène accentué dans la progeria, conduisant à des dysfonctionnements cellulaires et à une longévité réduite. Les recherches réalisées sur des nématodes C. elegans ont montré que le traitement par Telomir-1 pouvait prolonger la durée de vie des modèles affectés par la progeria, réduisant l’écart de longévité entre ces modèles et les nématodes normaux. Ce traitement a permis d’ajouter 2 à 5 jours de survie, normalisant ainsi la durée de vie à des niveaux similaires à ceux des nématodes sains. Les résultats indiquent que Telomir-1 pourrait traiter les dysfonctionnements cellulaires associés au vieillissement accéléré, bien que des études supplémentaires soient nécessaires avant d’entreprendre des essais cliniques sur l’homme. La molécule agit en régulant les métaux essentiels dans le corps, impliqués dans le stress oxydatif et la dégradation des telomères. Les implications de cette étude vont au-delà de la progeria, suggérant que Telomir-1 pourrait également être bénéfique pour d’autres maladies liées à l’âge, comme le diabète de type 2, où elle a montré un potentiel de réversibilité de la résistance à l’insuline. Telomir Pharmaceuticals prévoit de poursuivre ses recherches avec des études in vitro sur des lignées cellulaires humaines de progeria pour valider l’efficacité de Telomir-1, avec l’objectif de développer une thérapie orale. En somme, Telomir-1 pourrait représenter une avancée significative dans la recherche sur le vieillissement et la gestion des maladies liées à l’âge, mais des étapes critiques, telles que les approbations réglementaires et les essais cliniques, demeurent à franchir. Source : https://longevity.technology/news/telomir-1-shows-promise-in-normalizing-accelerated-aging/?utm_source=rss&utm_medium=rss&utm_campaign=telomir-1-shows-promise-in-normalizing-accelerated-aging

Une avancée prometteuse dans la recherche sur le vieillissement cellulaire : Telomir-1 et la progeria

Telomir Pharmaceuticals, une société pharmaceutique spécialisée dans la science du rajeunissement, a récemment annoncé des résultats prometteurs d’une étude préclinique sur Telomir-1, un nouveau petit molécule qui vise à restaurer la durée de vie et à normaliser le vieillissement accéléré chez les modèles de progeria, une condition génétique rare. Cette recherche, menée en collaboration avec Nagi Bioscience, a utilisé des modèles de nématodes C. elegans pour étudier les effets thérapeutiques de Telomir-1 sur les mécanismes cellulaires du vieillissement. Les télomères, souvent comparés à des capuchons protecteurs aux extrémités des chromosomes, jouent un rôle crucial dans le vieillissement cellulaire en protégeant l’ADN des dommages. Leur raccourcissement accéléré, observé dans des conditions comme la progeria, entraîne une dysfonction cellulaire généralisée et un vieillissement prématuré. La progeria, bien que rare, a des implications importantes pour la recherche sur le vieillissement, car elle offre des aperçus uniques sur les mécanismes du vieillissement cellulaire. Telomir-1 a montré un potentiel pour restaurer la durée de vie des nématodes atteints de progeria, ajoutant 2 à 5 jours de survie et normalisant leur durée de vie par rapport aux nématodes sains. Cela suggère que Telomir-1 peut traiter les dysfonctionnements cellulaires à leur source, en ciblant l’activité métallique excessive qui contribue au stress oxydatif et à l’inflammation, des facteurs qui accélèrent le vieillissement. Les résultats des études précliniques indiquent également que Telomir-1 pourrait avoir des applications dans d’autres conditions liées à l’âge, comme le diabète de type 2, en inversant la résistance à l’insuline. L’entreprise envisage de procéder à des études in vitro avec des lignées cellulaires humaines de progeria pour valider l’efficacité de Telomir-1 et espère obtenir une approbation réglementaire pour ses essais cliniques. Si Telomir réussit à exploiter ses connaissances sur la biologie des télomères pour créer des thérapies qui s’attaquent aux causes profondes des maladies dégénératives, cela pourrait constituer une avancée significative dans le domaine de la science de la longévité et de la gestion des maladies liées à l’âge. Source : https://longevity.technology/news/telomir-1-shows-promise-in-normalizing-accelerated-aging/?utm_source=rss&utm_medium=rss&utm_campaign=telomir-1-shows-promise-in-normalizing-accelerated-aging