Étiquette : Mutations

Le rôle du PAI-1 dans le vieillissement et ses implications pour la santé

Cette revue examine le rôle du PAI-1 (inhibiteur de l’activateur du plasminogène-1) dans le processus de vieillissement. Bien qu’un petit nombre d’individus humains présentent des mutations de perte de fonction du PAI-1, ce qui indique que les activités du PAI-1 ne sont pas vitales pour la vie, ces personnes semblent vivre en moyenne sept ans de plus que leurs pairs. La recherche sur le PAI-1 suggère qu’il pourrait être impliqué dans divers processus pathologiques liés à l’âge, notamment la sénescence cellulaire, l’inflammation et le remodelage des tissus. Des niveaux élevés de PAI-1 ont été observés dans des conditions telles que les maladies cardiovasculaires, le syndrome métabolique, le cancer et la neurodégénérescence, ce qui suggère un rôle actif dans le vieillissement. Des études longitudinales montrent que les niveaux de PAI-1 dans le plasma augmentent avec l’âge, corrélant avec l’accumulation de cellules sénescentes et l’apparition de pathologies liées à l’âge. Cette corrélation temporelle implique que le PAI-1 pourrait participer activement au vieillissement plutôt que d’être simplement un marqueur passif. Alors que les évaluations précédentes se concentraient sur le PAI-1 dans le contexte de maladies spécifiques, cette revue intègre de nouvelles preuves pour soutenir l’idée que le PAI-1 est un moteur central du vieillissement. Une mutation rare de perte de fonction du gène SERPINE1 a été associée à une extension de la durée de vie, indiquant que la réduction du PAI-1 tout au long de la vie peut avoir des effets bénéfiques sur la santé. À l’avenir, cibler le PAI-1 avec des inhibiteurs pourrait atténuer la sénescence, restaurer la fonction des cellules souches, améliorer le profil métabolique et promettre une durée de santé prolongée. Source : https://www.fightaging.org/archives/2025/07/increased-pai-1-expression-contributes-to-degenerative-aging/

Nouveaux outils d’édition génique pour corriger les mutations de l’ADN mitochondrial

Une nouvelle étude démontre que des outils innovants d’édition génique peuvent corriger des mutations causant des maladies dans l’ADN mitochondrial des cellules humaines primaires. Les outils d’édition du génome, tels que CRISPR, ont marqué un tournant scientifique majeur, mais leur efficacité se limite à l’ADN nucléaire. Les mitochondries, qui produisent de l’énergie, possèdent leur propre ADN circulaire qui code pour des protéines essentielles. Des mutations dans cet ADN mitochondrial (mtDNA) sont à l’origine de plusieurs maladies et sont également liées au vieillissement. Jusqu’à récemment, l’édition de l’ADN mitochondrial était complexe car les outils basés sur CRISPR étaient trop volumineux pour pénétrer dans les mitochondries. Cependant, l’introduction d’outils d’édition plus petits a permis d’initier des recherches sur leur efficacité. Dans une étude parue dans PLOS Biology, des scientifiques de l’Université Médicale d’Utrecht ont utilisé un éditeur de base dérivé de la toxine A de déaminase de l’ADN double brin, associé à des protéines guide appelées TALE, pour développer des modèles de maladies et évaluer des stratégies thérapeutiques pour les maladies mitochondriales. Au début, l’équipe a utilisé l’éditeur pour introduire une mutation de perte de fonction dans des organoïdes dérivés de cellules souches hépatiques humaines. Cette mutation particulière n’avait pas encore été associée à une maladie connue, mais d’autres mutations dans le même gène (MT-CYB) le sont. Les chercheurs ont constaté que leur outil d’édition avait réussi à introduire la mutation, ce qui représente une avancée importante pour la création de modèles de maladies mitochondriales. Une fois la mutation introduite dans des organoïdes hépatiques sains, les chercheurs ont noté que les cellules n’étaient pas entièrement mutées, mais ont généré des lignes d’organoïdes avec des niveaux de variation (hétéoplasmie) allant de 0% à 80% de mutations. Cela a permis d’étudier les effets de différents niveaux de mutations sur la gravité des maladies. Ensuite, les chercheurs ont corrigé une mutation nuisible connue dans des fibroblastes d’un patient, où le système DdCBE a réussi à corriger la mutation m.4291T>C liée à des syndromes rénaux héréditaires. Bien que l’hétéoplasmie soit restée un défi, les niveaux de correction se sont stabilisés sur 50 jours de suivi et ont même légèrement augmenté. Dans les lignées cellulaires avec un niveau élevé de correction, le potentiel de membrane mitochondrial a été restauré, tandis que dans celles avec une correction faible, aucune amélioration n’a été observée. Les résultats concernant la production d’énergie étaient plus modestes. Initialement, l’équipe a utilisé des vecteurs viraux pour livrer l’éditeur, mais a ensuite montré qu’une meilleure méthode consistait à livrer l’éditeur sous forme d’ARN modifié, avec des modifications pour une plus grande stabilité. Cette méthode a démontré une efficacité supérieure par rapport à la livraison d’ADN. Les résultats de cette étude ouvrent des perspectives pour le traitement des maladies associées aux mutations de l’ADN mitochondrial, bien que plusieurs défis demeurent, notamment la nécessité d’un nombre élevé d’éditions par cellule et la minimisation des effets hors cible. Source : https://www.lifespan.io/news/scientists-successfully-edit-mitochondrial-dna/?utm_source=rss&utm_medium=rss&utm_campaign=scientists-successfully-edit-mitochondrial-dna

Cinq caractéristiques du vieillissement des cellules souches

Dans une revue publiée dans la revue Cell Stem Cell, un trio de réviseurs propose cinq caractéristiques spécifiques au vieillissement des cellules souches. Contrairement à une approche axée sur les molécules, cette classification met l’accent sur les caractéristiques physiques et le comportement général des cellules souches. Les marqueurs moléculaires du vieillissement, tels que l’instabilité génomique, les altérations épigénétiques et le dysfonctionnement mitochondrial, affectent toutes les cellules, et non seulement les cellules souches. Par conséquent, les auteurs souhaitent donner une compréhension globale du vieillissement des cellules souches en se concentrant sur leur fonction, leur survie et leur prolifération. Les cinq caractéristiques proposées sont : la quiescence, la propension à l’auto-renouvellement, les destins cellulaires, la résilience et l’hétérogénéité.

La quiescence, où la majorité des cellules souches ne se divisent pas activement, est essentielle pour leur fonction. Des quiescences trop profondes ou trop superficielles peuvent nuire à la régénération des tissus, comme observé dans les muscles et le cerveau. L’auto-renouvellement, une autre caractéristique, peut également être affecté par le vieillissement, entraînant soit une accumulation de cellules souches non fonctionnelles, soit une épuisement des cellules souches. Les relations entre les cellules souches et les cellules somatiques restent à explorer davantage.

Le vieillissement peut également altérer le destin cellulaire, où les cellules souches peuvent produire trop d’un type de cellule ou différencier en cellules indésirables, comme les cellules graisseuses au lieu des cellules de la moelle osseuse fonctionnelles. La résilience, la capacité des cellules à compenser les stress, diminue avec l’âge, rendant certaines cellules plus susceptibles à la mort cellulaire. Enfin, l’hétérogénéité des cellules souches augmente avec l’âge en raison de l’accumulation de mutations, mais elle diminue dans les âges avancés, avec seulement quelques clones survivants. Les auteurs soulignent que ces caractéristiques peuvent être utilisées comme guide pour comprendre le vieillissement et le rajeunissement, et que l’efficacité des interventions visant à inverser certains aspects du vieillissement des cellules souches peut être évaluée à travers leur impact sur ces caractéristiques. Source : https://www.lifespan.io/news/five-hallmarks-of-stem-cell-aging-proposed/?utm_source=rss&utm_medium=rss&utm_campaign=five-hallmarks-of-stem-cell-aging-proposed

Dommages à l’ADN et vieillissement : Mécanismes et perspectives thérapeutiques

Les dommages à l’ADN sont impliqués dans le vieillissement dégénératif, bien que le débat persiste sur leur contribution précise à la dysfonction tissulaire généralisée en plus du risque accru de cancer. La plupart des dommages mutatifs à l’ADN sont rapidement réparés, tandis que la plupart des mutations durables se produisent dans des régions inutilisées du génome, dans des cellules somatiques ayant peu de divisions restantes. Bien que la plupart des mutations puissent donc causer peu de dommages, une voie possible vers des dommages plus étendus résulte des mutations se produisant dans les cellules souches, qui peuvent se propager largement dans les tissus pour former des motifs de mutations chevauchants connus sous le nom de mosaïcisme somatique. Il existe des preuves initiales que cela contribue aux conditions liées à l’âge et à la perte de fonction. Une possibilité plus radicale est que les efforts répétés pour réparer des formes plus sévères de dommages à l’ADN, qu’ils soient réussis ou non, épuisent les facteurs nécessaires pour maintenir un contrôle jeune sur la structure du génome et l’expression des gènes, ce qui donne lieu aux changements caractéristiques observés dans les cellules des tissus âgés. La question de ce qui peut être fait au sujet des dommages stochastiques à l’ADN survenant à différents endroits dans différentes cellules reste complexe. Réparer ces dommages semble être un défi, un projet pour un avenir plus lointain. Ralentir l’accumulation de dommages non réparés semble plus réalisable, en grande partie une question d’identification des protéines cruciales dans la machinerie de réparation de l’ADN et en en fournissant davantage. Cependant, si même les efforts de réparation réussis entraînent inévitablement des changements dans la structure du génome et le comportement cellulaire, cela peut ne pas être si efficace pour ralentir le vieillissement. Réduire l’incidence du cancer, oui, car cela est absolument déterminé par le fardeau des dommages mutationnels non réparés, mais peut-être pas aussi bénéfique pour le reste du vieillissement. Les dommages à l’ADN constituent une menace sérieuse pour la viabilité cellulaire et sont impliqués comme la principale cause du vieillissement normal. Ainsi, cibler les dommages à l’ADN de manière thérapeutique pourrait contrer la dysfonction cellulaire liée à l’âge et les maladies, telles que les conditions neurodégénératives et le cancer. Identifier de nouveaux mécanismes de réparation de l’ADN révèle donc de nouvelles interventions thérapeutiques pour plusieurs maladies humaines. Dans les neurones, la réparation des cassures double-brin de l’ADN n’est possible que par la jonction non homologue, qui est beaucoup plus sujette aux erreurs que d’autres processus de réparation de l’ADN. Cependant, il n’existe aucune intervention thérapeutique pour améliorer la réparation de l’ADN dans les maladies affectant les neurones. La jonction non homologue est également une cible utile pour les thérapies anticancéreuses basées sur la réparation de l’ADN visant à tuer sélectivement les cellules tumorales. L’isomérase de disulfure de protéines (PDI) joue un rôle dans de nombreuses maladies, mais ses rôles dans ces conditions restent mal définis. PDI présente à la fois une activité chaperonne et une activité oxydoréductase dépendante du redox, et bien qu’elle soit principalement localisée dans le réticulum endoplasmique, elle a également été détectée dans d’autres emplacements cellulaires. Ce texte décrit un rôle nouveau pour PDI dans la réparation des cassures double-brin de l’ADN suite à au moins deux types de dommages à l’ADN. PDI fonctionne dans la jonction non homologue, et après des dommages à l’ADN, elle se déplace vers le noyau, où elle co-localise avec des protéines critiques de réparation des cassures double-brin à des foyers de dommages à l’ADN. Un mutant inactif du redox de PDI, dépourvu de ses deux résidus de cystéine du site actif, n’était pas protecteur. Ainsi, l’activité redox de PDI médie la réparation de l’ADN, mettant en évidence ces cystéines comme cibles potentielles pour des interventions thérapeutiques. Le potentiel thérapeutique de PDI a également été confirmé par son activité protectrice dans un organisme entier contre les dommages à l’ADN induits in vivo dans des zebrafish. Par conséquent, exploiter la fonction redox de PDI pourrait constituer une cible thérapeutique novatrice contre les dommages à l’ADN double-brin pertinents pour plusieurs maladies humaines. Source : https://www.fightaging.org/archives/2025/06/increased-protein-disulphide-isomerase-slows-accumulation-of-dna-damage/

Prévention de la Sénescence Cellulaire Induite par CRISPR/Cas9 : Vers une Nouvelle Approche Thérapeutique

La recherche publiée dans Cell Reports Medicine explore les causes de la sénescence cellulaire induite par la technologie d’édition génique CRISPR/Cas9 et examine des méthodes potentielles pour la prévenir. L’édition génétique des cellules vivantes par CRISPR/Cas9 nécessite trois étapes : la rupture de l’ADN, l’insertion de nouveaux gènes et la réparation de l’ADN. Le processus de rupture et de réparation de l’ADN entraîne une réponse de dommage à l’ADN, impliquant le facteur p53, qui favorise la sénescence cellulaire. Les vecteurs viraux, tels que les lentivirus et l’AAV6, augmentent également les niveaux de p53. Des études antérieures ont montré que l’inhibition temporaire de p53 pourrait permettre aux cellules de se multiplier suffisamment pour être efficaces.

Dans une expérience, les chercheurs ont électroporé les cellules souches hématopoïétiques humaines avec différentes modifications génétiques, utilisant des modifications par AAV6 qui ont entraîné des réactions inflammatoires plus fortes, notamment une augmentation des interleukines et des biomarqueurs de sénescence. L’AAV6 s’est révélé plus efficace pour cibler le locus IL-2RG, mais a également entraîné plus d’inflammation. Les modifications génétiques ont conduit à une augmentation de la sénescence cellulaire, et les cellules exposées à de fortes doses d’AAV6 ont montré une croissance plus lente. Ces résultats ont été confirmés chez des souris immunodéficientes, où les cellules exposées à AAV6 avaient moins de chances de se multiplier par rapport aux groupes témoins.

Pour lutter contre l’inflammation et la sénescence, les chercheurs ont administré de l’anakinra, un antagoniste direct de la cytokine IL-1, en parallèle avec AAV6. Cette approche a considérablement réduit le nombre de cellules modifiées présentant des signes de sénescence. Des traitements ciblant d’autres facteurs inflammatoires, comme NF-κB et p53, ont également montré des résultats similaires sans affecter l’efficacité de l’ingénierie génétique. Cependant, ils ont eu des effets différents sur le taux de mutation, certains augmentant le risque de mutations, tandis qu’anakinra a réduit ce risque.

Bien que des essais cliniques soient nécessaires pour confirmer l’efficacité de cette approche chez l’homme, ces résultats suggèrent que le prétraitement avec anakinra pourrait devenir une procédure standard pour la génération de cellules modifiées destinées à l’engreffement. Les réponses aux dommages à l’ADN et la sénescence sont des effets secondaires indésirables de l’ingénierie génétique, mais cette étude démontre qu’ils peuvent être atténués. Source : https://www.lifespan.io/news/preventing-crispr-from-causing-senescence/?utm_source=rss&utm_medium=rss&utm_campaign=preventing-crispr-from-causing-senescence

Nouveaux Horizons dans la Thérapie Immunitaire du Cancer : Au-delà des Mutations

Les scientifiques ont découvert que seulement 1 % des antigènes tumoraux présentés proviennent de mutations oncogéniques, tandis que les 99 % restants, souvent négligés, pourraient constituer de meilleures cibles de traitement. Le cancer résulte d’une série de mutations entraînant des comportements cellulaires anormaux, notamment une prolifération incontrôlée. Ces cellules cancéreuses affichent des peptides anormaux à leur surface, détectés et ciblés par le système immunitaire via des protéines du complexe majeur d’histocompatibilité (CMH) de classe I. Les vaccins anti-cancer, qui visent ces antigènes spécifiques aux mutations tumorales (mTSA), doivent être adaptés à chaque patient, ce qui les rend coûteux et peu efficaces. Cependant, de nouvelles techniques permettent d’identifier des antigènes réellement présents sur les cellules cancéreuses. Une étude récente a catalogué les antigènes tumoraux dans des échantillons de mélanome et de cancer du poumon, révélant que 99 % des antigènes provenaient de parties non mutées du génome, souvent issues de séquences normalement silencieuses dans les tissus sains. Ces antigènes peuvent être classés en trois groupes : 1) antigènes tumoraux spécifiques aberramment exprimés (aeTSA), 2) antigènes associés aux tumeurs (TAA), et 3) antigènes spécifiques à la lignée (LSA). Les aeTSA, en particulier, sont souvent partagés entre patients, ce qui permettrait de développer des vaccins ou des thérapies cellulaires à usage général. L’étude souligne que, bien que les mutations initient le cancer, les protéines mutées ne sont pas toujours des cibles pertinentes pour le système immunitaire, tandis que d’autres protéines aberrantes, essentielles au maintien du comportement cancéreux, pourraient être de meilleures cibles pour les immunothérapies. Une étude complémentaire a confirmé que la plupart des antigènes présentés dans le cancer du pancréas proviennent de sources non canonique, renforçant l’idée que des peptides aberramment exprimés, absents des tissus normaux, peuvent représenter des cibles puissantes pour l’immunothérapie. Ces découvertes ouvrent des voies prometteuses pour le développement de traitements contre divers types de cancer. Source : https://www.lifespan.io/news/new-study-could-pave-the-way-for-better-cancer-vaccines/?utm_source=rss&utm_medium=rss&utm_campaign=new-study-could-pave-the-way-for-better-cancer-vaccines

Revisiter la théorie mitochondriale du vieillissement : Le rôle du génotype nucléaire et de l’ADN mitochondrial

La recherche sur le vieillissement fait face à des défis majeurs, notamment la détermination de l’importance relative des différents mécanismes de vieillissement connus, souvent appelés ‘hallmarks’ ou dysfonctionnements du vieillissement. L’un des exemples les plus pertinents de cette complexité est la dysfonction mitochondriale, dont les processus, tels que la mitophagie, ne sont pas complètement compris. Une des preuves soutenant l’importance des dommages à l’ADN mitochondrial dans le vieillissement provient des effets néfastes des mutations du polymérase gamma de l’ADN mitochondrial (POLG) chez les souris, qui entraînent une accumulation de mutations, une perte de fonction mitochondriale et un vieillissement accéléré. Une étude récente a examiné une situation où les souris montrent une accumulation similaire de mutations de l’ADN mitochondrial sans la mutation complète de POLG, mais sans la perte de fonction mitochondriale attendue, suggérant que d’autres fonctions de POLG sont essentielles pour la fonction mitochondriale et remettant en cause l’importance des dommages aléatoires de l’ADN mitochondrial. De plus, des souris mutatrices de l’ADN mitochondrial, appelées Polgmut/mut, accumulent des mutations au fil du temps en raison d’une mutation déficiente en ‘proofreading’ dans POLG, ce qui entraîne une dysfonction respiratoire mitochondriale et des phénotypes de vieillissement prématuré. Cependant, la relation entre l’accumulation de ces mutations et la dysfonction respiratoire mitochondriale reste floue. Des recherches utilisant le séquençage de nouvelle génération ont été menées pour déterminer le génotype de l’ADN mitochondrial des descendants de souris Polg, et bien que les souris Polg+/mut aient montré un génotype équivalent à celui des souris sauvages, leur activité respiratoire mitochondriale était légèrement réduite. En variant le génotype mitochondrial, il a été constaté que l’activité respiratoire mitochondriale était légèrement réduite chez les souris Polg+/mut et sévèrement réduite chez les souris Polgmut/mut, indépendamment du génotype mitochondrial. Ces résultats indiquent que la dysfonction respiratoire mitochondriale observée chez les souris avec mutation déficiente en ‘proofreading’ dans POLG est corrélée avec le génotype nucléaire de POLG plutôt qu’avec le génotype de l’ADN mitochondrial, remettant ainsi en question la théorie mitochondriale du vieillissement chez ces souris. Source : https://www.fightaging.org/archives/2025/06/evidence-against-mitochondrial-mutator-mice-as-support-for-the-importance-of-mitochondrial-dna-damage/

Le rôle de la protéine p53 dans le vieillissement et la suppression tumorale

La protéine suppresseur de tumeur p53, codée par le gène TP53, joue un rôle crucial dans l’équilibre entre le maintien des tissus et le risque de cancer, ce qui contribue à la durée de vie des espèces. Une activité excessive de p53 réduit le risque de cancer mais raccourcit la durée de vie en supprimant également le maintien des tissus. À l’inverse, une activité trop faible de p53 augmente la durée de vie, mais accroît le risque de cancer, ce qui peut finalement mettre fin prématurément à cette vie prolongée. L’évolution atteint un certain équilibre pour chaque niche écologique, mais il pourrait y avoir des leçons à tirer d’autres espèces pour informer les approches possibles de contrôle du cancer chez l’homme.

Plusieurs mécanismes moléculaires ont été proposés pour réguler le vieillissement et influencer la durée de vie, dont beaucoup sont liés aux activités suppresseurs de tumeur de p53. Dans des conditions de stress faibles ou élevées, p53 se lie à plusieurs gènes cibles et induit des processus suppresseurs de tumeur tels que la réparation de l’ADN, l’apoptose et la sénescence cellulaire. D’une manière contextuelle, son mécanisme de réparation de l’ADN améliore la longévité, tandis que l’apoptose aberrante et la sénescence cellulaire accélèrent le vieillissement.

Des études de corrélation génotype-phénotype ont tenté de cartographier les différences observées dans la durée de vie à travers les espèces avec des différences dans la séquence et la structure des orthologues de p53, se concentrant principalement sur le domaine de liaison à l’ADN (DBD). Pour les orthologues de p53 étroitement liés, ceux des espèces à durée de vie plus longue possèdent des mutations uniques dans leur DBD qui sont hypothétisées pour améliorer leur interactome régulateur de longévité. Les résidus 180-192, qui composent la région L2 du DBD dans le p53 humain, montrent une forte corrélation avec la longévité.

Les changements d’acides aminés dans les régions non liantes à l’ADN, comme le domaine de transactivation (TAD), le domaine riche en proline (PRD), le domaine régulateur (REG) et le domaine de tétramérisation (TET), sont largement inexplorés. Pour aborder cette question, une méthode de travail appelée Relative Evolutionary Scoring (RES) a été développée pour examiner de manière exhaustive les changements dans la structure du p53 complet à travers des organismes de divers ordres taxonomiques et les durées de vie observées. En utilisant l’outil de prédiction de mutations Sorting Intolerant From Tolerant (SIFT) et les résultats d’essais fonctionnels basés sur la levure, nous avons caractérisé l’effet des résidus associés à la longévité prédits par RES sur la fonction de p53 et les voies suppresseurs de tumeur.

Nos résultats révèlent que, bien que la plupart des résidus associés à la longévité se trouvent dans le domaine de liaison à l’ADN, des résidus critiques existent également dans d’autres domaines de p53. Les expériences fonctionnelles de mutation et les prédictions d’interaction protéique suggèrent que ces résidus pourraient jouer un rôle vital dans la stabilité de p53 et ses interactions avec d’autres protéines impliquées dans l’induction de la sénescence. Ce travail élargit notre compréhension des mécanismes sous-jacents à la suppression tumorale dysrégulée de p53 et son lien avec le vieillissement accéléré. Source : https://www.fightaging.org/archives/2025/05/a-deeper-look-at-tp53-in-the-determination-of-species-life-span/

Les inhibiteurs de la transcriptase inverse nucléosidiques : un espoir dans la lutte contre la maladie d’Alzheimer

Les inhibiteurs de la transcriptase inverse nucléosidiques (NRTIs) ont été initialement développés pour traiter l’infection par le VIH, en interférant avec la capacité du virus à se répliquer. Cependant, des recherches récentes ont mis en évidence des preuves épidémiologiques suggérant que cette classe de médicaments pourrait également ralentir l’apparition de la maladie d’Alzheimer. Les chercheurs se concentrent sur la réduction de l’inflammation comme mécanisme principal, tout en considérant qu’il est plausible que cet effet soit dû à l’interférence des NRTIs dans les activités nuisibles des éléments transposables. Ces éléments, tels que les rétrotransposons, représentent en grande partie des restes génétiques d’anciennes infections virales et composent une fraction importante du génome. Bien que ces séquences soient réprimées pendant la jeunesse, elles deviennent actives avec l’âge et les changements épigénétiques qui l’accompagnent, entraînant des dommages mutationnels, des réponses immunitaires innées et d’autres préjudices. Pour explorer cette hypothèse, les chercheurs ont examiné 24 ans de données de patients issues de la base de données de la Veterans Health Administration des États-Unis, qui est principalement constituée d’hommes, ainsi que 14 ans de données de la base de données MarketScan, qui représente une population plus large. Ils ont identifié plus de 270 000 patients âgés d’au moins 50 ans prenant des médicaments pour le VIH ou l’hépatite B, excluant ceux ayant déjà reçu un diagnostic de la maladie d’Alzheimer. Après ajustement pour divers facteurs susceptibles d’influer sur les résultats, les chercheurs ont conclu que le risque réduit de développer la maladie d’Alzheimer parmi les patients sous NRTIs était significatif. Contrairement à d’autres types de médicaments antirétroviraux, les NRTIs ont montré un effet protecteur contre cette maladie neurodégénérative, ce qui incite les chercheurs à proposer des tests cliniques pour évaluer leur potentiel à prévenir l’Alzheimer. Source : https://www.fightaging.org/archives/2025/05/nucleoside-reverse-transcriptase-inhibitors-may-slow-the-development-of-alzheimers-disease/

L’Hématopoïèse Clonale et ses Implications sur le Vieillissement et la Santé

L’hématopoïèse clonale est une condition liée à de nombreux troubles liés à l’âge, qui survient lorsque des cellules souches hématopoïétiques (HSPC) acquièrent des mutations leur conférant un avantage compétitif dans leur reproduction. Ce phénomène, bien que rare chez les personnes de moins de 40 ans, devient de plus en plus fréquent avec l’âge, touchant près de 50 % des octogénaires. Il est associé à des risques accrus de cancers sanguins, de maladies cardiovasculaires et d’épuisement immunitaire. Une telle hématopoïèse clonale pourrait influencer le vieillissement immunitaire et l’inflammaging, et pourrait être l’un des facteurs limitant l’espérance de vie humaine à environ 120 ans. Une étude récente s’est penchée sur la mutation la plus courante liée à l’hématopoïèse clonale, identifiée dans le gène DNMT3A, qui joue un rôle dans la méthylation de l’ADN. Les chercheurs ont utilisé un modèle murin pour simuler l’environnement de la moelle osseuse âgée, découvrant que cette mutation augmentait l’efficacité mitochondriale des cellules, doublant leur production d’énergie. Cependant, cette surproduction d’énergie les rendait également vulnérables à des traitements comme MitoQ, un antioxydant qui, en accumulant des quantités excessives dans les mitochondries, entraînait la mort de la moitié des cellules mutées tout en améliorant la respiration des cellules saines. Parallèlement, le médicament metformine a également montré un potentiel pour réduire l’avantage compétitif des cellules mutantes en perturbant leur métabolisme. Ces découvertes fournissent des perspectives sur la manière dont les cellules souches sanguines changent avec l’âge et soulignent de nouvelles opportunités d’intervention pour prévenir des conditions liées à l’âge, non seulement dans le sang mais également dans d’autres tissus. Source : https://www.lifespan.io/news/researchers-fight-some-mutations-by-targeting-mitochondria/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-fight-some-mutations-by-targeting-mitochondria