Étiquette : neurodégénération

Avancées prometteuses des cellules CAR dans le traitement de la maladie d’Alzheimer

La recherche sur l’immunothérapie, traditionnellement associée à l’oncologie, entre dans un nouveau domaine avec l’étude menée par l’équipe du Buck Institute for Research on Aging. Cette étude explore l’utilisation des récepteurs antigéniques chimériques (CARs), généralement employés dans le traitement du cancer, pour détecter les caractéristiques clés de la maladie d’Alzheimer, notamment les enchevêtrements de tau et les plaques amyloïdes toxiques. Selon les résultats publiés dans le Journal of Translational Medicine, des CARs dérivés d’anticorps contre Alzheimer peuvent être intégrés dans des cellules immunitaires de souris pour identifier des formes de protéines spécifiques à la maladie avec une grande précision. La motivation derrière cette recherche est de développer des traitements plus ciblés. Dr Julie Andersen, auteur principal de l’article, explique que les traitements actuels agissent comme un marteau-pilon, tandis que l’objectif est de concevoir un scalpel ciblé, surtout face aux effets secondaires croissants des médicaments anti-anticorps contre Alzheimer. Cette recherche représente une avancée importante, non seulement parce que le concept fonctionne in vitro, mais aussi car il repose sur des cibles d’anticorps déjà en phase III d’essai clinique. Cela pourrait accélérer le processus de translational et attirer l’attention des investisseurs. L’extension potentielle de cette technologie à d’autres maladies neurodégénératives, comme la maladie de Parkinson, est également prometteuse. L’équipe du Buck Institute a décidé de rendre publiques les séquences complètes des récepteurs, une démarche rare dans le domaine, afin de stimuler la collaboration et l’innovation dans la communauté de la neuroimmunologie. La spécificité des CARs est cruciale, car la pathologie d’Alzheimer est complexe et les plaques amyloïdes et les enchevêtrements de tau existent sous plusieurs formes, dont certaines sont plus toxiques que d’autres. Les résultats montrent que les cellules immunitaires peuvent être formées pour reconnaître des formes spécifiques de ces protéines, ce qui pourrait révolutionner le traitement. Contrairement aux cellules CAR-T utilisées en oncologie, qui détruisent leurs cibles, ces cellules sont conçues pour guérir, identifiant les protéines spécifiques de la maladie et délivrant un traitement localement. Les implications de cette étude pourraient dépasser la maladie d’Alzheimer, touchant à d’autres conditions associées à l’âge. La transparence adoptée par les auteurs, en publiant les séquences des récepteurs, est une avancée qui pourrait bénéficier à l’ensemble de la communauté scientifique. En somme, même si l’utilisation clinique de ces thérapies cellulaires pourrait prendre encore quelques années, la direction dans laquelle se dirige la recherche est claire : adapter l’ingénierie immunitaire aux besoins complexes du cerveau vieillissant pourrait transformer notre approche aux maladies neurodégénératives et à la longévité. Source : https://longevity.technology/news/engineered-car-immune-cells-show-promise-in-alzheimers/

Vulnérabilité accrue des souris âgées face à la pathologie d’Alzheimer induite par l’amyloïde-β

Cette étude met en lumière la vulnérabilité accrue des souris âgées face à la pathologie causée par l’introduction d’agrégats d’amyloïde-β dans le tissu cérébral, par rapport aux souris jeunes. Les agrégats d’amyloïde-β, qui se forment à la suite de la malformation de cette protéine, sont considérés comme un facteur clé dans le développement de la maladie d’Alzheimer. Alors que le vieillissement du système immunitaire pourrait être perçu comme un élément central de cette différence entre jeunes et vieux, il est également essentiel de considérer d’autres facteurs liés à l’âge. Le système immunitaire des souris âgées est à la fois plus inflammatoire et moins efficace, ce qui les rend plus susceptibles de présenter une réponse maladaptive face à l’introduction de molécules toxiques. L’étude a utilisé un modèle in vivo de la maladie d’Alzheimer en injectant des oligomères d’Aβ1-42 dans les hippocampes de souris âgées. Les résultats ont montré que les souris âgées présentaient des déficits significatifs en mémoire de travail, densité synaptique et neurogenèse, ainsi qu’une inflammation basale accrue. Après une lésion aiguë infligée à l’hippocampe, les souris âgées ont subi des déficits soutenus, y compris une fonction cognitive altérée, une neurogenèse et une densité synaptique encore plus réduites, ainsi qu’une activation microgliale et un stress mitochondrial accrus. En revanche, les souris jeunes n’ont montré que des effets aigus sans progression à long terme de la pathologie. Les résultats suggèrent que l’environnement cérébral vieillissant augmente la susceptibilité à des lésions aiguës par Aβ, créant ainsi des conditions favorables à la progression de la maladie d’Alzheimer. En conséquence, il est crucial de considérer les processus de vieillissement comme un facteur intégral dans le développement de la maladie. Cibler les mécanismes du vieillissement pourrait ouvrir de nouvelles voies pour la prévention et le traitement de la maladie d’Alzheimer ainsi que d’autres maladies neurodégénératives. Source : https://www.fightaging.org/archives/2025/05/the-aging-brain-is-more-vulnerable-to-amyloid-%ce%b2-toxicity/

Une nouvelle approche pour traiter les protéines amyloïdes mal repliées dans la maladie d’Alzheimer

Les chercheurs explorent une approche innovante pour piéger les protéines amyloïdes-β mal repliées avant qu’elles ne s’agrègent et n’interfèrent avec la biochimie du cerveau. En empêchant l’agrégation de ces protéines, celles-ci peuvent se décomposer ou être éliminées sans causer de dommages. Ce développement est particulièrement pertinent car il existe un besoin pressant de traitements alternatifs moins coûteux et plus sûrs aux immunothérapies anti-amyloïdes actuelles. Les amyloïdes-β jouent un rôle crucial dans l’évolution vers la maladie d’Alzheimer, rendant d’autant plus important de traiter cette condition à un stade précoce et de manière préventive dans une large population. Les coûts et les effets secondaires des thérapies actuelles ne sont pas adaptés à cette utilisation. La plupart des maladies neurodégénératives sont marquées par l’accumulation de protéines mal repliées dans le cerveau, entraînant une perte progressive de neurones. Pour résoudre ce problème, les chercheurs se sont tournés vers une classe de peptides amphiphiles contenant des chaînes modifiées d’acides aminés, déjà utilisés dans des médicaments bien connus. Le tréhalose, un sucre naturel présent dans les plantes et les insectes, est reconnu pour sa capacité à stabiliser les macromolécules biologiques, y compris les protéines. Dans les expériences, lorsqu’ils sont ajoutés à l’eau, les peptides amphiphiles s’assemblent en nanofibres recouvertes de tréhalose. Étonnamment, le tréhalose a eu un effet déstabilisant sur les nanofibres, ce qui a en fait eu un effet bénéfique en rendant ces assemblages moléculaires très réactifs. Les nanofibres se sont alors liées aux protéines amyloïdes-β, piégeant ainsi ces protéines dans des structures fibreuses stables. Cela signifie que les protéines amyloïdes-β, qui auraient formé des fibres amyloïdes nuisibles, sont désormais piégées et ne peuvent plus pénétrer les neurones pour les détruire. Ce mécanisme novateur pourrait représenter une solution efficace pour freiner la progression des maladies neurodégénératives comme la maladie d’Alzheimer à un stade précoce, en opposition aux thérapies actuelles qui reposent sur la production d’anticorps contre les fibres amyloïdes bien formées. Source : https://www.fightaging.org/archives/2025/05/therapeutic-peptide-amphiphiles-prevent-misfolded-amyloid-%ce%b2-from-aggregating/

Perspectives sur les mécanismes des maladies neurodégénératives

Cet article en libre accès propose un aperçu des deux points de vue sur l’apparition et la progression des conditions neurodégénératives. La biologie chimique du cerveau est extrêmement complexe et sa dysfonction est également multifactorielle. Bien qu’il soit évident que l’agrégation de certaines formes de protéines altérées joue un rôle crucial dans la neurodégénérescence, la compréhension de son importance et des mécanismes sous-jacents reste un domaine de recherche actif. Le consensus et le débat existent au sein de la communauté scientifique, et le paysage des connaissances évolue continuellement à mesure que de nouvelles preuves émergent. L’absence de thérapies curatives pour les maladies neurodégénératives témoigne de l’incapacité à déterminer les mécanismes critiques entraînant la dysfonction, tout en les distinguant des nombreuses conséquences qui en découlent et des autres changements associés au vieillissement dégénératif. Les maladies neurodégénératives, telles que la maladie d’Alzheimer, la maladie de Parkinson et la sclérose latérale amyotrophique (SLA), touchent des millions de personnes et posent des défis considérables en matière de soins de santé et de coûts de traitement. Le débat dans le domaine tourne autour de deux hypothèses : la propagation synaptique et la vulnérabilité sélective. Des chercheurs pionniers ont joué un rôle clé dans l’identification des protéines centrales (tau, alpha-synucléine, TDP-43) associées à ces maladies. L’hypothèse de la propagation synaptique suggère une propagation des protéines pathogènes d’une cellule à une autre à travers les synapses neuronales, influençant la progression de la maladie, avec des études soulignant le rôle de protéines comme l’alpha-synucléine et l’amyloïde-bêta dans ce processus. En revanche, l’hypothèse de la vulnérabilité sélective propose que certains neurones présentent une susceptibilité inhérente à la dégénérescence en raison de facteurs tels que le stress métabolique, entraînant l’agrégation de protéines. Récemment, les avancées en neuroimagerie, notamment l’imagerie hybride PET/MRI, offrent de nouvelles perspectives sur ces mécanismes. Bien que les deux hypothèses apportent des preuves substantielles, leurs contributions respectives aux processus neurodégénératifs doivent encore être complètement élucidées. Cette incertitude souligne la nécessité de poursuivre la recherche, en se concentrant sur ces hypothèses, afin de développer des traitements efficaces pour ces maladies dévastatrices. Source : https://www.fightaging.org/archives/2025/05/synaptic-spread-versus-selective-vulnerability-hypotheses-of-neurodegenerative-disease/

Efficacité limitée d’une combinaison senolytique dans le traitement de la maladie d’Alzheimer

Les résultats d’un essai de phase 1 sur l’association senolytique bien connue de dasatinib et quercétine (D+Q) chez des patients atteints de la maladie d’Alzheimer ont été publiés dans la revue Neurotherapeutics. Les chercheurs soulignent la relation entre les cellules sénescentes et la maladie d’Alzheimer, notant que ces cellules dans le cerveau sont associées à l’agrégation de la protéine tau et que les astrocytes sénescents ont été liés à la maladie d’Alzheimer. Le dasatinib et la quercétine, qui sont connus pour réduire la sénescence cellulaire, ont montré des résultats prometteurs dans des modèles murins en réduisant les plaques de tau et d’amyloïde beta. Cependant, ces résultats doivent être validés par des essais chez l’homme, car les souris ne développent pas naturellement la maladie d’Alzheimer. Un essai de faisabilité antérieur a montré que le dasatinib était bien toléré et atteignait le cerveau des patients. Dans cette étude, les chercheurs ont testé l’efficacité du D+Q chez cinq participants âgés de 70 à 82 ans, au début de la maladie d’Alzheimer, qui ont reçu un traitement intermittent pendant trois mois. Les résultats ont montré une augmentation du fractalkine, un chimiokine inflammatoire, mais sans signification statistique. De plus, aucune modification significative des biomarqueurs de la pathologie d’Alzheimer n’a été observée, et l’étude a été jugée insuffisante en termes de taille d’échantillon pour tirer des conclusions solides. Bien que certains marqueurs de stress cellulaire aient montré des résultats prometteurs, l’absence de signaux discernables concernant les biomarqueurs d’amyloïde ou de tau laisse supposer que cette combinaison de senolytique pourrait ne pas être efficace pour traiter la maladie d’Alzheimer. Les chercheurs concluent que la maladie d’Alzheimer n’est probablement pas principalement liée à la sénescence, et des approches différentes seraient nécessaires. Un essai plus vaste et de plus longue durée pourrait aider à confirmer ces résultats, mais à ce stade, cela semble peu probable. Source : https://www.lifespan.io/news/results-of-a-phase-1-trial-of-senolytics-for-alzheimers/?utm_source=rss&utm_medium=rss&utm_campaign=results-of-a-phase-1-trial-of-senolytics-for-alzheimers

Rôle de l’alpha-synucléine dans la dysrégulation lipidique et les synucléinopathies

La protéine alpha-synucléine (α-synucléine) joue un rôle crucial dans la pathogénie des synucléinopathies, y compris la maladie de Parkinson et l’atrophie multisystémique, avec des preuves croissantes indiquant que la dyshoméostasie lipidique est un phénotype clé dans ces troubles neurodégénératifs. Des études antérieures ont montré que l’α-synucléine se localise, en partie, aux membranes du réticulum endoplasmique associées aux mitochondries (MAM), qui sont des domaines fonctionnels temporaires contenant des protéines régulant le métabolisme lipidique, y compris la synthèse de novo de la phosphatidylsérine. Dans cette étude, nous avons analysé la composition lipidique d’échantillons humains post-mortem, en nous concentrant sur la substance noire pars compacta de la maladie de Parkinson et sur des témoins, ainsi que sur trois régions cérébrales moins affectées chez des donneurs de Parkinson. Pour évaluer davantage les altérations du lipidome liées à la synucléinopathie, des analyses similaires ont été réalisées sur le striatum de cas d’atrophie multisystémique. Nos données révèlent des changements spécifiques à la région et à la maladie dans les niveaux des espèces lipidiques. Plus précisément, nos données ont révélé des altérations dans les niveaux de certaines espèces de phosphatidylsérine dans les zones cérébrales les plus touchées par la maladie de Parkinson. Certaines de ces altérations, bien que dans une moindre mesure, sont également observées dans l’atrophie multisystémique. En utilisant des neurones dérivés de cellules souches pluripotentes induites, nous montrons que l’α-synucléine régule le métabolisme de la phosphatidylsérine aux domaines MAM, et que la quantité d’α-synucléine est proportionnelle à la perturbation des niveaux de phosphatidylsérine. Ces résultats soutiennent l’idée que la pathophysiologie de l’α-synucléine est liée à la dysrégulation de l’homéostasie lipidique, ce qui pourrait contribuer à la vulnérabilité de certaines régions cérébrales dans les synucléinopathies. Source : https://www.fightaging.org/archives/2025/05/%ce%b1-synuclein-aggregation-alters-lipid-metabolism-in-what-are-likely-harmful-ways/

Alchemab et Eli Lilly concluent un accord de licence de 415 millions de dollars pour un médicament contre les neurodégénérescences

Alchemab Therapeutics, une biotechnologie britannique, a récemment annoncé un accord de licence avec le géant pharmaceutique Eli Lilly pour son médicament investigational ATLX-1282, qui cible les conditions neurodégénératives. ATLX-1282 est le premier médicament à émerger de la plateforme propriétaire d’Alchemab, qui utilise des réponses anticorps de personnes présentant une résilience à des maladies graves. Selon les termes de l’accord, pouvant atteindre une valeur totale de 415 millions de dollars, Alchemab commencera le développement clinique précoce avant que Lilly prenne la responsabilité des étapes suivantes de développement et de commercialisation. Le PDG d’Alchemab, Jane Osbourn, souligne que Lilly, avec son expertise en neurologie, est idéalement positionné pour faire avancer rapidement ATLX-1282. Alchemab se concentre sur l’identification d’anticorps naturellement présents chez des individus en bonne santé malgré une prédisposition génétique à des maladies. En séquençant les cellules B de ces individus résilients et en utilisant l’apprentissage automatique, l’entreprise a pu identifier des anticorps présentant des effets protecteurs. Une découverte marquante concerne un anticorps trouvé chez des porteurs de mutations génétiques associées à la démence frontotemporale, qui restent asymptomatiques en vieillissant. Ce médicament pourrait avoir des implications thérapeutiques larges, notamment pour la sclérose latérale amyotrophique (ALS) et la démence frontotemporale. Alchemab a développé un flux de travail innovant combinant des méthodes computationnelles et des travaux en laboratoire pour identifier ces cibles. Ce dernier accord suit une collaboration de découverte entre les deux entreprises, annoncée plus tôt cette année, où elles s’engagent à poursuivre jusqu’à cinq thérapies pour l’ALS. Source : https://longevity.technology/news/alchemab-and-lilly-ink-415m-neurodegeneration-drug-licensing-deal/

Progrès dans le diagnostic précoce des synucléinopathies par imagerie et tests sanguins

Les chercheurs ont récemment fait des progrès dans l’évaluation de la charge de l’α-synnucléine mal repliée dans le cerveau vivant grâce à l’imagerie par contraste. Cela pourrait offrir une méthode fiable pour diagnostiquer la maladie de Parkinson avant l’apparition des symptômes. Contrairement à l’imagerie des agrégats protéiques associés à la maladie d’Alzheimer, cette capacité n’est pas encore établie. Il est probable que les approches d’imagerie perdent en importance dans les années à venir, car des tests sanguins, moins coûteux, ont montré leur capacité à détecter les maladies neurodégénératives à leurs débuts. L’accumulation anormale de la protéine α-synnucléine est un élément pathologique clé de plusieurs conditions neurodégénératives, connues sous le nom de synucléinopathies, incluant la maladie de Parkinson, l’atrophie multisystémique et la démence à corps de Lewy. Jusqu’à récemment, la confirmation de la présence de ces agrégats protéiques nécessitait une examination post-mortem, limitant ainsi les capacités de diagnostic précoce et de suivi du traitement. Un article récent examine en détail les avancées récentes dans le développement de traceurs pour la tomographie par émission de positrons (PET), en mettant l’accent sur des candidats prometteurs ayant montré leur efficacité dans des contextes de laboratoire et cliniques. Les chercheurs soulignent des traceurs tels que [18F]F-0502B, [18F]C05-05 et [18F]ACI-12589, qui ont montré des résultats encourageants pour distinguer les patients atteints de synucléinopathies des témoins sains. Une avancée particulièrement significative a eu lieu lorsque [18F]C05-05 a réussi à visualiser des synucléinopathies chez dix patients répondant aux critères diagnostiques cliniques pour la maladie de Parkinson ou la démence à corps de Lewy. Ce traceur a montré une liaison accrue dans le mésencéphale, une zone communément affectée par les pathologies des corps de Lewy, et cette liaison a bien corrélé avec la gravité des symptômes moteurs. Malgré ces développements, plusieurs défis demeurent dans le développement de traceurs PET optimaux pour l’α-synnucléine. La distribution hétérogène et la conformation des agrégats d’α-synnucléine à travers différentes synucléinopathies, ainsi que la densité relativement faible de ces caractéristiques pathologiques, compliquent le développement d’agents d’imagerie universellement efficaces. Source : https://www.fightaging.org/archives/2025/05/towards-pet-scan-detection-of-%ce%b1-synuclein-for-early-diagnosis-of-parkinsons-disease/

L’impact de la protéine TDP-43 sur les maladies neurodégénératives et la barrière hémato-encéphalique

TDP-43, ou TAR DNA-binding protein 43, est une protéine qui peut se modifier pour former des agrégats solides, contribuant ainsi à l’apparition et à la progression de diverses conditions neurodégénératives. Cette pathologie cérébrale a été récemment identifiée, notamment avec la définition de l’encéphalopathie TDP-43 liée à l’âge (LATE), qui fait partie des maladies neurodégénératives. TDP-43 joue également un rôle crucial dans la sclérose latérale amyotrophique (SLA). La recherche montre que l’agrégation de TDP-43 entraîne une diminution de sa présence dans le noyau cellulaire, où elle remplit des fonctions essentielles. Cette déplétion modifie le comportement cellulaire de manière pathologique, notamment dans les cellules de la barrière hémato-encéphalique, provoquant des fuites qui entraînent des réactions inflammatoires chroniques dans le tissu cérébral. Ces inflammations perturbent le fonctionnement normal du cerveau. La perte de TDP-43 dans le noyau est un trait commun à diverses maladies neurodégénératives, y compris la maladie d’Alzheimer et la démence frontotemporale. La baisse des niveaux nucléaires de TDP-43 est associée à des fonctions de splicing altérées, entraînant des inclusions aberrantes dans les transcrits et la déstabilisation des ARN messagers, ce qui affecte l’expression des protéines cruciales pour la projection axonale. Des études montrent qu’une augmentation du flux à travers la barrière hémato-encéphalique est détectée tôt dans ces maladies et que des modèles animaux indiquent que cette fuite peut exacerber les changements neurodégénératifs. La barrière hémato-encéphalique est un élément clé de l’unité neurovasculaire, et la réduction de TDP-43 dans les cellules endothéliales des capillaires des personnes atteintes de SLA-démence frontotemporale pourrait contribuer à l’augmentation de la perméabilité de cette barrière. La recherche a révélé que cette réduction entraîne la perte des complexes de jonction et l’intégrité de la barrière, provoquant des dépôts de fibrine, des modifications des microglies, et des déficits en mémoire et en interaction sociale. Ce constat souligne que la perte nucléaire de TDP-43 dans les cellules endothéliales du cerveau perturbe la barrière hémato-encéphalique et contribue aux caractéristiques de la démence frontotemporale. Source : https://www.fightaging.org/archives/2025/05/a-mechanism-by-which-tdp-43-aggregation-causes-pathology-in-the-aging-brain/

L’impact des astrocytes réactifs sur la neurodégénérescence et la mémoire dans la maladie d’Alzheimer

Les astrocytes réactifs dans le tissu cérébral sont des cellules qui deviennent inflammatoires en réponse à l’environnement local. Ce phénomène devient particulièrement fréquent avec l’âge, à cause de divers types de dommages moléculaires caractéristiques du vieillissement, tels qu’une signalisation inflammatoire accrue provenant d’autres cellules, y compris les cellules sénescentes, et l’accumulation de déchets métaboliques dans le cerveau en raison d’une défaillance du drainage du liquide céphalorachidien. La réactivité des astrocytes entraîne des effets maladaptatifs et contribue à l’apparition et à la progression des maladies neurodégénératives. Plutôt que de se concentrer sur la prévention de la réactivité en réparant les dommages liés à l’âge, la communauté de recherche a tendance à adopter une stratégie consistant à essayer d’améliorer le comportement des astrocytes réactifs, un aspect à la fois. Une étude récente a examiné le comportement des astrocytes dans la maladie d’Alzheimer, où ces cellules modifient leur comportement en réponse à la présence de plaques amyloïdes, un marqueur de la maladie. Bien qu’elles tentent de nettoyer ces plaques, ce processus déclenche une chaîne de réactions néfastes. Les astrocytes absorbent les plaques par autophagie et les dégradent, mais cette dégradation entraîne une surproduction de GABA, un neurotransmetteur qui réduit l’activité cérébrale et entraîne des troubles de la mémoire. De plus, ce processus génère du peroxyde d’hydrogène, un sous-produit toxique qui cause davantage de dommages neuronaux et de neurodégénérescence. Les chercheurs ont donc cherché à identifier les enzymes responsables de cette production excessive de GABA, espérant trouver un moyen de bloquer sélectivement ses effets nocifs sans interférer avec d’autres fonctions cérébrales. Grâce à des analyses moléculaires, de l’imagerie microscopique et de l’électrophysiologie, ils ont identifié SIRT2 et ALDH1A1 comme des enzymes clés impliquées dans la surproduction de GABA chez les astrocytes affectés par la maladie d’Alzheimer. L’inhibition de l’expression astrocytaire de SIRT2 chez des souris modèles de la maladie d’Alzheimer a permis d’observer une récupération partielle de la mémoire et une réduction de la production de GABA. Cependant, la récupération n’a été que partielle et a principalement concerné la mémoire de travail, tandis que la mémoire spatiale n’a pas montré d’amélioration. Cette inhibition a également maintenu la production de peroxyde d’hydrogène, indiquant que la dégénérescence neuronale pourrait continuer même si la production de GABA est réduite. Les résultats soulèvent ainsi de nouvelles questions sur la complexité des interactions entre les astrocytes et la neurodégénérescence dans le contexte du vieillissement et des maladies neurodégénératives. Source : https://www.fightaging.org/archives/2025/04/sirt2-inhibition-in-reactive-astrocytes-reduces-their-harmful-impact-in-alzheimers-disease/