Étiquette : réparation des tissus

La régénération cardiaque : ce que les poissons-zèbres nous apprennent

Certain espèces, telles que les salamandres et les poissons-zèbres, possèdent la capacité de réactiver des programmes de développement embryonnaire après une blessure afin de régénérer des membres et même des parties majeures d’organes vitaux. Les mammifères partagent également cette capacité de développement embryonnaire, ce qui suscite l’espoir que tous les mécanismes biochimiques nécessaires à la régénération complète des organes existent encore chez les mammifères adultes, mais sont simplement réprimés d’une certaine manière. Les chercheurs explorent la régénération exceptionnelle d’espèces comme les poissons-zèbres pour découvrir des mécanismes de contrôle qui pourraient être manipulés afin de déclencher la même régénération exceptionnelle chez les humains et d’autres mammifères. Cependant, il reste à voir combien de temps cela prendra et si les options seront aussi simples qu’espéré.

Les humains ne peuvent pas régénérer le muscle cardiaque endommagé par la maladie, mais les scientifiques savent depuis longtemps que certains animaux, comme les poissons-zèbres, peuvent le faire. Le cœur est composé de différents types de cellules, y compris celles qui forment le muscle, les nerfs et les vaisseaux sanguins. Environ 12 à 15 % des cellules cardiaques chez les poissons-zèbres proviennent d’une population spécifique de cellules souches appelées cellules de la crête neurale. Les humains possèdent des cellules de la crête neurale analogues, qui donnent naissance à divers types de cellules dans presque tous les organes du corps. Pour une raison quelconque, les poissons-zèbres et quelques autres animaux conservent la capacité de reconstruire des tissus dérivés de la crête neurale à l’âge adulte, tandis que les humains ont perdu cette capacité. Ces animaux ne se contentent pas de réparer les tissus endommagés. Dans le cœur, les cellules autour d’une blessure retournent à un état indifférencié, puis passent de nouveau par le développement pour produire un nouveau muscle cardiaque, ou cardiomyocytes.

Dans une recherche récemment rapportée, les scientifiques ont utilisé la génomique à cellule unique pour profiler tous les gènes exprimés par les cellules de la crête neurale en développement chez les poissons-zèbres qui vont se différencier en cellules musculaires cardiaques. Ils ont ensuite reconstitué les gènes exprimés après avoir coupé environ 20 % du ventricule cardiaque du poisson. Cette procédure ne semblait pas affecter le poisson, et après environ 30 jours, leurs cœurs étaient de nouveau entiers. En éliminant des gènes spécifiques avec CRISPR, ils ont identifié un certain nombre de gènes essentiels à la réactivation après une blessure, tous utilisés durant le développement embryonnaire pour construire le cœur. Un gène en particulier, appelé egr1, semble activer le circuit en premier et peut déclencher les autres, suggérant un rôle potentiel dans la régénération. Les chercheurs ont également identifié les activateurs qui activent ces gènes. Les activateurs sont des cibles prometteuses pour les thérapies basées sur CRISPR, car ils peuvent être manipulés pour augmenter ou diminuer l’expression du gène. Source : https://www.fightaging.org/archives/2025/07/further-exploration-of-the-biochemistry-of-zebrafish-heart-regeneration/

Vers une extension radicale de la vie : défis et perspectives

Cet article discute des progrès réalisés dans le domaine de l’extension de la durée de vie humaine en bonne santé, soulignant que ces avancées sont plus lentes que prévu. Bien que de nombreuses approches aient été explorées, la plupart d’entre elles ne dépassent guère les effets bénéfiques de l’exercice physique. Les traitements actuels, tels que les médicaments mimétiques de la restriction calorique, ne permettent pas d’ajouter des décennies à la vie ou de renverser le processus de vieillissement. Il est donc nécessaire de se concentrer sur des thérapies capables de réparer de manière significative les tissus âgés et d’adresser les causes connues du vieillissement pour restaurer un métabolisme et une maintenance tissulaire juvéniles.

La montée de la biotechnologie de la longévité représente une quête moderne visant à percer les secrets d’une vie prolongée. Des milliards de dollars ont été investis dans des startups, des laboratoires de recherche, et des promesses ambitieuses de renverser le vieillissement. Bien que des progrès aient été réalisés, notamment la constatation que la vie humaine, et en particulier celle des animaux de laboratoire, peut être prolongée de manière impressionnante, aucune intervention de pointe n’a surpassé des traitements tels que la rapamycine ou la restriction calorique dans des modèles animaux.

Le domaine de la longévité véhicule un message contradictoire : d’une part, il prétend que nous sommes proches de développer un médicament contre le vieillissement ; d’autre part, il admet que nous manquons toujours d’une compréhension commune de ce qu’est réellement le vieillissement. Comparés à des pionniers de l’aviation expérimentant avec des ailes et des moteurs, nous semblons avancer par tâtonnements en matière de longévité. Les médicaments imitant les effets de la restriction calorique, tels que la rapamycine et la métformine, représentent nos premiers avions rudimentaires : prometteurs, mais encore peu raffinés.

L’ambition de vaincre véritablement le vieillissement ne se limite pas à la construction d’avions de meilleure qualité ; il s’agit de comprendre que, peu importe le niveau de perfectionnement, aucun avion ne peut atteindre la lune. Pour y parvenir, l’humanité a eu besoin de fusées, qui reposent sur des principes entièrement différents. De même, pour arrêter le vieillissement, il sera nécessaire de dépasser les améliorations incrémentales et d’acquérir une maîtrise approfondie des mécanismes fondamentaux qui régissent le processus de vieillissement. Source : https://www.fightaging.org/archives/2025/05/the-road-to-greater-human-longevity-is-longer-than-desired/

Transition vers les Vésicules Extracellulaires dans le Traitement de l’Arthrose : Un Avantage Thérapeutique

La communauté clinique qui pratique les thérapies par cellules souches de première génération s’oriente progressivement vers la récolte des vésicules extracellulaires issues des cellules en culture, plutôt que vers les transplantations de cellules souches. Dans la plupart des cas, presque toutes les cellules souches transplantées meurent, et les effets de ces thérapies sur les maladies liées à l’âge, principalement la suppression de l’inflammation chronique plutôt que l’amélioration de la régénération des tissus, sont médiés par les signaux produits par ces cellules pendant le court laps de temps où elles survivent chez le receveur. Une grande partie de la signalisation cellulaire se fait à travers des vésicules, et jusqu’à présent, les preuves suggèrent que les thérapies par vésicules produisent des résultats similaires à ceux des thérapies par cellules souches, tout en étant logiquement plus simples à mettre en œuvre.

L’âge est le facteur de risque le plus important pour les maladies dégénératives telles que l’arthrose (OA), car il est associé à l’accumulation de cellules sénescentes dans les tissus articulaires qui contribuent à la pathogénèse de l’arthrose, notamment par la libération de facteurs du phénotype sécrétoire associé à la sénescence (SASP). Les cellules souches mésenchymateuses (MSCs) et leurs vésicules extracellulaires dérivées (EVs) sont des traitements prometteurs pour l’arthrose. Cependant, les effets sénoprotecteurs des EVs dérivées des MSCs dans l’arthrose ont été peu étudiés.

Dans cette étude, nous avons utilisé des EVs dérivées des MSCs humaines provenant du tissu adipeux (ASC-EVs) dans deux modèles de sénescence induite par l’inflammaging (IL1β) et par des dommages à l’ADN (etoposide) dans des chondrocytes d’arthrose. Nous avons démontré que l’ajout d’ASC-EVs était efficace pour réduire les paramètres de sénescence, y compris le nombre de cellules positives pour la SA-β-Gal, l’accumulation de foyers de γH2AX dans les noyaux et la sécrétion de facteurs SASP. De plus, les ASC-EVs ont montré une efficacité thérapeutique lorsqu’elles ont été injectées dans un modèle murin d’arthrose. Plusieurs marqueurs de sénescence, d’inflammation et de stress oxydatif ont diminué peu après l’injection, ce qui explique probablement l’efficacité thérapeutique. En conclusion, les ASC-EVs exercent une fonction sénoprotectrice à la fois in vitro dans deux modèles de sénescence induite chez les chondrocytes d’arthrose et in vivo dans un modèle murin d’arthrose induite par la collagénase.