Étiquette : protéines

Impact des régimes végétalien et omnivore sur la santé métabolique

L’évidence épidémiologique concernant les bienfaits pour la santé et la réduction de la mortalité tardive chez les végétariens et les végétaliens est vaste et souvent débattue. Une étude récente examine un groupe de personnes pratiquant des régimes alimentaires alternant entre des périodes de végétalisme et de consommation omnivore. Cette dynamique alimentaire présente un intérêt particulier car elle met en lumière les changements métaboliques bénéfiques qui se produisent lors de l’élimination des produits d’origine animale. La question demeure de savoir dans quelle mesure ces effets sont attribuables à une réduction de l’apport calorique par rapport à d’autres mécanismes. Les interventions diététiques représentent des approches puissantes pour la prévention et le traitement des maladies, bien que les mécanismes moléculaires par lesquels l’alimentation influence la santé restent insuffisamment explorés chez l’homme. Cette étude compare les profils métabolomiques et protéomiques dans différents états alimentaires, particulièrement chez des individus qui alternent entre omnivorisme et restriction des produits animaux pour des raisons religieuses. Les résultats montrent que la restriction alimentaire à court terme est associée à des réductions des niveaux de classes lipidiques et d’acides aminés à chaîne ramifiée, des effets non observés dans un groupe témoin. De plus, ces modifications métaboliques sont liées à un risque réduit de mortalité toutes causes confondues. L’étude révèle que 23 % des protéines affectées par la restriction alimentaire sont des cibles médicamenteuses potentielles, incluant la protéine FGF21 et d’autres protéines dont les changements d’expression sont significatifs. À travers la randomisation mendélienne, les chercheurs démontrent des effets potentiellement causaux de certaines protéines sur le risque de diabète de type 2, l’indice de masse corporelle (IMC) et le risque d’accident vasculaire cérébral lacunaire. En somme, la reprogrammation associée à la restriction alimentaire améliore la santé métabolique, mettant en avant des cibles de haute valeur pour des interventions pharmacologiques. Source : https://www.fightaging.org/archives/2025/04/restricting-dietary-animal-products-improves-metabolism/

La réponse mitochondriale aux protéines mal repliées et son impact sur la cellule et l’organisme

Les protéines constituent la majeure partie des mécanismes complexes à l’intérieur des cellules, jouant des rôles cruciaux dans les assemblages et les interactions cellulaires. La bonne structure des protéines est essentielle, car même si elles sont assemblées correctement à partir d’acides aminés dans un ribosome, cela ne garantit pas qu’elles se plient correctement. Des molécules chaperonnes aident au repliement des protéines, mais un stress cellulaire peut survenir lorsque des protéines mal repliées s’accumulent, ce qui peut entraîner des dysfonctionnements cellulaires et la mort cellulaire. Les cellules réagissent à ce stress par une réponse de protéines mal repliées, qui se concentre souvent sur le réticulum endoplasmique, où la plupart des protéines sont repliées. Les mitochondries, qui ont leur propre génome et peuvent également produire des protéines, peuvent également souffrir de stress dû à des protéines mal repliées et déclencher une réponse. Cette réponse mitochondriale n’est pas seulement bénéfique pour les mitochondries elles-mêmes, mais affecte aussi d’autres parties de la cellule et même d’autres tissus dans le corps. En effet, la plupart des gènes mitochondriaux ont migré vers le noyau cellulaire au cours de l’évolution, et les réponses au stress cellulaire peuvent avoir des effets bénéfiques à distance. Les mécanismes de surveillance des protéines, comprenant un réseau complexe de chaperonnes et de dégradation protéolytique, maintiennent l’homéostasie des protéines, ce qui est essentiel pour la santé cellulaire. Cependant, l’efficacité de ces mécanismes diminue avec l’âge, entraînant une accumulation de protéines mal repliées, d’oligomères toxiques et d’agrégats de protéines, ce qui peut causer des maladies neurodégénératives. Les mitochondries, issues d’événements d’endosymbiose, sont centrales dans le métabolisme cellulaire et la production d’énergie. Des mécanismes sophistiqués de contrôle de la qualité et de renouvellement des protéines dans les mitochondries sont nécessaires pour maintenir leur intégrité. En cas de stress, une voie de signalisation rétrograde, connue sous le nom de réponse mitochondriale aux protéines mal repliées (UPRmt), est activée pour communiquer le stress mitochondrial au noyau et induire l’expression de gènes de protéases et de chaperonnes, formant ainsi un mécanisme protecteur. En somme, l’UPRmt non seulement agit au sein des cellules, mais déclenche également une activation conservée non autonome entre les cellules, où le stress mitochondrial dans un tissu défini engendre une réponse systémique affectant des organes distants. Les recherches récentes se concentrent sur les mécanismes moléculaires de l’UPRmt, notamment chez des organismes modèles comme le Caenorhabditis elegans et chez les mammifères, ainsi que sur les effets de l’activation de l’UPRmt sur le métabolisme et la longévité des organismes. Source : https://www.fightaging.org/archives/2025/04/reviewing-the-effects-of-the-mitochondrial-unfolded-protein-response/

L’impact du PDAP1 sur la longévité humaine : Étude des mécanismes et des facteurs de mode de vie

Cette étude examine les relations entre des variants génétiques spécifiques, des niveaux de protéines et leur impact sur la longévité et la mortalité liées à l’âge. La majorité des recherches précédentes ont démontré que ces relations ont une taille d’effet faible et peinent souvent à être répliquées dans différentes populations d’étude. Néanmoins, certaines protéines et gènes, comme le klotho et l’APOE, sont souvent liés à la longévité et font l’objet de traitements visant à améliorer la santé en fin de vie. L’article de recherche présente un cas intéressant d’association entre une protéine, le PDAP1, et l’accélération du vieillissement, mettant en lumière son lien avec des facteurs de mode de vie et l’incidence du cancer. Les cellules sénescentes, qui s’accumulent avec l’âge, contribuent de manière significative aux maladies liées à l’âge. Le PDAP1, identifié comme un marqueur dans les cellules stressées et sénescentes, pourrait être ciblé pour améliorer la santé des personnes âgées. L’étude a intégré des données génétiques et protéomiques pour identifier les effets causaux des transcriptions génétiques et des niveaux de protéines sur la longévité. Quatorze protéines plasmatiques et neuf transcriptions ont été identifiées comme ayant des effets causaux indépendants sur la longévité, notamment le PDAP1, qui a montré des effets négatifs en raison de son association avec des facteurs de risque tels que la consommation d’alcool et le tabagisme. Les résultats suggèrent que le ciblage du PDAP1 pourrait offrir une double approche en favorisant la sénescence dans les cellules cancéreuses tout en retardant celle des cellules saines, améliorant ainsi la régénération tissulaire. Source : https://www.fightaging.org/archives/2025/04/pdap1-as-an-accelerator-of-human-aging/

Découverte de cibles médicamenteuses pour la longévité à travers l’analyse des bases de données génétiques

Des chercheurs publiant dans Aging Cell ont utilisé de grandes bases de données pour découvrir une relation causale entre plusieurs gènes et le risque de mortalité globale, identifiant ainsi un nouveau potentiel cible dans ce processus. Dans leur étude, ils discutent des bases de données génétiques, qui ont été précédemment utilisées pour déterminer les associations de gènes spécifiques avec la longévité, en particulier dans les cas de longévité extrême. En utilisant des loci de traits quantitatifs moléculaires (QTL), les chercheurs ont pu traduire les gènes en protéines exprimées et en voies biologiques, ce qui leur a permis de mieux comprendre comment certains gènes influencent la durée de vie. L’objectif des chercheurs était d’intégrer plusieurs sources -omiques de manière cohérente, en utilisant des techniques statistiques avancées et une analyse approfondie des interactions protéiques pour découvrir des cibles médicamenteuses potentielles pour la longévité. Ils ont trouvé plusieurs protéines susceptibles d’étendre la durée de vie, mais également d’autres qui ont des effets inverses. L’étude a utilisé trois métriques : la durée de vie parentale, le fait d’être dans le top 1% et le top 10% de longévité, les deux derniers groupes ayant des milliers de points de données. Comme prévu, des corrélations génétiques fortes ont été établies entre la durée de vie globale et la longévité extrême. En raison du grand nombre de gènes et de protéines testés, la valeur p standard de 0,05 était insuffisante. Les chercheurs ont donc analysé plus de 500 protéines avec une valeur p basse et ont identifié 14 protéines avec des valeurs p extrêmement petites, suggérant qu’elles ont des effets liés à la longévité. En examinant l’expression plasmatique, ils ont trouvé que de nombreuses voies génétiques associées augmentent considérablement la probabilité de causes de décès courantes. Par exemple, HYKK est lié au cancer du poumon, NRG1 au AVC, et d’autres gènes sont liés à des problèmes métaboliques et à la pression artérielle. Un gène, PDAP1, s’est distingué comme particulièrement dangereux. Une forte expression de PDAP1 était corrélée à une probabilité accrue de mortalité, les personnes âgées de 60 ans et plus avec une haute expression vivant presque un an de moins que celles avec une faible expression. Des horloges épigénétiques ont corroboré cette découverte. Les chercheurs ont ensuite examiné PDAP1 dans un contexte cellulaire et ont trouvé qu’il a une causalité bidirectionnelle avec la sénescence. L’introduction de PDAP1 dans des fibroblastes a induit une sénescence de manière dose-dépendante. En réduisant l’expression de PDAP1, les chercheurs ont pu prolonger la limite de Hayflick des cellules. Bien que cette étude ait été basée sur des bases de données génétiques larges et des cellules, sans implication animale, il est clair que PDAP1 mérite d’être exploré davantage comme cible médicamenteuse potentielle. Si ce protéine peut être régulée à la baisse chez les humains, cela pourrait ralentir la sénescence, aider à la métabolisme et prolonger la durée de vie. Des modèles précliniques et des essais cliniques pourraient déterminer la faisabilité de cette approche. Source : https://www.lifespan.io/news/researchers-use-big-data-to-find-a-longevity-target/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-use-big-data-to-find-a-longevity-target

General Proximity : Une Révolution dans la Découverte de Médicaments par la Proximité Biologique

General Proximity est une entreprise de biotechnologie innovante qui développe des médicaments à petites molécules en utilisant le concept de la proximité biologique, une méthode qui permet de contrôler les interactions moléculaires. Fondée par le Dr. Armand Cognetta, l’entreprise a levé 16 millions de dollars pour avancer dans le développement de médicaments dits de ‘proximité induite’. L’approche de General Proximity vise à moduler des cibles auparavant considérées comme ‘indruggables’, notamment des protéines et des enzymes associées à des maladies et au déclin. En identifiant et recréant des événements de proximité bénéfiques sur le plan thérapeutique au sein des cellules, l’entreprise espère déclencher des réactions chimiques ciblant l’oncologie, la neurodégénérescence et la longévité. Le concept de l’effectome, qui désigne l’ensemble des protéines modifiant d’autres protéines, est au cœur de leur recherche. Cognetta explique que la proximité est un régulateur majeur de la biologie, jouant un rôle clé dans les réactions chimiques qui contrôlent la vie, depuis les organes jusqu’aux molécules. Un exemple de médicament de proximité est le rapamycine, qui induit un complexe protéique pour inhiber une cible spécifique. General Proximity a pour ambition de ‘hijacker’ ces systèmes biologiques pour augmenter le potentiel de transformation des cibles médicamenteuses. La société a développé une plateforme qui cartographie les cibles médicamenteuses aux mécanismes de proximité spécifiques, ce qui représente une avancée significative dans la découverte de médicaments. En cartographiant l’effectome, General Proximity espère élargir les outils disponibles pour traiter des maladies difficilement accessibles par des thérapies traditionnelles. La société a déjà commencé à appliquer cette technologie à des cibles majeures identifiées, avec des résultats prometteurs pour le développement de nouveaux médicaments. En outre, Cognetta souligne le potentiel des médicaments de proximité dans le domaine de la longévité, en particulier pour traiter des maladies liées à l’âge et pour moduler des facteurs de transcription, qui sont souvent considérés comme des cibles difficiles. Grâce à cette approche, General Proximity espère transformer la façon dont les maladies sont traitées et ouvrir de nouvelles voies dans la recherche sur la longévité. Source : https://longevity.technology/news/does-control-of-proximity-equal-control-of-biology/

TMEM65 : Une protéine clé pour la régulation du calcium mitochondrial et ses implications thérapeutiques

Une équipe de scientifiques a identifié une protéine de membrane mitochondriale, TMEM65, comme un élément clé dans le maintien de l’équilibre calcique cellulaire, avec des implications potentielles pour le traitement des maladies cardiovasculaires et neurodégénératives. Les résultats, publiés dans la revue Nature Metabolism, montrent comment TMEM65 régule NCLX, l’échangeur sodium-calcium mitochondrial, offrant un nouvel éclairage sur la façon dont les perturbations dans la gestion du calcium contribuent à la pathologie liée à l’âge. Les mitochondries jouent un rôle central dans la production d’énergie et la survie cellulaire, mais leur fonction peut être gravement compromise lorsque le calcium s’accumule à des niveaux pathologiques. NCLX est essentiel pour maintenir l’homéostasie calcique au sein des mitochondries en extrudant les ions calcium en échange de sodium; cependant, peu d’informations étaient disponibles sur la régulation de cet échangeur. Selon l’équipe de recherche, la complexité de la structure de NCLX a historiquement entravé les efforts pour disséquer sa régulation. Dr John W. Elrod, auteur principal et professeur au Lewis Katz School of Medicine de l’Université Temple à Philadelphie, a déclaré que leur étude a adopté une approche différente, utilisant le marquage à la biotine, ce qui leur a permis de suivre les interactions de NCLX avec d’autres protéines dans des cellules intactes. Cette étude éclaire un mécanisme longtemps insaisissable régulant l’efflux calcique mitochondrial, un point de contrôle émergent dans la biologie du vieillissement. En identifiant TMEM65 comme un activateur direct de NCLX, l’étude offre une image plus claire de la façon dont la dysrégulation calcique contribue à la dysfonction liée à l’âge dans le cœur, le cerveau et le muscle squelettique. Les implications pour la géroscience sont claires : la surexpression de TMEM65 protège contre la mort cellulaire induite par le calcium, ouvrant la voie à de nouvelles stratégies thérapeutiques pour éviter l’effondrement mitochondrial dans les tissus vieillissants. Bien que les résultats soient précliniques et axés sur des modèles murins, ils marquent une avancée stratégiquement importante. L’application du marquage de proximité pour cartographier l’interactome de NCLX représente une plateforme puissante pour de futures interventions spécifiques aux tissus. Cependant, une prudence est de mise. La complexité de la dynamique calcique mitochondriale – et leur enchevêtrement avec d’autres caractéristiques du vieillissement – signifie que la modulation de TMEM65 doit être étudiée attentivement dans divers contextes, y compris des modèles humains. À mesure que les chercheurs travaillent à la modulation sûre et ciblée de cette voie, TMEM65 pourrait émerger comme un levier prometteur pour changer la trajectoire du vieillissement à son cœur métabolique. L’équipe a employé la biotinylation de proximité – une technique protéomique avancée qui permet d’identifier les protéines à proximité d’une protéine cible dans des cellules vivantes – pour rechercher des régulateurs de NCLX. Parmi les protéines interagissantes découvertes, TMEM65 s’est démarqué. Bien que précédemment non caractérisé, TMEM65 est intégré dans la membrane mitochondriale et a émergé comme un interacteur direct et fonctionnellement significatif de NCLX. Cette connexion clinique a poussé les chercheurs à mener des investigations plus approfondies; en utilisant des modèles génétiques chez la souris, ils ont démontré qu’une carence en TMEM65 entraînait un surcroît de calcium mitochondrial, une mort cellulaire, une dysfonction neuromusculaire et des signes de vieillissement prématuré. En revanche, la surexpression de TMEM65 était protectrice – préservant l’intégrité mitochondriale et la fonction cellulaire dans des conditions de stress calcique. Ces découvertes suggèrent que le complexe TMEM65-NCLX joue un rôle central dans la protection de la fonction mitochondriale pendant le vieillissement et les maladies. Étant donné que les tissus cardiaques et neuronaux dépendent fortement de l’efficacité mitochondriale, le potentiel thérapeutique de cibler ce complexe pourrait s’étendre à plusieurs conditions associées à l’âge. TMEM65 est considéré comme une cible thérapeutique prometteuse. Comprendre comment augmenter ou modifier son interaction avec NCLX pourrait offrir une option de traitement importante pour les patients touchés par des maladies impliquant une accumulation de calcium pathologique dans les mitochondries. La recherche a une pertinence particulière pour des conditions telles que l’insuffisance cardiaque et la maladie d’Alzheimer, qui sont toutes deux connues pour impliquer une dysfonction mitochondriale et une gestion calcique altérée. Dans des modèles murins, des modifications de l’expression de TMEM65 ont eu un impact sur les marqueurs de la fonction cardiaque et de la neurodégénération, soulignant davantage sa pertinence systémique. Amy J. Goldberg, MD, FACS, doyenne du Lewis Katz School of Medicine, a souligné l’importance plus large des résultats. Cette découverte illustre la science transformative qui se déroule au Lewis Katz School of Medicine. En approfondissant notre compréhension de la fonction mitochondriale, nos chercheurs ouvrent la voie à des traitements innovants qui pourraient avoir un impact profond sur les patients souffrant d’insuffisance cardiaque, de la maladie d’Alzheimer et au-delà. Bien que l’étude offre une base mécanistique claire, d’autres recherches sont nécessaires pour évaluer la sécurité et l’efficacité des thérapies basées sur TMEM65. Des questions demeurent sur la façon dont cette voie se comporte à travers différents tissus et états pathologiques chez les humains, et comment la modulation pharmacologique pourrait être réalisée sans perturber les gradients d’ions essentiels. Néanmoins, l’identification de TMEM65 comme régulateur de l’efflux calcique mitochondrial représente une avancée significative dans l’élucidation de l’architecture moléculaire du vieillissement et des maladies. À mesure que les chercheurs continuent de déchiffrer la chorégraphie cellulaire de la régulation du calcium, cette découverte pourrait aider à informer une nouvelle classe d’interventions ciblant la résilience mitochondriale face au stress lié à l’âge. Source : https://longevity.technology/news/new-mitochondrial-regulator-may-aid-aging-disease-therapies/

Utilisation des Réseaux de Régulation Génique pour Ralentir le Vieillissement

Les chercheurs explorent comment les réseaux de régulation génique (GRN) peuvent être utilisés pour concevoir des approches innovantes visant à ralentir le vieillissement. Les protéines interagissent entre elles, et des boucles de rétroaction impliquant des interactions et des variations d’expression parmi de nombreuses protéines déterminent chaque aspect du comportement cellulaire. La découverte clé est que, dans un système aussi complexe, il est plus judicieux de considérer ces réseaux dans leur ensemble plutôt que de se concentrer sur une seule protéine afin de maximiser les chances de développer une méthode efficace pour modifier le comportement cellulaire. Les études antérieures sur le vieillissement se concentraient souvent sur des gènes ou des voies isolées, mesurant la durée de vie comme un point final statique. Par conséquent, les interactions entre les gènes liés au vieillissement et le fonctionnement dynamique de ces réseaux de régulation génique (GRN) pour influencer le vieillissement constituent des défis significatifs encore non résolus. Les GRN sont composés de nœuds, représentant des gènes ou des éléments régulateurs, et d’arêtes, illustrant les interactions ou les connexions régulatrices entre ces nœuds. Les nœuds très connectés au centre d’un GRN sont les principaux orchestrateurs de la réponse d’une cellule aux stimuli. La dynamique de ces nœuds peut souvent être expliquée en se concentrant sur quelques interactions locales clés, à savoir les sous-graphes. Les motifs de réseau sont des sous-GRN récurrents, typiquement composés de quatre nœuds maximum, qui présentent des comportements caractéristiques. Ces motifs peuvent être simples, comme l’autorégulation positive, qui assure l’activité soutenue d’un nœud. En revanche, l’inhibition mutuelle entre deux nœuds peut conduire à deux destinées cellulaires distinctes, où le système se stabilise dans l’un des deux états en fonction des conditions initiales. La boucle de rétroaction négative est un motif particulièrement crucial pour garantir l’homéostasie, activée par des écarts par rapport à un point de consigne qui déclenchent des mécanismes pour contrer ces changements. Ces motifs sont observés dans de nombreux GRN et sont renforcés par des voies redondantes et compensatoires pour accroître la résilience du système face aux perturbations. Déchiffrer le comportement émergent des GRN liés au vieillissement prépare le terrain pour la conception rationnelle de nouvelles stratégies d’intervention visant à atténuer les maladies liées à l’âge et à promouvoir une longévité en bonne santé. Cependant, la nature complexe des processus liés au vieillissement ne peut pas être pleinement comprise par des méthodes réductionnistes traditionnelles. Au lieu de cela, des approches à niveau système, conçues pour analyser les dynamiques non linéaires des circuits géniques, sont nécessaires. De plus, ces approches basées sur les réseaux peuvent être naturellement intégrées à la biologie synthétique pour révéler les principes de conception des stratégies prolongeant la vie. Source : https://www.fightaging.org/archives/2025/03/gene-regulatory-networks-in-the-design-of-approaches-to-slow-aging/

Le Rôle Crucial des ARN Non Codants dans l’Évolution de la Durée de Vie des Espèces

Les séquences d’ARN non codants dans le génome subissent une transcription pour produire une molécule d’ARN qui n’est cependant pas traduite en protéine. Ces ARN non codants forment un environnement d’interaction tout aussi complexe que celui des protéines, jouant un rôle crucial dans la fonction cellulaire. Malheureusement, ils restent peu explorés, car la majorité des recherches en biologie cellulaire se sont concentrées sur les protéines. Il est incertain que le catalogue actuel des ARN non codants soit complet, et de nombreuses entrées connues ont des fonctions inconnues. L’argument est avancé selon lequel les ARN non codants peuvent être des déterminants importants de la durée de vie des espèces, en se basant sur les différences observées entre les espèces à courte et à longue espérance de vie. La durée de vie est un processus complexe qui interagit avec de multiples facteurs, mais elle est fondamentalement un processus évolutif dans lequel des facteurs génétiques évoluent pour faire face à l’évolution de la durée de vie. Il est donc essentiel de découvrir les facteurs génétiques qui contribuent aux variations de la durée de vie entre différentes espèces. Les études actuelles se sont concentrées sur les gènes codant des protéines à la recherche de déterminants de longévité, mais les résultats n’ont pas fourni de preuves suffisantes pour expliquer les disparités évolutives de la durée de vie, même entre un petit groupe d’espèces ou d’individus. Les facteurs génétiques contribuant aux écarts de durée de vie à grande échelle entre les espèces restent insaisissables. Lorsque les génomes des espèces évoluent, ils acquièrent généralement plus d’ARN non codants que de protéines. Par exemple, le génome humain contient un plus grand nombre d’ARN non codants que son homologue murin, tandis que la plupart des protéines restent similaires. Il est important de noter que ces ARN non codants sont activement transcrits avec leur propre système fonctionnel et exécutent naturellement des fonctions fondamentales, y compris l’extension de la durée de vie. Par conséquent, il est raisonnable d’hypothéquer que les ARN non codants jouent un rôle clé dans l’évolution de la durée de vie d’un organisme. La présente étude a analysé plusieurs grands ensembles de données et a révélé que les ARN non codants agissent effectivement comme les principaux moteurs évolutifs prolongeant les durées de vie des animaux et servent de déterminants cruciaux des systèmes reproductifs. La longévité et la reproduction sont les deux traits les plus importants de l’évolution de tout organisme, suggérant que les ARN non codants agissent comme les moteurs fondamentaux de ce long processus évolutif et portent des fonctions cruciales dans le génome de l’organisme. Source : https://www.fightaging.org/archives/2025/03/hypothesizing-that-non-coding-rnas-are-a-major-determinant-of-species-life-span/

Ryan Smith : Les tests épigénétiques pour maîtriser notre santé

Ryan Smith, fondateur de TruDiagnostic, évoque l’importance des tests épigénétiques pour mesurer l’âge biologique et prédire les risques de maladies. Les tests développés en collaboration avec des chercheurs de Cornell, Yale et Harvard permettent aux utilisateurs de suivre leur processus biologique et d’apporter des améliorations ciblées à leur mode de vie. TruDiagnostic propose plusieurs tests, tels que TruAge, qui évalue la santé cellulaire à travers plus de 75 biomarqueurs, et TruHealth, qui analyse le statut nutritionnel via plus de 110 biomarqueurs épigénétiques. L’approche épigénétique va au-delà de la génétique traditionnelle, en se concentrant sur les facteurs environnementaux et les choix de mode de vie qui influencent la santé. Smith explique que, bien que la génétique ait un rôle dans l’âge biologique, les choix de vie, comme l’alimentation et l’activité physique, jouent un rôle plus significatif. Les algorithmes de TruDiagnostic permettent d’évaluer les niveaux de nutriments spécifiques et d’optimiser la longévité. Smith exprime sa vision de remplacer les tests de biomarqueurs traditionnels par des tests épigénétiques, considérant qu’ils sont plus prédictifs des résultats de santé. Il souligne également l’importance de prédire des risques spécifiques de maladies, comme Alzheimer, et de fournir des plans d’explication des générations qui détaillent les raisons des résultats, permettant ainsi de mieux comprendre comment inverser le processus de vieillissement. Source : https://longevity.technology/news/epigenetic-testing-puts-control-back-into-our-hands/

Avancées dans l’Origami ARN : Vers des Cellules Synthétiques Fonctionnelles

Dans une nouvelle étude, des chercheurs ont rapporté la production de nanotubes et d’anneaux auto-assemblés à partir de molécules d’ARN à l’intérieur de vésicules lipidiques artificielles semblables à des cellules. Cette technologie pourrait à l’avenir faciliter la création de cellules synthétiques pour diverses applications de recherche, de diagnostic et thérapeutiques. Les molécules d’ADN et d’ARN sont essentielles à la vie, portant des informations génétiques cruciales pour la production de protéines. Leur unicité les rend également excellents matériaux de construction. La technique de l’origami ADN (ou ARN) a été développée pour concevoir des séquences qui permettent aux molécules de s’auto-assembler en formes prédéterminées. Dans cette étude, des chercheurs de l’Université de Heidelberg ont avancé l’origami ARN à un niveau supérieur en concevant des molécules d’ARN qui s’assemblent en structures ressemblant au cytosquelette cellulaire. Le cytosquelette, composé de filaments protéiques et de microtubules, est essentiel pour maintenir la forme et la stabilité des cellules. Les chercheurs ont encapsulé des modèles d’ADN et de l’ARN polymérase dans de grandes vésicules lipidiques unilamellaires, créant ainsi des proto-cellules. Des protéines de pore transmembranaires ont permis de fournir des blocs de construction à ces cellules synthétiques. Lorsque la transcription a été initiée, les brins d’ARN se sont immédiatement repliés et assemblés en nanotubes. Certains nanotubes mesuraient plusieurs micromètres de long, comparables à de véritables structures du cytosquelette cellulaire. Les chercheurs ont également noté que de légères variations dans la séquence du modèle d’ADN modifiaient considérablement les structures d’origami ARN. Pour élargir leurs créations, ils ont intégré des aptamères, permettant aux nanotubes de former des réseaux similaires à des cytosquelettes. Ces structures peuvent être produites directement à l’intérieur des cellules, ouvrant de nouvelles perspectives pour l’évolution dirigée de ces cellules. Ce développement a des implications larges, notamment en recherche sur le vieillissement, et pourrait aider à mieux comprendre l’évolution cellulaire précoce et à concevoir des systèmes biomimétiques. Bien que la création de cellules eucaryotes synthétiques pleinement fonctionnelles soit encore lointaine, le chemin vers des proto-cellules prokaryotes simplifiées est devenu plus court. Ces proto-cellules pourraient produire des protéines essentielles, contournant les problèmes d’immunogénicité bactérienne. Les structures d’origami ARN pourraient également être introduites dans des cellules existantes pour fournir un soutien structurel et d’autres fonctionnalités. Les auteurs prévoient que ces structures deviendront plus qu’un simple échafaudage passif et accompliront des tâches cellulaires complexes en intégrant des ribozymes. L’objectif à long terme est de créer des machines moléculaires entièrement fonctionnelles pour des cellules synthétiques basées sur l’ARN. Source : https://www.lifespan.io/news/scientists-create-cytoskeleton-like-structures-from-rna/?utm_source=rss&utm_medium=rss&utm_campaign=scientists-create-cytoskeleton-like-structures-from-rna