Étiquette : neurodégénération

Les Effets de la Restriction Calorique sur le Vieillissement Cérébral : Une Étude Spatiotemporelle

La restriction calorique, qui consiste à réduire sa consommation de calories de 40 % tout en maintenant un apport adéquat en micronutriments, est bien établie comme un moyen de ralentir le vieillissement chez de nombreuses espèces, notamment dans le cas des espèces à courte durée de vie. Des études humaines ont démontré que même une légère restriction calorique, proche de 10 % de réduction de l’apport calorique, peut améliorer la santé à long terme et les mesures de vieillissement. Cette pratique influence presque tous les aspects de la biochimie cellulaire dans le corps, rendant son étude un domaine de recherche en constante évolution. Il est largement admis que les bénéfices de la restriction calorique proviennent principalement d’une amélioration de l’autophagie, bien qu’il reste encore beaucoup à découvrir dans ce domaine complexe. Le vieillissement entraîne des déclins fonctionnels dans le cerveau des mammifères, augmentant ainsi sa vulnérabilité aux troubles cognitifs et aux maladies neurodégénératives. Parmi les différentes interventions pour ralentir le vieillissement, la restriction calorique a systématiquement montré sa capacité à prolonger la durée de vie et à améliorer la fonction cérébrale chez différentes espèces. Cependant, les mécanismes moléculaires et cellulaires précis par lesquels la restriction calorique bénéficie au cerveau vieillissant demeurent flous, en particulier à une résolution régionale et de type cellulaire spécifique. Dans cette étude, nous avons réalisé un profilage spatiotemporel des cerveaux de souris afin d’élucider les mécanismes détaillés qui sous-tendent les effets anti-vieillissement de la restriction calorique. En utilisant des plateformes de génomique à nucléus unique et de transcriptomique spatiale, nous avons analysé plus de 500 000 cellules provenant de 36 cerveaux de souris réparties sur trois groupes d’âge. Nous avons effectué une analyse transcriptomique spatiale sur douze sections cérébrales de souris âgées soumises à des conditions de restriction calorique et de contrôle. Cette approche complète nous a permis d’explorer l’impact de la restriction calorique sur plus de 300 états cellulaires et d’évaluer les altérations moléculaires spécifiques aux régions. Nos résultats révèlent que la restriction calorique module efficacement les changements associés au vieillissement, notamment en retardant l’expansion des populations cellulaires inflammatoires et en préservant les cellules critiques pour le système neurovasculaire et les voies de myélinisation. De plus, la restriction calorique a considérablement réduit l’expression des gènes associés au vieillissement impliqués dans le stress oxydatif, le stress de protéines mal repliées, et le stress de dommages à l’ADN dans divers types de cellules et régions. Une réduction notable des gènes associés à la sénescence et une restauration des gènes liés au rythme circadien ont été observées, notamment dans les ventricules et la matière blanche. Par ailleurs, la restriction calorique a montré une restauration région-spécifique des gènes liés à la fonction cognitive et à la maintenance de la myéline, soulignant ses effets ciblés sur le vieillissement cérébral. En résumé, l’intégration de la génomique à nucléus unique et de la génomique spatiale fournit un nouveau cadre de compréhension des effets complexes des interventions anti-vieillissement aux niveaux cellulaire et moléculaire, offrant ainsi des cibles thérapeutiques potentielles pour le vieillissement et les maladies neurodégénératives. Source : https://www.fightaging.org/archives/2025/07/the-transcriptomics-of-slowed-brain-aging-in-mice-produced-by-calorie-restriction/

Restauration de la fonction cérébrale : Le programme FRONT de l’ARPA-H

Des études sur les formes de cancer du cerveau et d’autres dommages progressifs lents à certaines régions du cerveau ont démontré que l’information stockée dans au moins certaines parties du cerveau peut se déplacer. Les parties non endommagées du cerveau peuvent être réutilisées en réponse à des dommages. Cela signifie qu’il est en principe possible d’introduire des tissus nouveaux et fonctionnels dans certaines parties du cerveau vivant et de s’attendre à ce que ce tissu devienne utilisé et utile avec le temps, remplaçant ainsi le tissu endommagé. Les chercheurs se concentrent initialement sur le néocortex, l’une des zones les plus plastiques du cerveau. Le plus grand défi est d’être capable de concevoir un tissu néocortical approprié pour la transplantation, en le cultivant à partir des propres cellules d’un patient. L’Advanced Research Projects Agency for Health (ARPA-H), une agence au sein du Département de la santé et des services sociaux des États-Unis, a récemment dévoilé son programme révolutionnaire, le Functional Repair of Neocortical Tissue (FRONT), une initiative transformative visant à restaurer la fonction cérébrale. Le néocortex, la plus grande partie du cerveau, est essentiel pour la perception sensorielle, le contrôle moteur et la prise de décision. Les dommages à cette zone, dus à des conditions telles que les AVC, les blessures traumatiques ou la neurodégénération, comme la maladie d’Alzheimer, ont longtemps entraîné des dommages irréversibles, laissant les individus dépendants de thérapies coûteuses ou de soignants. Le programme FRONT vise à changer cela, en utilisant des principes neurodéveloppementaux de pointe et la technologie des cellules souches pour régénérer le tissu cérébral et restaurer les fonctions perdues. FRONT travaillera à développer une thérapie curative pour plus de 20 millions d’adultes américains souffrant de dommages chroniques au néocortex causés par des AVC, de la neurodégénération et des traumatismes, offrant des traitements qui changent la vie de ces individus. Le programme FRONT s’étendra sur cinq ans, avec des indicateurs de performance stricts et un accent sur la préparation des essais cliniques sur l’homme. ARPA-H sollicitera des propositions dans le cadre de son appel à solutions innovantes dans deux domaines clés : la génération de tissus de greffe et les procédures de greffe pour la récupération fonctionnelle du cerveau. ARPA-H encourage la collaboration entre experts de différentes disciplines pour atteindre les objectifs ambitieux du programme. Source : https://www.fightaging.org/archives/2025/07/arpa-h-launches-program-to-develop-replacement-brain-tissue/

Impact des Microglies Sénescentes sur la Dysfonction Cognitive Induite par la Neuroinflammation

Les neurones du cerveau forment des réseaux complexes et dynamiques de connexions synaptiques, qui jouent un rôle crucial dans les processus de mémoire et d’apprentissage. Les synapses sont continuellement créées et détruites, et les populations de cellules de soutien dans le cerveau, telles que les microglies, facilitent ce processus. Les microglies sont des cellules immunitaires innées du système nerveux central, similaires aux macrophages dans le reste du corps, et leur rôle inclut la destruction des synapses indésirables. Au cours des dernières années, les chercheurs ont mis en lumière le dysfonctionnement des microglies comme un facteur contribuant aux pathologies des conditions neurodégénératives inflammatoires. Ces cellules tendent à devenir plus inflammatoires, modifient leur comportement et une fraction d’entre elles acquiert un état de sénescence, où elles cessent de se répliquer et produisent un mélange puissant de signaux pro-inflammatoires et pro-croissance. Dans un article d’accès libre récent, les chercheurs explorent comment les microglies sénescentes pourraient contribuer aux pathologies connues observées dans les conditions neurodégénératives inflammatoires. Des expériences sur des souris montrent que la présence de microglies sénescentes accélère la destruction des synapses. Bien qu’une certaine destruction soit nécessaire pour ajuster les réseaux neuronaux, un excès de destruction peut entraîner des dysfonctionnements cognitifs, caractéristiques de l’inflammation cérébrale. Il est possible d’éliminer globalement les microglies avec des inhibiteurs de CSF1R ou de cibler spécifiquement les cellules sénescentes dans le cerveau avec des sénolytiques, comme la combinaison de dasatinib et de quercétine, qui peuvent traverser la barrière hémato-encéphalique. Bien que cette approche thérapeutique soit prometteuse, les avancées vers une utilisation clinique dans ce contexte progressent lentement. Dans des études utilisant un modèle murin de neuroinflammation induite par des lipopolysaccharides, les chercheurs ont évalué les fonctions cognitives et identifié les microglies sénescentes avec une haute expression de p16INK4a. Ils ont observé que ces microglies dans la région CA1 de l’hippocampe présentaient des signatures d’hyperphagocytose et de sénescence. Le traitement avec un sénolytique a atténué la production de phénotypes sécrétoires associés à la sénescence et restauré la transmission synaptique excitatoire, ainsi que la fonction cognitive. Ces résultats indiquent que la réduction des microglies sénescentes pourrait représenter une approche thérapeutique pour prévenir les dysfonctionnements cognitifs liés à la neuroinflammation. Source : https://www.fightaging.org/archives/2025/07/senescent-microglia-elevate-the-destruction-of-synapses-to-a-pathological-level/

La Neurogenèse chez l’Homme : Vers une Compréhension des Nouveaux Neurones Adultes

La neurogenèse, ou la création de nouveaux neurones dans le cerveau, est un processus bien établi chez les souris adultes, mais il reste des doutes quant à sa présence chez les humains adultes. Bien que le consensus général suggère que les humains ne diffèrent pas des souris à cet égard, établir que la neurogenèse se produit chez les humains vivants a été difficile en raison de divers défis techniques et logistiques. Ce processus est considéré comme essentiel pour l’apprentissage et la mémoire, et sa découverte pourrait faciliter le développement de thérapies régénératives pour restaurer des fonctions perdues. Une étude récente a utilisé plusieurs méthodes avancées pour analyser des tissus cérébraux de personnes âgées de 0 à 78 ans, provenant de plusieurs biobanques internationales. Les chercheurs ont employé le séquençage d’ARN à noyau unique pour analyser l’activité génique dans des noyaux cellulaires individuels, ainsi que la cytométrie en flux pour étudier les propriétés cellulaires. Grâce à l’apprentissage automatique, ils ont pu identifier différentes étapes du développement neuronal, allant des cellules souches aux neurones immatures, beaucoup étant en phase de division. Deux techniques ont également été utilisées pour localiser ces cellules dans le tissu, confirmant que les cellules nouvellement formées se trouvaient dans le gyrus denté de l’hippocampe, une région cruciale pour la formation des mémoires et la flexibilité cognitive. Les résultats montrent que les progéniteurs des neurones adultes sont similaires à ceux des souris, des porcs et des singes, bien qu’il existe des différences dans l’activité des gènes. De plus, des variations importantes ont été observées entre les individus, certains adultes humains ayant de nombreuses cellules progénitrices neuronales, tandis que d’autres en avaient très peu. Cette recherche pourrait avoir des implications pour le développement de traitements régénératifs visant à stimuler la neurogenèse dans les troubles neurodégénératifs et psychiatriques. Source : https://www.fightaging.org/archives/2025/07/confirming-adult-human-neurogenesis-in-the-hippocampus/

Rôle des microglies et dysfonction mitochondriale dans les maladies neurodégénératives liées à l’âge

Les microglies sont des cellules immunitaires innées résidant dans le cerveau, jouant un rôle crucial dans le maintien de l’homéostasie cérébrale et dans le bon fonctionnement des réseaux neuronaux. En vieillissant, ces cellules deviennent plus inflammatoires et actives, ce qui peut contribuer à l’apparition et à la progression de conditions neurodégénératives, telles que la maladie d’Alzheimer. Une des causes connues de cette inflammation microgliale est la dysfonction mitochondriale qui se produit au niveau cellulaire. Pour évaluer l’impact de la dysfonction mitochondriale sur les microglies, il serait idéal de corriger cette dysfonction, cependant, les approches actuellement disponibles pour améliorer la fonction mitochondriale, comme les dérivés de la vitamine B3, ne sont pas suffisamment puissantes. Des thérapies de transplantation mitochondriale pourraient être nécessaires pour déterminer si la correction des mitochondries peut ralentir ou inverser de manière significative les conditions neurodégénératives. Des études récentes ont mis en lumière que la dysfonction des microglies est impliquée dans la pathogenèse de diverses maladies neurodégénératives liées à l’âge. Le vieillissement et ces maladies sont liés à une altération de la fonction mitochondriale et à un changement métabolique des microglies, passant de la phosphorylation oxydative à la glycolyse, ce qui pourrait contribuer à une activation microgliale prolongée et à la neuroinflammation. De plus, la fuite de l’ADN mitochondrial dans le cytoplasme est impliquée dans l’activation des réponses inflammatoires et la perturbation de la fonction cérébrale. Cette revue résume les avancées récentes concernant les changements métaboliques des microglies, notamment la glycolyse et la dysfonction mitochondriale, et explore le potentiel de cibler le métabolisme microglial comme approche thérapeutique novatrice pour les modifications de la fonction cérébrale et les maladies neurodégénératives associées au vieillissement. Source : https://www.fightaging.org/archives/2025/06/aged-microglia-exhibit-mitochondrial-dysfunction/

Dommages à l’ADN et vieillissement : Mécanismes et perspectives thérapeutiques

Les dommages à l’ADN sont impliqués dans le vieillissement dégénératif, bien que le débat persiste sur leur contribution précise à la dysfonction tissulaire généralisée en plus du risque accru de cancer. La plupart des dommages mutatifs à l’ADN sont rapidement réparés, tandis que la plupart des mutations durables se produisent dans des régions inutilisées du génome, dans des cellules somatiques ayant peu de divisions restantes. Bien que la plupart des mutations puissent donc causer peu de dommages, une voie possible vers des dommages plus étendus résulte des mutations se produisant dans les cellules souches, qui peuvent se propager largement dans les tissus pour former des motifs de mutations chevauchants connus sous le nom de mosaïcisme somatique. Il existe des preuves initiales que cela contribue aux conditions liées à l’âge et à la perte de fonction. Une possibilité plus radicale est que les efforts répétés pour réparer des formes plus sévères de dommages à l’ADN, qu’ils soient réussis ou non, épuisent les facteurs nécessaires pour maintenir un contrôle jeune sur la structure du génome et l’expression des gènes, ce qui donne lieu aux changements caractéristiques observés dans les cellules des tissus âgés. La question de ce qui peut être fait au sujet des dommages stochastiques à l’ADN survenant à différents endroits dans différentes cellules reste complexe. Réparer ces dommages semble être un défi, un projet pour un avenir plus lointain. Ralentir l’accumulation de dommages non réparés semble plus réalisable, en grande partie une question d’identification des protéines cruciales dans la machinerie de réparation de l’ADN et en en fournissant davantage. Cependant, si même les efforts de réparation réussis entraînent inévitablement des changements dans la structure du génome et le comportement cellulaire, cela peut ne pas être si efficace pour ralentir le vieillissement. Réduire l’incidence du cancer, oui, car cela est absolument déterminé par le fardeau des dommages mutationnels non réparés, mais peut-être pas aussi bénéfique pour le reste du vieillissement. Les dommages à l’ADN constituent une menace sérieuse pour la viabilité cellulaire et sont impliqués comme la principale cause du vieillissement normal. Ainsi, cibler les dommages à l’ADN de manière thérapeutique pourrait contrer la dysfonction cellulaire liée à l’âge et les maladies, telles que les conditions neurodégénératives et le cancer. Identifier de nouveaux mécanismes de réparation de l’ADN révèle donc de nouvelles interventions thérapeutiques pour plusieurs maladies humaines. Dans les neurones, la réparation des cassures double-brin de l’ADN n’est possible que par la jonction non homologue, qui est beaucoup plus sujette aux erreurs que d’autres processus de réparation de l’ADN. Cependant, il n’existe aucune intervention thérapeutique pour améliorer la réparation de l’ADN dans les maladies affectant les neurones. La jonction non homologue est également une cible utile pour les thérapies anticancéreuses basées sur la réparation de l’ADN visant à tuer sélectivement les cellules tumorales. L’isomérase de disulfure de protéines (PDI) joue un rôle dans de nombreuses maladies, mais ses rôles dans ces conditions restent mal définis. PDI présente à la fois une activité chaperonne et une activité oxydoréductase dépendante du redox, et bien qu’elle soit principalement localisée dans le réticulum endoplasmique, elle a également été détectée dans d’autres emplacements cellulaires. Ce texte décrit un rôle nouveau pour PDI dans la réparation des cassures double-brin de l’ADN suite à au moins deux types de dommages à l’ADN. PDI fonctionne dans la jonction non homologue, et après des dommages à l’ADN, elle se déplace vers le noyau, où elle co-localise avec des protéines critiques de réparation des cassures double-brin à des foyers de dommages à l’ADN. Un mutant inactif du redox de PDI, dépourvu de ses deux résidus de cystéine du site actif, n’était pas protecteur. Ainsi, l’activité redox de PDI médie la réparation de l’ADN, mettant en évidence ces cystéines comme cibles potentielles pour des interventions thérapeutiques. Le potentiel thérapeutique de PDI a également été confirmé par son activité protectrice dans un organisme entier contre les dommages à l’ADN induits in vivo dans des zebrafish. Par conséquent, exploiter la fonction redox de PDI pourrait constituer une cible thérapeutique novatrice contre les dommages à l’ADN double-brin pertinents pour plusieurs maladies humaines. Source : https://www.fightaging.org/archives/2025/06/increased-protein-disulphide-isomerase-slows-accumulation-of-dna-damage/

Avancées prometteuses des cellules CAR dans le traitement de la maladie d’Alzheimer

La recherche sur l’immunothérapie, traditionnellement associée à l’oncologie, entre dans un nouveau domaine avec l’étude menée par l’équipe du Buck Institute for Research on Aging. Cette étude explore l’utilisation des récepteurs antigéniques chimériques (CARs), généralement employés dans le traitement du cancer, pour détecter les caractéristiques clés de la maladie d’Alzheimer, notamment les enchevêtrements de tau et les plaques amyloïdes toxiques. Selon les résultats publiés dans le Journal of Translational Medicine, des CARs dérivés d’anticorps contre Alzheimer peuvent être intégrés dans des cellules immunitaires de souris pour identifier des formes de protéines spécifiques à la maladie avec une grande précision. La motivation derrière cette recherche est de développer des traitements plus ciblés. Dr Julie Andersen, auteur principal de l’article, explique que les traitements actuels agissent comme un marteau-pilon, tandis que l’objectif est de concevoir un scalpel ciblé, surtout face aux effets secondaires croissants des médicaments anti-anticorps contre Alzheimer. Cette recherche représente une avancée importante, non seulement parce que le concept fonctionne in vitro, mais aussi car il repose sur des cibles d’anticorps déjà en phase III d’essai clinique. Cela pourrait accélérer le processus de translational et attirer l’attention des investisseurs. L’extension potentielle de cette technologie à d’autres maladies neurodégénératives, comme la maladie de Parkinson, est également prometteuse. L’équipe du Buck Institute a décidé de rendre publiques les séquences complètes des récepteurs, une démarche rare dans le domaine, afin de stimuler la collaboration et l’innovation dans la communauté de la neuroimmunologie. La spécificité des CARs est cruciale, car la pathologie d’Alzheimer est complexe et les plaques amyloïdes et les enchevêtrements de tau existent sous plusieurs formes, dont certaines sont plus toxiques que d’autres. Les résultats montrent que les cellules immunitaires peuvent être formées pour reconnaître des formes spécifiques de ces protéines, ce qui pourrait révolutionner le traitement. Contrairement aux cellules CAR-T utilisées en oncologie, qui détruisent leurs cibles, ces cellules sont conçues pour guérir, identifiant les protéines spécifiques de la maladie et délivrant un traitement localement. Les implications de cette étude pourraient dépasser la maladie d’Alzheimer, touchant à d’autres conditions associées à l’âge. La transparence adoptée par les auteurs, en publiant les séquences des récepteurs, est une avancée qui pourrait bénéficier à l’ensemble de la communauté scientifique. En somme, même si l’utilisation clinique de ces thérapies cellulaires pourrait prendre encore quelques années, la direction dans laquelle se dirige la recherche est claire : adapter l’ingénierie immunitaire aux besoins complexes du cerveau vieillissant pourrait transformer notre approche aux maladies neurodégénératives et à la longévité. Source : https://longevity.technology/news/engineered-car-immune-cells-show-promise-in-alzheimers/

Vulnérabilité accrue des souris âgées face à la pathologie d’Alzheimer induite par l’amyloïde-β

Cette étude met en lumière la vulnérabilité accrue des souris âgées face à la pathologie causée par l’introduction d’agrégats d’amyloïde-β dans le tissu cérébral, par rapport aux souris jeunes. Les agrégats d’amyloïde-β, qui se forment à la suite de la malformation de cette protéine, sont considérés comme un facteur clé dans le développement de la maladie d’Alzheimer. Alors que le vieillissement du système immunitaire pourrait être perçu comme un élément central de cette différence entre jeunes et vieux, il est également essentiel de considérer d’autres facteurs liés à l’âge. Le système immunitaire des souris âgées est à la fois plus inflammatoire et moins efficace, ce qui les rend plus susceptibles de présenter une réponse maladaptive face à l’introduction de molécules toxiques. L’étude a utilisé un modèle in vivo de la maladie d’Alzheimer en injectant des oligomères d’Aβ1-42 dans les hippocampes de souris âgées. Les résultats ont montré que les souris âgées présentaient des déficits significatifs en mémoire de travail, densité synaptique et neurogenèse, ainsi qu’une inflammation basale accrue. Après une lésion aiguë infligée à l’hippocampe, les souris âgées ont subi des déficits soutenus, y compris une fonction cognitive altérée, une neurogenèse et une densité synaptique encore plus réduites, ainsi qu’une activation microgliale et un stress mitochondrial accrus. En revanche, les souris jeunes n’ont montré que des effets aigus sans progression à long terme de la pathologie. Les résultats suggèrent que l’environnement cérébral vieillissant augmente la susceptibilité à des lésions aiguës par Aβ, créant ainsi des conditions favorables à la progression de la maladie d’Alzheimer. En conséquence, il est crucial de considérer les processus de vieillissement comme un facteur intégral dans le développement de la maladie. Cibler les mécanismes du vieillissement pourrait ouvrir de nouvelles voies pour la prévention et le traitement de la maladie d’Alzheimer ainsi que d’autres maladies neurodégénératives. Source : https://www.fightaging.org/archives/2025/05/the-aging-brain-is-more-vulnerable-to-amyloid-%ce%b2-toxicity/

Une nouvelle approche pour traiter les protéines amyloïdes mal repliées dans la maladie d’Alzheimer

Les chercheurs explorent une approche innovante pour piéger les protéines amyloïdes-β mal repliées avant qu’elles ne s’agrègent et n’interfèrent avec la biochimie du cerveau. En empêchant l’agrégation de ces protéines, celles-ci peuvent se décomposer ou être éliminées sans causer de dommages. Ce développement est particulièrement pertinent car il existe un besoin pressant de traitements alternatifs moins coûteux et plus sûrs aux immunothérapies anti-amyloïdes actuelles. Les amyloïdes-β jouent un rôle crucial dans l’évolution vers la maladie d’Alzheimer, rendant d’autant plus important de traiter cette condition à un stade précoce et de manière préventive dans une large population. Les coûts et les effets secondaires des thérapies actuelles ne sont pas adaptés à cette utilisation. La plupart des maladies neurodégénératives sont marquées par l’accumulation de protéines mal repliées dans le cerveau, entraînant une perte progressive de neurones. Pour résoudre ce problème, les chercheurs se sont tournés vers une classe de peptides amphiphiles contenant des chaînes modifiées d’acides aminés, déjà utilisés dans des médicaments bien connus. Le tréhalose, un sucre naturel présent dans les plantes et les insectes, est reconnu pour sa capacité à stabiliser les macromolécules biologiques, y compris les protéines. Dans les expériences, lorsqu’ils sont ajoutés à l’eau, les peptides amphiphiles s’assemblent en nanofibres recouvertes de tréhalose. Étonnamment, le tréhalose a eu un effet déstabilisant sur les nanofibres, ce qui a en fait eu un effet bénéfique en rendant ces assemblages moléculaires très réactifs. Les nanofibres se sont alors liées aux protéines amyloïdes-β, piégeant ainsi ces protéines dans des structures fibreuses stables. Cela signifie que les protéines amyloïdes-β, qui auraient formé des fibres amyloïdes nuisibles, sont désormais piégées et ne peuvent plus pénétrer les neurones pour les détruire. Ce mécanisme novateur pourrait représenter une solution efficace pour freiner la progression des maladies neurodégénératives comme la maladie d’Alzheimer à un stade précoce, en opposition aux thérapies actuelles qui reposent sur la production d’anticorps contre les fibres amyloïdes bien formées. Source : https://www.fightaging.org/archives/2025/05/therapeutic-peptide-amphiphiles-prevent-misfolded-amyloid-%ce%b2-from-aggregating/

Perspectives sur les mécanismes des maladies neurodégénératives

Cet article en libre accès propose un aperçu des deux points de vue sur l’apparition et la progression des conditions neurodégénératives. La biologie chimique du cerveau est extrêmement complexe et sa dysfonction est également multifactorielle. Bien qu’il soit évident que l’agrégation de certaines formes de protéines altérées joue un rôle crucial dans la neurodégénérescence, la compréhension de son importance et des mécanismes sous-jacents reste un domaine de recherche actif. Le consensus et le débat existent au sein de la communauté scientifique, et le paysage des connaissances évolue continuellement à mesure que de nouvelles preuves émergent. L’absence de thérapies curatives pour les maladies neurodégénératives témoigne de l’incapacité à déterminer les mécanismes critiques entraînant la dysfonction, tout en les distinguant des nombreuses conséquences qui en découlent et des autres changements associés au vieillissement dégénératif. Les maladies neurodégénératives, telles que la maladie d’Alzheimer, la maladie de Parkinson et la sclérose latérale amyotrophique (SLA), touchent des millions de personnes et posent des défis considérables en matière de soins de santé et de coûts de traitement. Le débat dans le domaine tourne autour de deux hypothèses : la propagation synaptique et la vulnérabilité sélective. Des chercheurs pionniers ont joué un rôle clé dans l’identification des protéines centrales (tau, alpha-synucléine, TDP-43) associées à ces maladies. L’hypothèse de la propagation synaptique suggère une propagation des protéines pathogènes d’une cellule à une autre à travers les synapses neuronales, influençant la progression de la maladie, avec des études soulignant le rôle de protéines comme l’alpha-synucléine et l’amyloïde-bêta dans ce processus. En revanche, l’hypothèse de la vulnérabilité sélective propose que certains neurones présentent une susceptibilité inhérente à la dégénérescence en raison de facteurs tels que le stress métabolique, entraînant l’agrégation de protéines. Récemment, les avancées en neuroimagerie, notamment l’imagerie hybride PET/MRI, offrent de nouvelles perspectives sur ces mécanismes. Bien que les deux hypothèses apportent des preuves substantielles, leurs contributions respectives aux processus neurodégénératifs doivent encore être complètement élucidées. Cette incertitude souligne la nécessité de poursuivre la recherche, en se concentrant sur ces hypothèses, afin de développer des traitements efficaces pour ces maladies dévastatrices. Source : https://www.fightaging.org/archives/2025/05/synaptic-spread-versus-selective-vulnerability-hypotheses-of-neurodegenerative-disease/