Étiquette : neuroinflammation

Exosomes et NF-κB : Une approche prometteuse pour traiter la neuroinflammation liée à l’âge

Le NF-κB est un facteur de transcription crucial dans la signalisation inflammatoire, jouant un rôle central dans la régulation des réponses inflammatoires. Bien que la suppression de l’inflammation chronique soit un objectif de recherche important, il existe des défis considérables à surmonter. En effet, les voies de signalisation utilisées lors des réponses inflammatoires normales et nécessaires sont identiques à celles impliquées dans l’inflammation chronique, ce qui rend difficile la différenciation entre les deux. Les chercheurs n’ont pas encore trouvé d’approche permettant de cibler uniquement l’inflammation chronique sans affecter les fonctions bénéfiques du système immunitaire. Une solution potentielle serait d’éliminer les dommages liés au vieillissement qui provoquent l’inflammation, bien que cela ne soit pas actuellement le principal axe de recherche. La neuroinflammation, qui est fortement associée à divers troubles neurodégénératifs, est également liée au processus de vieillissement. Actuellement, aucune méthode de traitement efficace contre la neuroinflammation n’a été développée. Dans les cerveaux de souris âgées, une augmentation des cellules immunitaires infiltrantes a été observée, et le NF-κB est identifié comme un facteur de transcription clé associé à l’augmentation des niveaux de chimiokines. Les exosomes, qui sont des vésicules extracellulaires, se révèlent être des agents thérapeutiques prometteurs pour la livraison de médicaments. Dans cette étude, l’efficacité thérapeutique des exosomes chargés d’une forme non dégradable d’IκB (Exo-srIκB), qui inhibe la translocation nucléaire du NF-κB, a été évaluée. L’analyse par séquençage d’ARN unicellulaire a montré que ces exosomes anti-inflammatoires ciblaient principalement les macrophages et les microglies, réduisant ainsi l’expression des gènes liés à l’inflammation. Le traitement avec Exo-srIκB a également diminué les interactions entre macrophages/microglies et cellules T/B dans le cerveau âgé. Les résultats démontrent qu’Exo-srIκB atténue efficacement la neuroinflammation en ciblant principalement les macrophages activés et en modulant partiellement les fonctions des microglies réactives aux interférons liées à l’âge. Ces découvertes mettent en évidence le potentiel d’Exo-srIκB en tant qu’agent thérapeutique pour traiter la neuroinflammation liée à l’âge. Source : https://www.fightaging.org/archives/2025/01/a-novel-way-to-interfere-in-nf-%ce%bab-signaling-to-reduce-inflammation-in-the-brain/

Les Interactions entre le Système Immunitaire et le Système Nerveux : Vers une Nouvelle Compréhension du Vieillissement Cérébral

Le système immunitaire ne se limite pas à défendre l’organisme contre les pathogènes et les cellules cancéreuses ; il joue également un rôle crucial dans le fonctionnement et l’entretien des tissus, la régénération après des lésions, et l’élimination des débris. Ce système communique à distance dans tout le corps à travers une multitude de molécules de signalisation. Cependant, le déclin lié à l’âge du système immunitaire et l’inflammation chronique altèrent le comportement cellulaire, aggravant ainsi certains problèmes de santé. Une part importante des défis liés à l’âge immunitaire réside dans l’augmentation des signaux inflammatoires non résolus et leur impact sur les tissus. Pendant des décennies, on a cru que le système immunitaire n’avait aucun effet sur le système nerveux central (SNC) en bonne santé, et qu’il était même nuisible dans le cadre des troubles cérébraux. Cette compréhension était fondée sur le concept de « privilège immunitaire du SNC », soutenu par la présence de la barrière hémato-encéphalique et l’absence supposée d’un système lymphatique au sein du SNC. Toutefois, de récentes découvertes ont transformé cette vision des relations entre le cerveau et le système immunitaire, ouvrant de nouvelles perspectives en neurosciences. Il a été démontré que les neurones nécessitent l’assistance de l’immunité adaptative, établissant de nouvelles voies de communication entre les deux systèmes. Selon cette nouvelle approche, la santé cérébrale dépend de la santé immunitaire, qui est modifiée par notre mode de vie. Cette interaction complexe entre les systèmes immunitaire et nerveux se produit principalement aux frontières du cerveau, où les cellules immunitaires sont concentrées. Avec l’âge, la fonction de ces frontières et la composition des cellules immunitaires changent, ce qui altère les signaux transmis au cerveau et affecte négativement sa fonction. Cela signifie que le déclin cognitif observé avec l’âge n’est pas uniquement dû à la dégradation de la fonction neuronale, mais également aux modifications liées à l’âge dans les niches immunitaires entourant le cerveau et dans le système immunitaire périphérique. Comprendre cette voie de communication tout au long de la vie et identifier les processus immunitaires qui deviennent défectueux avec l’âge pourrait aider à développer des stratégies potentielles de rajeunissement du système immunitaire pour ralentir ou même arrêter le vieillissement cérébral. Source : https://www.fightaging.org/archives/2025/01/immune-aging-as-a-driver-of-brain-aging/

L’interaction entre le système immunitaire et le système nerveux : Une nouvelle perspective sur le vieillissement cérébral

Le système immunitaire est souvent perçu comme un défenseur contre les agents pathogènes et les cellules cancéreuses, mais son rôle s’étend bien au-delà de cela. Il est également crucial pour le fonctionnement et le maintien des tissus, la régénération après des dommages, et la communication dans tout le corps via divers molécules de signalisation. Au fil du temps, le déclin lié à l’âge du système immunitaire impacte ces fonctions, et l’inflammation chronique entraîne des modifications néfastes du comportement cellulaire. Un aspect significatif du vieillissement immunitaire est l’augmentation des signaux inflammatoires non résolus et leurs effets sur les tissus. Pendant des décennies, il a été largement admis que le système immunitaire n’avait aucune influence sur le système nerveux central (SNC) en bonne santé et était souvent considéré comme nuisible dans le contexte des troubles cérébraux. Cette vue reposait sur l’idée de « privilège immunitaire du SNC », soutenue par la présence de la barrière hémato-encéphalique (BHE) et l’absence supposée d’un système lymphatique dans le SNC. Cependant, des recherches récentes ont révélé une compréhension transformée des relations entre le cerveau et le système immunitaire, ouvrant de nouvelles voies en neurosciences. Il a été démontré que les neurones nécessitent l’assistance et l’ajustement fournis par le système immunitaire adaptatif, ce qui établit des routes de communication nouvelles entre ces deux systèmes. Selon cette perspective, la santé du cerveau dépend de la santé immunitaire, qui est à son tour modifiée par notre mode de vie. Cette interaction complexe entre les systèmes immunitaire et nerveux se produit principalement aux frontières du cerveau, où les cellules immunitaires sont concentrées. Avec l’âge, la fonction de ces frontières et la composition des cellules immunitaires changent, ce qui altère les signaux transmis au cerveau et impacte négativement son fonctionnement. Cela suggère que le déclin cognitif observé chez les personnes âgées n’est pas uniquement dû à la diminution de la fonction neuronale, mais aussi aux modifications dépendantes de l’âge dans les niches immunitaires entourant le cerveau et le système immunitaire périphérique. Comprendre cette route de communication tout au long de la vie et identifier les processus immunitaires qui deviennent défectueux avec l’âge pourrait aider à développer des stratégies potentielles pour le rajeunissement du système immunitaire, afin de ralentir ou même d’arrêter le vieillissement cérébral. Source : https://www.fightaging.org/archives/2025/01/immune-aging-as-a-driver-of-brain-aging/

Rôle des microglies dans la pathologie et le traitement de la maladie d’Alzheimer

Les microglies constituent des cellules immunitaires innées du système nerveux central (SNC), semblables aux macrophages présents dans d’autres parties du corps. Elles participent à l’entretien des tissus et à la défense contre les pathogènes. Les microglies adoptent différents comportements appelés polarisation, les deux principales étant M1, pro-inflammatoire et orientée vers la chasse aux pathogènes, et M2, anti-inflammatoire et impliquée dans la maintenance des tissus. Une augmentation des microglies inflammatoires est considérée comme une réponse maladaptive du système immunitaire inné, souvent liée au vieillissement du cerveau. Des recherches sont menées pour explorer comment la déplétion et la repopulation des microglies peuvent influencer les pathologies amyloïdes, notamment dans le cadre de la maladie d’Alzheimer. Un des moyens de détruire sélectivement les microglies est l’utilisation du pexidartinib (PLX3397), un médicament qui inhibe l’activité du récepteur CSF1R, entraînant la mort des microglies. Après l’arrêt du traitement, la population de microglies se rétablit en quelques semaines, et les nouvelles microglies montrent moins de traits maladaptatifs que les anciennes. Cela a permis aux chercheurs de tester la clairance des microglies comme base thérapeutique dans des modèles animaux de diverses conditions neurodégénératives. Les résultats sont généralement positifs, mais dans le cadre de la maladie d’Alzheimer, les résultats ne sont pas aussi favorables que prévu. Les microglies jouent un rôle clé dans le neurodéveloppement et la plasticité, ainsi que dans la pathogenèse de divers troubles neurodéveloppementaux et neurodégénératifs. Dans la maladie d’Alzheimer, les facteurs génétiques de risque sont souvent liés à des récepteurs immunitaires exprimés par les microglies, ce qui en fait des cibles importantes pour des thérapies modifiant la maladie. Cependant, dans l’environnement neuroinflammatoire chronique de la maladie d’Alzheimer, le rôle des microglies est complexe. L’inhibition du CSF1R, qui est crucial pour la survie et la prolifération des microglies, a réduit la formation de plaques lorsqu’elle est administrée tôt, mais pas lors de pathologies amyloïdes avancées. Bien que certaines études aient montré que la perte tardive de microglies améliore l’apprentissage et la mémoire, d’autres ont démontré qu’elle augmentait également les dommages neuritiques associés aux plaques. Une autre stratégie prometteuse consiste à renouveler les microglies par déplétion suivie de repopulation. Les microglies adultes peuvent rapidement reconstituer leur niche en une semaine après le retrait de l’inhibiteur de CSF1R, restaurant leur morphologie et leurs fonctions physiologiques. Dans plusieurs modèles de blessures et de vieillissement, les microglies repopulées se sont révélées bénéfiques pour promouvoir la récupération cérébrale et inverser les déficits neuronaux liés à l’âge. Cependant, dans le cadre de la maladie d’Alzheimer, aucune amélioration n’a été observée concernant la pathologie amyloïde ou la fonction cognitive chez les souris transgéniques âgées présentant à la fois des pathologies amyloïdes et tau. En revanche, un renouvellement précoce des microglies a été suggéré pour partiellement corriger les déficits cognitifs en restaurant le phénotype homéostatique des microglies. Cette étude vise à définir les effets dynamiques de la déplétion des microglies suivie de leur repopulation sur la fonction des microglies et la charge en plaques amyloïdes à différents stades de la pathologie amyloïde. Nous avons administré l’inhibiteur CSF1R PLX3397 chez des souris 5xFAD et suivi la dynamique microglies-plaques avec imagerie in vivo. Nous avons révélé une amélioration temporaire de la charge en plaques qui s’est produite pendant les périodes de déplétion ou de repopulation en fonction de l’âge de l’animal. Il est intéressant de noter que, bien que l’amélioration de la charge en plaques n’ait pas persisté à long terme, les microglies repopulées pendant les stades de pathologie intermédiaire à avancée semblaient conserver ou augmenter leur sensibilité au signal noradrénergique, qui est généralement considéré comme anti-inflammatoire. Source : https://www.fightaging.org/archives/2025/01/clearance-of-microglia-produces-only-a-transient-reduction-in-amyloid-in-a-mouse-model-of-alzheimers-disease/