Étiquette : Redox

Le rôle du HMGB1 dans la sénescence cellulaire et ses implications thérapeutiques

Les cellules sénescentes sécrètent des molécules signal qui peuvent inciter d’autres cellules à devenir également sénescentes, ce qui entraîne une accumulation néfaste dans les tissus vieillissants. Cette accumulation de cellules sénescentes a des effets délétères tant sur la structure que sur la fonction des tissus. La communauté de recherche a étudié les différents composants du phénotype sécrétoire associé à la sénescence (SASP) pour déterminer ceux qui sont les plus importants dans la promotion de la sénescence des cellules voisines. Des études ont montré que la forme non oxydée de HMGB1 (High Mobility Group Box 1) est un bon candidat pour la suppression de cette transmission de l’état sénescent entre les cellules. La sénescence cellulaire se propage de manière systémique par la circulation sanguine, mais les mécanismes sous-jacents restent flous. HMGB1, un facteur multifonctionnel du SASP, existe sous différents états redox. Des recherches ont été menées pour évaluer le rôle du HMGB1 sensible au redox (ReHMGB1) dans la sénescence paracrine et systémique. Un modèle de culture de sénescence paracrine a été utilisé pour évaluer l’effet du ReHMGB1 sur la sénescence cellulaire. Chaque état redox de HMGB1 a été traité de manière extracellulaire pour examiner la sénescence systémique in vitro et in vivo. Dans des expériences in vivo, des souris jeunes ont reçu du ReHMGB1 par voie systémique pour induire la sénescence dans plusieurs tissus. Un modèle de blessure musculaire chez des souris d’âge moyen a été utilisé pour évaluer l’efficacité thérapeutique du blocage de HMGB1. Les résultats ont montré que le ReHMGB1 extracellulaire, mais pas sa forme oxydée, induisait des phénotypes similaires à la sénescence dans plusieurs types de cellules et de tissus. Une analyse transcriptomique a révélé l’activation des voies médiées par RAGE, JAK/STAT et NF-κB, ce qui stimule l’expression du SASP et l’arrêt du cycle cellulaire. Le profilage des cytokines a confirmé les caractéristiques de sénescence paracrine induites par le ReHMGB1. L’administration de ReHMGB1 a augmenté les marqueurs de sénescence in vivo, tandis que l’inhibition de HMGB1 a réduit la sénescence, atténué l’inflammation systémique et amélioré la régénération musculaire. Ainsi, cibler le HMGB1 extracellulaire pourrait offrir un potentiel thérapeutique pour prévenir les pathologies liées au vieillissement. Source : https://www.fightaging.org/archives/2025/07/hmgb1-is-an-important-secreted-factor-in-transmission-of-cellular-senescence/

Dommages à l’ADN et vieillissement : Mécanismes et perspectives thérapeutiques

Les dommages à l’ADN sont impliqués dans le vieillissement dégénératif, bien que le débat persiste sur leur contribution précise à la dysfonction tissulaire généralisée en plus du risque accru de cancer. La plupart des dommages mutatifs à l’ADN sont rapidement réparés, tandis que la plupart des mutations durables se produisent dans des régions inutilisées du génome, dans des cellules somatiques ayant peu de divisions restantes. Bien que la plupart des mutations puissent donc causer peu de dommages, une voie possible vers des dommages plus étendus résulte des mutations se produisant dans les cellules souches, qui peuvent se propager largement dans les tissus pour former des motifs de mutations chevauchants connus sous le nom de mosaïcisme somatique. Il existe des preuves initiales que cela contribue aux conditions liées à l’âge et à la perte de fonction. Une possibilité plus radicale est que les efforts répétés pour réparer des formes plus sévères de dommages à l’ADN, qu’ils soient réussis ou non, épuisent les facteurs nécessaires pour maintenir un contrôle jeune sur la structure du génome et l’expression des gènes, ce qui donne lieu aux changements caractéristiques observés dans les cellules des tissus âgés. La question de ce qui peut être fait au sujet des dommages stochastiques à l’ADN survenant à différents endroits dans différentes cellules reste complexe. Réparer ces dommages semble être un défi, un projet pour un avenir plus lointain. Ralentir l’accumulation de dommages non réparés semble plus réalisable, en grande partie une question d’identification des protéines cruciales dans la machinerie de réparation de l’ADN et en en fournissant davantage. Cependant, si même les efforts de réparation réussis entraînent inévitablement des changements dans la structure du génome et le comportement cellulaire, cela peut ne pas être si efficace pour ralentir le vieillissement. Réduire l’incidence du cancer, oui, car cela est absolument déterminé par le fardeau des dommages mutationnels non réparés, mais peut-être pas aussi bénéfique pour le reste du vieillissement. Les dommages à l’ADN constituent une menace sérieuse pour la viabilité cellulaire et sont impliqués comme la principale cause du vieillissement normal. Ainsi, cibler les dommages à l’ADN de manière thérapeutique pourrait contrer la dysfonction cellulaire liée à l’âge et les maladies, telles que les conditions neurodégénératives et le cancer. Identifier de nouveaux mécanismes de réparation de l’ADN révèle donc de nouvelles interventions thérapeutiques pour plusieurs maladies humaines. Dans les neurones, la réparation des cassures double-brin de l’ADN n’est possible que par la jonction non homologue, qui est beaucoup plus sujette aux erreurs que d’autres processus de réparation de l’ADN. Cependant, il n’existe aucune intervention thérapeutique pour améliorer la réparation de l’ADN dans les maladies affectant les neurones. La jonction non homologue est également une cible utile pour les thérapies anticancéreuses basées sur la réparation de l’ADN visant à tuer sélectivement les cellules tumorales. L’isomérase de disulfure de protéines (PDI) joue un rôle dans de nombreuses maladies, mais ses rôles dans ces conditions restent mal définis. PDI présente à la fois une activité chaperonne et une activité oxydoréductase dépendante du redox, et bien qu’elle soit principalement localisée dans le réticulum endoplasmique, elle a également été détectée dans d’autres emplacements cellulaires. Ce texte décrit un rôle nouveau pour PDI dans la réparation des cassures double-brin de l’ADN suite à au moins deux types de dommages à l’ADN. PDI fonctionne dans la jonction non homologue, et après des dommages à l’ADN, elle se déplace vers le noyau, où elle co-localise avec des protéines critiques de réparation des cassures double-brin à des foyers de dommages à l’ADN. Un mutant inactif du redox de PDI, dépourvu de ses deux résidus de cystéine du site actif, n’était pas protecteur. Ainsi, l’activité redox de PDI médie la réparation de l’ADN, mettant en évidence ces cystéines comme cibles potentielles pour des interventions thérapeutiques. Le potentiel thérapeutique de PDI a également été confirmé par son activité protectrice dans un organisme entier contre les dommages à l’ADN induits in vivo dans des zebrafish. Par conséquent, exploiter la fonction redox de PDI pourrait constituer une cible thérapeutique novatrice contre les dommages à l’ADN double-brin pertinents pour plusieurs maladies humaines. Source : https://www.fightaging.org/archives/2025/06/increased-protein-disulphide-isomerase-slows-accumulation-of-dna-damage/