Étiquette : neurodégénérescence

L’impact de l’expression de XBP1 sur la longévité et la maladie d’Alzheimer

L’expression excessive du facteur de transcription XBP1 a été démontrée comme capable d’allonger la vie des mouches, probablement en améliorant l’efficacité de la réponse des protéines mal repliées, un processus de maintenance cellulaire. XBP1 influence également des mécanismes variés tels que la fonction immunitaire, le métabolisme lipidique et le métabolisme du glucose. Cette diversité d’effets est typique des facteurs de transcription. Des chercheurs ont appliqué une surexpression spécifique au cerveau de XBP1 sur des modèles murins de la maladie d’Alzheimer, observant une réduction de la pathologie. La dégradation du réseau de protéostasie est reconnue comme un marqueur de vieillissement, contribuant à la pathogenèse de la maladie d’Alzheimer. Des stratégies visant à améliorer la protéostasie ont montré des effets protecteurs significatifs dans divers modèles de maladies neurodégénératives. L’un des nœuds centraux du réseau de protéostasie, affecté par le vieillissement, est la fonction du réticulum endoplasmique (RE), principal site de production des protéines. Lorsqu’il est soumis à un stress, les cellules activent une voie conservée, connue sous le nom de réponse des protéines mal repliées (UPR), qui vise à restaurer la protéostasie. Cette réponse renforce plusieurs processus liés à la fonction de la voie sécrétoire pour améliorer la production de protéines et maintenir la fonction cellulaire, tandis qu’un stress chronique du RE peut entraîner neurodégénérescence et mort cellulaire. La branche de signalisation UPR la plus conservée est initiée par le capteur de stress du RE, IRE1, qui catalyse l’épissage non conventionnel de l’ARNm codant pour XBP1. Cet événement entraîne l’expression d’un facteur de transcription actif, appelé XBP1s, permettant une reprogrammation transcriptionnelle. Des recherches récentes ont montré que l’activité de la voie IRE1/XBP1 diminue dans le cerveau avec le vieillissement normal chez les mammifères, et que des stratégies visant à renforcer l’activité de l’UPR prolonge la durée de vie en bonne santé du cerveau. Il a été démontré que l’expression de XBP1s dans les neurones, que ce soit par des souris transgéniques ou par thérapie génique, retarde la dysfonction synaptique et le déclin cognitif liés au vieillissement normal, tout en réduisant le contenu des cellules de sénescence dans le cerveau. En testant les effets de l’imposition artificielle des réponses adaptatives de l’UPR dans le cerveau d’Alzheimer, les chercheurs ont surexprimé la forme active de XBP1s dans le système nerveux à l’aide de souris transgéniques et du vecteur viral associé aux adénovirus (AAV). La surexpression de XBP1s a considérablement réduit le contenu des plaques amyloïdes dans le cerveau et amélioré la performance cognitive et la plasticité synaptique dans un modèle de maladie d’Alzheimer familiale. De plus, la surexpression de XBP1s dans le cerveau a amélioré la performance de la mémoire dans un modèle de maladie d’Alzheimer sporadique basé sur l’injection d’oligomères d’amyloïde β. Les effets bénéfiques de l’expression de XBP1s dans le cadre de la maladie d’Alzheimer expérimentale et du vieillissement normal impliquent une correction substantielle des motifs d’expression génique associés à la fonction synaptique, à la morphologie neuronale et à la connectivité. Les chercheurs spéculent donc qu’un des mécanismes de protection majeurs de XBP1s dans la maladie d’Alzheimer se rapporte à sa fonction de régulateur de la physiologie neuronale, ce qui pourrait parallèlement réduire le dépôt d’amyloïde. Source : https://www.fightaging.org/archives/2025/03/xbp1-to-upregulate-the-unfolded-protein-response-reduces-pathology-in-mouse-models-of-alzheimers-disease/

L’impact du microbiome intestinal sur la santé cognitive des personnes âgées

Le microbiome intestinal, véritable écosystème de microorganismes, joue un rôle crucial dans le maintien de la santé et l’influence sur la progression des maladies. Avec l’âge, l’équilibre des espèces microbiennes qui composent le microbiome intestinal évolue, ce qui peut favoriser l’inflammation chronique, notamment par l’infiltration de microbes dans les tissus et la production de métabolites néfastes, tout en réduisant la disponibilité de métabolites bénéfiques comme le butyrate. Les recherches récentes montrent que ces modifications sont liées à des conditions liées à l’âge, telles que les maladies neurodégénératives comme Alzheimer et Parkinson, qui présentent des changements dysfonctionnels spécifiques dans le microbiome intestinal vieillissant. Un article récemment publié a approfondi ces travaux en évaluant non seulement la fonction cognitive et la composition du microbiome intestinal, mais aussi l’âge biologique du cerveau, dérivé de l’imagerie des tissus cérébraux. Ces trois mesures semblent interagir : les personnes présentant une dysbiose plus marquée du microbiome intestinal ont également un âge cérébral plus avancé et une plus grande perte de fonction cognitive. On pourrait émettre l’hypothèse que les changements dans le microbiome intestinal contribuent à la neurodégénérescence, ou que le vieillissement immunitaire influence ces deux facteurs, ou même que les deux processus sont interconnectés. Il existe une relation bidirectionnelle entre l’état du système immunitaire vieillissant et celui du microbiome intestinal vieillissant. D’une part, le système immunitaire régule le microbiome intestinal en éliminant les microbes problématiques. En vieillissant, le système immunitaire devient moins capable d’exercer cette fonction. D’autre part, les modifications de la composition du microbiome intestinal peuvent affecter le système immunitaire, en provoquant une inflammation chronique et en influençant les tissus et organes nécessaires à la fonction immunitaire, comme la moelle osseuse et le thymus. Des études émergentes suggèrent que la dysbiose du microbiome intestinal est associée à un vieillissement accéléré de la matière grise, liée à l’inflammation et à une perméabilité intestinale accrue, ce qui conduit à une inflammation systémique et neuronale pouvant nuire à la fonction cognitive. Le vieillissement semble aggraver ces changements, marqués par une diminution de la diversité des espèces microbiennes bénéfiques et une augmentation de la prévalence d’espèces pro-inflammatoires. Ces changements microbiaux, combinés à une fonction immunologique réduite, peuvent accélérer le vieillissement cérébral et contribuer au déclin cognitif. Une étude a été menée sur 292 participants dans des cliniques de mémoire en Corée du Sud, utilisant l’imagerie par résonance magnétique et des échantillons de selles. L’analyse a révélé que la dysbiose du microbiome intestinal était associée à une fonction cognitive altérée, et que l’âge cérébral joue un rôle médiateur dans cette relation. Ces découvertes ouvrent la voie à des interventions ciblant le microbiome intestinal pour atténuer le déclin cognitif lié à l’âge. Source : https://www.fightaging.org/archives/2025/03/detrimental-changes-in-the-gut-microbiome-correlate-with-loss-of-cognitive-function-in-later-life/

Un nouveau traceur PET pour quantifier le stress oxydatif dans le cerveau

Une nouvelle sonde d’imagerie par tomographie par émission de positons (PET), dérivée du médicament edaravone, a montré un potentiel pour détecter le stress oxydatif dans le système nerveux central, un facteur sous-jacent dans des maladies neurodégénératives telles qu’Alzheimer et la sclérose latérale amyotrophique (SLA). Les chercheurs de St Jude Children’s Research Hospital et de l’Université de Virginie ont développé le [18F]fluoroedaravone ([18F]FEDV), un analogue radio-labellisé de l’antioxydant edaravone, qui permet une imagerie in vivo des espèces réactives d’oxygène et d’azote (RONS) dans le cerveau. L’étude, publiée dans Nature Biomedical Engineering, souligne l’importance de ce développement pour comprendre le rôle du stress oxydatif dans la neurodégénérescence. Cette étude répond à un défi de longue date : l’incapacité à mesurer directement les RONS in vivo dans le système nerveux central. Le développement du [18F]FEDV, un traceur PET dérivé de l’edaravone, offre un outil puissant pour visualiser le stress oxydatif au niveau cellulaire. En traversant avec succès la barrière hémato-encéphalique et en démontrant sa stabilité dans le plasma humain, le [18F]FEDV permet un suivi en temps réel et longitudinal de l’activité des RONS, ce qui est très pertinent pour évaluer la progression de la maladie et les interventions thérapeutiques dans des conditions comme la maladie d’Alzheimer et l’accident vasculaire cérébral. La large réactivité du [18F]FEDV avec les radicaux peroxyliques solubles dans les lipides et dans l’eau témoigne de sa polyvalence en tant que biomarqueur du stress oxydatif. Si cet outil d’imagerie est traduit en utilisation clinique, il pourrait affiner la sélection des patients pour des interventions basées sur des antioxydants, surveiller les réponses au traitement avec une précision sans précédent et même prédire l’apparition des symptômes, offrant ainsi un potentiel pour redéfinir la compréhension et la ciblage du stress oxydatif dans la gestion du vieillissement et des maladies neurodégénératives. Les espèces réactives d’oxygène et d’azote contribuent à la signalisation cellulaire et à l’homéostasie ; cependant, lorsque leur production dépasse la capacité des systèmes antioxydants de l’organisme, elles déclenchent des réactions en chaîne dommageables. Une activité excessive des RONS a été impliquée dans les lésions neuronales, la dysfonction mitochondriale et la progression pathologique des maladies neurodégénératives, mais malgré cela, la mesure directe du stress oxydatif dans le cerveau vivant reste un défi. Edaravone, initialement approuvé pour le traitement de la SLA, chasse les radicaux peroxyliques, les radicaux hydroxyles et le peroxynitrite, des composés qui contribuent aux lésions oxydatives. Le [18F]FEDV conserve ces propriétés tout en étant radio-labellisé pour l’imagerie PET, permettant ainsi de servir de biomarqueur du stress oxydatif. Contrairement à d’autres traceurs PET qui détectent la neuroinflammation ou le dépôt d’amyloïde, le [18F]FEDV fournit une mesure directe des niveaux de stress oxydatif, permettant un suivi longitudinal de la progression de la maladie et de la réponse aux traitements antioxydants. L’étude a démontré que le [18F]FEDV peut traverser la barrière hémato-encéphalique et s’accumuler sélectivement dans des régions présentant un stress oxydatif élevé. Dans des modèles murins, le traceur a détecté l’accumulation de RONS après un AVC induit et dans des cerveaux présentant une tauopathie, caractéristique de la maladie d’Alzheimer. Sa spécificité a été confirmée par un prétraitement des souris avec de l’edaravone, qui a bloqué le signal PET, indiquant que la sonde mesure directement le stress oxydatif plutôt que d’autres processus métaboliques. L’auteur correspondant, Kiel Neumann, PhD, du département de radiologie de St Jude, a expliqué que c’est la blessure secondaire subséquente, généralement causée par la réponse immunitaire, qui cause le plus de dommages neurologiques. Une visualisation du stress oxydatif en temps réel pourrait améliorer considérablement l’étude de la neurodégénérescence. Alors que les essais cliniques sur les antioxydants ont produit des résultats mitigés, en partie en raison du manque d’une méthode pour confirmer leur effet in vivo, le [18F]FEDV pourrait servir d’outil crucial pour évaluer l’efficacité thérapeutique. En permettant une mesure directe du stress oxydatif, le traceur pourrait également aider à identifier les individus à risque de développer des conditions neurodégénératives avant l’apparition des symptômes. L’objectif en imagerie est de promouvoir le contraste, donc nous voulons quelque chose qui interagisse rapidement avec sa cible mais qui soit également éliminé rapidement pour que vous puissiez voir votre cible immédiatement. Ce qui était unique à ce médicament, c’est que lorsqu’il réagit avec le stress oxydatif, il subit un changement structural et de polarité massif qui le garde dans la cellule et favorise le contraste. Des recherches supplémentaires seront nécessaires pour valider le [18F]FEDV dans des études humaines. Les prochaines étapes comprennent des essais cliniques pour évaluer sa sécurité et son efficacité chez les patients atteints de SLA, de la maladie d’Alzheimer et d’autres conditions neurodégénératives. De plus, les chercheurs visent à affiner les protocoles d’imagerie PET pour améliorer la sensibilité et la résolution de la détection du stress oxydatif dans le cerveau humain. Les tests diagnostiques sont de l’ordre des nanogrammes à microgrammes de matériel, donc le corps ne sait même pas qu’il est là. En fin de compte, notre objectif est d’utiliser cela pour impacter les soins cliniques. L’intervention thérapeutique utilisant cette technologie pour la gestion des maladies cliniques est l’avenir. Avec son potentiel à combler une lacune de longue date dans la recherche neurodégénérative, le [18F]FEDV représente une avancée dans l’imagerie moléculaire, qui pourrait conduire à un diagnostic plus précoce et précis des conditions liées au stress oxydatif, ainsi qu’à des stratégies améliorées pour leur traitement. Source : https://longevity.technology/news/repurposed-drug-enables-imaging-of-neurodegeneration/

Impact du vieillissement et des maladies neurodégénératives sur la barrière hémato-encéphalique et l’immunité cérébrale

La barrière hémato-encéphalique (BHE) est une structure spécialisée qui entoure les vaisseaux sanguins dans le cerveau et qui contrôle strictement les molécules pouvant y pénétrer. Elle joue un rôle essentiel en séparant le métabolisme du cerveau de celui du reste du corps. Avec l’âge, cette barrière peut devenir dysfonctionnelle, permettant à des cellules et molécules indésirables de s’infiltrer dans le cerveau, ce qui contribue à l’inflammation chronique du tissu cérébral. Des chercheurs se sont penchés sur la structure d’une couche fine spécifique de la BHE, notant qu’elle devient déséquilibrée avec l’âge, et ont trouvé un moyen d’améliorer sa fonction par le biais de la thérapie génique. La BHE est composée d’une couche de glycocalyx endothélial riche en glucides, composée principalement de protéoglycans, glycoprotéines et glycolipides, qui forment la première interface entre le sang et la vascularisation cérébrale. Cependant, peu de choses sont connues sur sa composition et son rôle dans le soutien de la fonction de la BHE dans des états d’homéostasie et de maladie. Les recherches ont révélé que le glycocalyx endothélial cérébral est fortement déséquilibré chez les personnes âgées et en cas de maladies neurodégénératives. Des perturbations importantes ont été identifiées dans une classe de protéines glycosylées O peu explorées, connues sous le nom de glycoprotéines à domaine mucine. Ces anomalies dans les glycoprotéines mucine-domaines associées à l’âge et aux maladies entraînent une dysrégulation de la fonction de la BHE et, dans les cas graves, des hémorragies cérébrales chez les souris. Les chercheurs ont également montré qu’il était possible d’améliorer la fonction de la BHE et de réduire l’inflammation neurogène et les déficits cognitifs chez les souris âgées en restaurant les mucines de type O dans l’endothélium cérébral à l’aide de virus adéno-associés sur-exprimant deux enzymes biosynthétiques de mucines de type O, C1GALT1 et B3GNT3. Ces résultats fournissent une cartographie détaillée de la composition et de la structure de la couche glycocalyx endothéliale cérébrale vieillissante et révèlent les conséquences importantes de la dysrégulation du glycocalyx associée à l’âge et aux maladies sur l’intégrité de la BHE et la santé cérébrale. Source : https://www.fightaging.org/archives/2025/03/restoration-of-the-glycocalyx-layer-of-the-aged-blood-brain-barrier-improves-function/

Dépression tardive : lien entre les maladies cérébrovasculaires et la santé mentale des personnes âgées

La dépression tardive, souvent associée à l’âge avancé, se réfère à l’apparition de troubles dépressifs majeurs chez les personnes âgées. Bien que les causes biochimiques de cette condition ne soient pas complètement comprises, des études soulignent que des comportements immunitaires altérés, souvent inflammatoires, pourraient jouer un rôle clé. Les interventions telles que l’activité physique ont montré des effets bénéfiques sur la dépression, mais leur efficacité varie d’une personne à l’autre. La recherche s’intéresse également aux liens entre le vieillissement cérébral et la dépression tardive, en particulier en examinant comment les maladies cérébrovasculaires peuvent contribuer à cette condition. Les maladies cérébrales des petits vaisseaux (CSVD) représentent un facteur de risque significatif, lié à l’hypertension et aux dommages microvasculaires, qui peuvent affecter la perfusion cérébrale. Une revue de la littérature a analysé vingt études, dont quinze ont révélé une corrélation significative entre CSVD et dépression tardive, tandis que cinq n’ont pas trouvé de lien significatif. Les hyperintensités de la substance blanche, souvent observées chez les patients atteints de CSVD, étaient associées à des symptômes dépressifs accrus. Cependant, la relation entre CSVD et dépression est complexe, étant influencée par des facteurs non vasculaires tels que la neuroinflammation, la neurodégénérescence et d’autres comorbidités. Ces résultats mettent en avant l’importance d’une détection précoce de la CSVD et d’approches interdisciplinaires pour atténuer la dépression et le déclin cognitif chez les populations vieillissantes. Des recherches futures devraient explorer des techniques d’imagerie avancées, le profilage génétique, et des études longitudinales pour mieux comprendre les mécanismes complexes reliant CSVD et dépression tardive, et ainsi améliorer les résultats cliniques. Source : https://www.fightaging.org/archives/2025/03/a-relationship-between-cerebrovascular-disease-and-late-life-depression/

Lutte contre le vieillissement : Avancées et Perspectives

Fight Aging! est une publication qui se consacre à la lutte contre les maladies liées à l’âge, en mettant en lumière les avancées de la médecine moderne dans le contrôle des mécanismes du vieillissement. Le bulletin hebdomadaire de Fight Aging! est envoyé à des milliers d’abonnés intéressés par ces thématiques. Le fondateur de Fight Aging!, Reason, propose également des services de conseil stratégique aux investisseurs et entrepreneurs dans l’industrie de la longévité. Les articles publiés dans cette revue abordent divers sujets, allant de la biologie cellulaire et des mécanismes de vieillissement, aux impacts de l’exercice physique sur le déclin cognitif et aux thérapies potentielles pour améliorer la santé des personnes âgées. Parmi les études notables, certaines mettent en évidence les effets bénéfiques de la déplétion partielle des microglies sur la fonction cognitive chez les souris âgées et l’importance de la reprogrammation cellulaire pour protéger les neurones contre la neurodégénérescence causée par l’inflammation. Les recherches soulignent également le rôle limité des facteurs génétiques dans l’espérance de vie, montrant que le mode de vie et les choix environnementaux ont un impact plus significatif sur la santé et le vieillissement. D’autres articles explorent les mécanismes de la sénescence cellulaire, l’influence de la microbiote intestinale sur la sarcopénie et l’importance de l’activité physique régulière pour réduire le risque de démence. En somme, Fight Aging! est une ressource précieuse pour ceux qui souhaitent comprendre et combattre le vieillissement et ses effets sur la santé. Source : https://www.fightaging.org/archives/2025/03/fight-aging-newsletter-march-3rd-2025/

Impact de la sclérose en plaques sur la rétine et possibilités de rajeunissement neuronal

Le texte aborde l’isolement relatif de l’œil par rapport au reste du corps et explique comment cela permet une étude plus ciblée des traitements médicaux, notamment pour les maladies oculaires. Les chercheurs s’intéressent particulièrement aux cellules rétiniennes, utilisant la rétine comme un indicateur de l’état du système nerveux central, surtout dans le cadre des conditions neurodégénératives telles que la sclérose en plaques (SEP). La SEP est décrite comme une maladie auto-immune entraînant une inflammation et une perte de myéline, affectant à la fois le système nerveux central et la rétine, ce qui conduit à des lésions au niveau du nerf optique et à une diminution des couches de fibres nerveuses rétiniennes. Cette recherche s’appuie sur des modèles animaux pour mieux comprendre les effets de la SEP sur les neurones. Les études récentes mettent en évidence un lien entre le vieillissement, la sénescence cellulaire et la SEP, la sénescence étant associée à des modifications cellulaires typiques du vieillissement. Les chercheurs analysent le transcriptome des cellules ganglionnaires rétiniennes (CGR) chez des souris modèles de SEP, identifiant des signatures transcriptionnelles similaires à celles des CGR âgés, ainsi qu’une accumulation de dommages à l’ADN. En utilisant des facteurs de Yamanaka pour induire un rajeunissement partiel des cellules rétiniennes, les chercheurs ont réussi à réduire la sénescence et à améliorer leur fonctionnalité. Les résultats suggèrent que des thérapies de rajeunissement pourraient offrir une protection neuroprotectrice dans les troubles neuroimmunitaires, en ciblant à la fois la sénescence et la pathologie neuroinflammatoire. Source : https://www.fightaging.org/archives/2025/02/reprogramming-helps-retinal-ganglion-cells-resist-inflammation-mediated-neurodegeneration/

Impact de la Déplétion Partielle des Microglies sur la Plasticité Synaptique et la Performance Cognitive chez les Souris Vieillissantes

Les microglies sont des cellules immunitaires innées du cerveau, comparables aux macrophages dans d’autres parties du corps. Elles jouent un rôle crucial dans la défense contre les pathogènes, l’élimination des cellules endommagées, le nettoyage des débris, et l’assistance à certaines fonctions des réseaux neuronaux. Avec l’âge, les microglies ont tendance à adopter un comportement inflammatoire accru, ce qui peut entraîner des inflammations chroniques nuisibles à la structure et à la fonction des tissus cérébraux. Cette réaction maladaptive est en partie due à des niveaux croissants de déchets moléculaires, comme des agrégats protéiques caractéristiques des conditions neurodégénératives. En outre, des dysfonctionnements mitochondriaux au sein des microglies peuvent également contribuer à ces problèmes liés à l’âge.

Une approche pour réduire l’inflammation dans le cerveau consiste à inhiber le récepteur du facteur de stimulation des colonies 1 (CSF1R), ce qui entraîne la mort des microglies et des macrophages. Un médicament anticancéreux, le pexidartinib (ou PLX-3397), a montré une efficacité dans ce domaine. Il a été observé que la dose nécessaire pour éliminer les microglies est bien inférieure à celle utilisée pour traiter les patients atteints de cancer, ce qui entraîne des effets secondaires plus gérables. De plus, après le traitement, la population de microglies et de macrophages se régénère à partir de populations progénitrices en quelques semaines. Des études animales sur la neurodégénérescence et le vieillissement cérébral ont démontré que ce traitement réduisait le nombre de microglies inflammatoires, diminuait l’inflammation dans le cerveau et améliorait la fonction cognitive.

Une recherche récente a examiné l’effet d’une réduction partielle des microglies avec le PLX-3397, visant à obtenir des bénéfices similaires à ceux observés lors de l’ablation totale des microglies. Des souris âgées ont été traitées pendant six semaines, ce qui a réduit le nombre de microglies dans l’hippocampe et le cortex retrosplénial à des niveaux comparables à ceux observés chez les jeunes souris. Ce traitement a également amélioré la plasticité synaptique et les performances cognitives. Bien que le traitement n’ait pas modifié le nombre ou l’intensité totale des réseaux périneuronaux dans l’hippocampe, il a altéré leur structure fine et a augmenté l’expression de certaines protéines synaptiques. En ciblant le CSF1R, cette étude suggère une stratégie sûre et efficace pour stimuler les fonctions synaptiques et cognitives dans le cerveau vieillissant. Source : https://www.fightaging.org/archives/2025/02/partial-depletion-of-microglia-in-the-brain-improves-cognitive-function-in-aged-mice/

Le Rôle des Lipides dans la Maladie d’Alzheimer : État des Lieux et Perspectives

Le cerveau est un organe relativement gras, ayant un métabolisme lipidique complexe. Des preuves suggèrent que des changements néfastes dans ce métabolisme lipidique accompagnent le vieillissement et les conditions neurodégénératives. Des avancées ont été réalisées pour relier des mécanismes lipidiques spécifiques à des aspects particuliers de la neurodégénérescence, comme l’augmentation de l’activité inflammatoire des microglies. Les chercheurs examinent le rôle des lipides dans les pathologies des patients atteints de la maladie d’Alzheimer. Bien que des connaissances aient été acquises, beaucoup de choses restent à comprendre, et ce qui est actuellement connu représente seulement un petit pas dans un vaste domaine encore obscur. L’homéostasie lipidique est essentielle pour le fonctionnement physiologique des organismes et, dans le système nerveux central, des altérations de cette homéostasie lipidique ainsi que des voies de signalisation lipidique perturbées sont souvent observées lors du vieillissement et de la neurodégénérescence. De nombreuses études d’association à l’échelle du génome (GWAS) ont identifié des variantes génétiques impliquées dans des processus modifiant les lipides, tels que le transport, la synthèse et la conversion, suggérant que des métabolismes lipidiques altérés peuvent être des moteurs clés de la maladie d’Alzheimer d’apparition tardive (LOAD). Cependant, la diversité chimique et l’hétérogénéité fonctionnelle des lipides ont longtemps posé des défis pour caractériser les altérations lipidiques et comprendre leurs implications biologiques dans la maladie d’Alzheimer. Cette revue propose un aperçu des avancées récentes dans les techniques de lipidomique et leurs applications dans la recherche sur la maladie d’Alzheimer. Les résultats actuels soutiennent fortement l’implication de classes lipidiques spécifiques, notamment les sphingolipides, le cholestérol et les phospholipides, dans la pathologie de la maladie d’Alzheimer. Cela est renforcé par de nombreuses études qui éclairent les mécanismes moléculaires par lesquels les lipides influencent plusieurs aspects pathologiques de la maladie d’Alzheimer. Ces connaissances ouvrent la voie à l’identification de biomarqueurs lipidiques diagnostiques et au développement de thérapies liées aux lipides. L’interaction entre les lipides et les pathologies de la maladie d’Alzheimer, telles que l’amyloïde-β, la protéine tau et la neuroinflammation, joue un rôle significatif dans la modulation de la neurodégénérescence. En tant que molécules bioactives intracellulaires essentielles et composants clés des membranes cellulaires, les lipides influencent également les fonctions cellulaires en participant aux réponses au stress oxydatif et en médiant les activités synaptiques, entre autres mécanismes. Une compréhension plus approfondie de ces connexions guidera l’utilisation des informations lipidomiques lors de thérapies ciblées contre ces mécanismes pathologiques. De plus, l’intégration de la lipidomique dans l’évaluation de l’efficacité diagnostique et thérapeutique élargira les options pour le développement de stratégies de traitement personnalisées et l’identification de nouveaux biomarqueurs pour la maladie d’Alzheimer. Les recherches continues visant à découvrir de nouveaux mécanismes d’implication des lipides dans la maladie d’Alzheimer promettent d’apporter des éclairages précieux qui orienteront les futures investigations cliniques basées sur les données. Source : https://www.fightaging.org/archives/2025/02/disrupted-lipid-metabolism-in-alzheimers-disease/

Réévaluation de l’hypothèse de la cascade amyloïde dans la maladie d’Alzheimer et exploration de nouvelles thérapies

Depuis plusieurs décennies, les chercheurs tentent de comprendre l’hypothèse de la cascade amyloïde, qui soutient qu’une accumulation de protéines amyloïdes-β (Aβ) déclenche une série d’événements entraînant la neurodégénérescence et la démence. Malgré les avancées dans la compréhension des mutations menant à l’agrégation de l’Aβ, des incertitudes subsistent quant à l’assemblage des protéines Aβ neurotoxiques. De plus, les essais cliniques des traitements ciblant la protéine Aβ ou ses agrégats se sont révélés seulement modérément efficaces, ce qui incite à réévaluer le rôle de l’Aβ en tant que principal moteur du processus de la maladie d’Alzheimer.

Les thérapies immunitaires récentes, bien qu’efficaces pour éliminer la plupart des formes d’amyloïde du cerveau, produisent peu de bénéfices pour les patients aux stades avancés de la maladie d’Alzheimer. Cela pourrait indiquer que l’hypothèse de la cascade amyloïde doit être interprétée différemment, suggérant que l’amyloïde-β ne joue pas un rôle crucial dans la pathologie des stades avancés, mais qu’elle prépare le terrain pour la neuroinflammation et l’agrégation de la tau, qui sont les véritables mécanismes de destruction cérébrale.

Les résultats décevants des thérapies immunitaires techniques suscitent un intérêt croissant pour d’autres mécanismes au sein de la communauté de recherche, poursuivant une tendance née de la frustration face à la lente progression vers un nettoyage efficace de l’amyloïde. De nombreux programmes, hypothèses et cibles mécaniques sont en quête de soutien pour le développement de nouvelles thérapies potentielles, notamment en réinterprétant le rôle de la γ-sécrétase dans la production d’amyloïde-β comme élément clé de la progression de la maladie.

Un changement d’accent est également observé sur la production de l’Aβ, un processus appelé protéolyse, où une protéine précurseur, appelée protéine précurseur amyloïde (APP), est coupée par une enzyme appelée γ-sécrétase. Des mutations dans la γ-sécrétase empêchent son action efficace sur l’APP, entraînant une accumulation de formes intermédiaires de l’APP et de l’Aβ. Des études récentes ont montré que ces mutations augmentent la stabilité des complexes enzyme-substrat, suggérant que le processus protéolytique est entravé, ce qui pourrait déclencher la neurodégénérescence même en l’absence de production de protéine amyloïde-β.

Les chercheurs proposent que des activateurs de la γ-sécrétase capables de relancer la protéolyse arrêtée pourraient compléter les traitements ciblant d’autres voies associées à la maladie d’Alzheimer. Cette approche pourrait offrir une nouvelle voie prometteuse pour aborder la maladie, en mettant l’accent sur la nécessité de développer des thérapies qui s’attaquent à ces complexes enzymatiques stagnants. Source : https://www.fightaging.org/archives/2025/02/stalled-amyloid-%ce%b2-production-as-a-contributing-cause-of-alzheimers-disease/