Étiquette : muscle squelettique

L’impact des produits de glycation avancés sur la santé musculaire et l’inflammation liée à l’âge

Les produits de glycation avancés (AGEs) représentent des déchets métaboliques indésirables qui, en se formant, peuvent modifier les propriétés physiques des tissus, en particulier en contribuant au durcissement des parois des vaisseaux sanguins avec l’âge. Bien que la plupart des AGEs soient de courte durée, leur interaction avec des récepteurs cellulaires peut provoquer une réponse inflammatoire inadaptée, contribuant ainsi à l’inflammation chronique liée à l’âge. Cette inflammation influence négativement le comportement cellulaire dans tout le corps. Les chercheurs examinent comment les AGEs participent à la perte de masse musculaire liée à l’âge, entraînant la sarcopénie. En se liant aux récepteurs pour les AGEs (RAGEs), les AGEs activent des voies de signalisation intracellulaires dans les cellules musculaires squelettiques, augmentant les niveaux d’inflammation et de stress oxydatif. Cela entraîne une signalisation insulinique et de l’IGF-1 altérée, une biogenèse mitochondriale compromise, une synthèse protéique réduite, une dégradation protéique accrue, une accumulation de lipides intracellulaires, des modifications de la composition des types de fibres musculaires, ainsi qu’un métabolisme énergétique musculaire dégradé, et un taux plus élevé d’apoptose. Ces facteurs peuvent finalement mener à l’atrophie musculaire et à des capacités de régénération altérées. Les AGEs peuvent également endommager les propriétés biologiques et les fonctions des protéines, y compris les protéines fonctionnelles et structurales du muscle squelettique, ainsi que les collagènes de la matrice extracellulaire, entraînant des dysfonctionnements musculaires tels qu’une production de force altérée et une rigidité accrue. En outre, les AGEs peuvent indirectement affecter le muscle squelettique en contribuant à des lésions de la jonction neuromusculaire et à des troubles vasculaires. Source : https://www.fightaging.org/archives/2025/03/advanced-glycation-endproducts-in-muscle-loss-leading-to-sarcopenia/

Elamipretide : Une avancée dans l’amélioration de la fonction musculaire chez les souris âgées

Elamipretide, anciennement connu sous le nom de SS-31, est une molécule antioxydante ciblant les mitochondries, qui améliore la fonction mitochondriale. Bien que son mécanisme d’action ne soit pas entièrement compris, des recherches ont montré qu’il améliore la fonction musculaire chez des souris âgées, un résultat attendu, mais ne modifie pas l’âge épigénétique, ce qui est surprenant. Les horloges épigénétiques, qui évaluent l’âge biologique en se basant sur des modifications épigénétiques de l’ADN, ont des limites, mais la fonction mitochondriale est cruciale dans le processus de vieillissement. La diminution de la fonction musculaire cardiaque et squelettique liée au vieillissement est fortement associée à diverses comorbidités. Elamipretide a démontré une efficacité thérapeutique dans l’amélioration des conditions associées à la dysfonction mitochondriale dans des modèles cliniques et précliniques. Dans une étude, l’impact d’un traitement de 8 semaines avec Elamipretide a été examiné sur la prévalence de la fragilité, ainsi que sur la fonction des muscles squelettiques et cardiaques chez les souris C57BL/6J. Les résultats ont montré que l’état de santé, mesuré par l’indice de fragilité, la fonction diastolique et la force musculaire squelettique, diminue avec l’âge, la force musculaire changeant de manière dépendante du sexe. Le traitement par Elamipretide a atténué l’accumulation de la fragilité et a partiellement inversé ces déclins, comme en témoigne l’augmentation du stress cardiaque et de la résistance à la fatigue musculaire. Cependant, aucune modification statistiquement significative de l’expression génique ou des profils de méthylation de l’ADN n’a été détectée, indiquant peu de réorganisation moléculaire ou de réduction de l’âge biologique dans la plupart des groupes traités. L’analyse des voies métaboliques a révélé que le traitement par Elamipretide favorisait des changements pro-longevité dans l’expression génique, incluant l’upregulation des gènes impliqués dans le métabolisme des acides gras, la traduction mitochondriale et la phosphorylation oxydative, ainsi que la downregulation de l’inflammation. En somme, ces résultats indiquent que le traitement par Elamipretide est efficace pour atténuer les signes de sarcopénie et de dysfonction cardiaque dans un modèle de souris vieillissant, mais que ces améliorations fonctionnelles se produisent indépendamment des changements détectables dans l’âge épigénétique et transcriptomique. Ainsi, certains changements liés à l’âge dans la fonction peuvent être découplés des modifications de l’âge biologique moléculaire. Source : https://www.fightaging.org/archives/2025/03/elamipretide-ss-31-improves-muscle-function-but-doesnt-affect-epigenetic-age/

Lien entre le vieillissement du microbiome intestinal et la sarcopénie

L’article examine les relations entre le vieillissement du microbiome intestinal et la perte de masse musculaire squelettique, un phénomène courant chez les personnes âgées qui peut mener à des conditions comme la sarcopénie et la fragilité. Avec l’âge, la masse et la force musculaires diminuent, un effet aggravé par un mode de vie sédentaire, comme l’indiquent les comparaisons entre les populations de chasseurs-cueilleurs et celles du monde développé. Cependant, d’autres mécanismes du vieillissement, tels que les changements dans la composition du microbiome intestinal, jouent également un rôle crucial. Ce microbiome évolue avec l’âge, entraînant une augmentation de l’inflammation chronique et une diminution de la production de métabolites bénéfiques pour les tissus du corps. Les études montrent que la sarcopénie est multifactorielle, influencée par l’inactivité physique, un régime alimentaire pauvre en protéines, l’inflammation et la résistance à l’insuline, mais les mécanismes sous-jacents restent encore mal compris. Le microbiote intestinal, composé de plus de 100 trillions de cellules bactériennes, est essentiel pour la santé métabolique et immunologique humaine. Il produit divers composés bioactifs, tels que les acides gras à chaîne courte (SCFA), qui ont des effets épigénétiques et immunomodulateurs. Une dysbiose intestinale, c’est-à-dire un déséquilibre du microbiote, est souvent observée chez les personnes âgées et est associée à des maladies telles que la sarcopénie. Des études ont établi un lien entre la dysbiose intestinale et la sarcopénie, avec des recherches suggérant une relation causale. Bien que des compléments de Bifidobacterium et de Lactobacillus aient montré des effets positifs sur la masse musculaire chez les souris âgées et dans des études sur des personnes âgées, l’impact direct du microbiote sur la santé musculaire et le développement de la sarcopénie reste flou. Il est également difficile d’identifier les microbiomes spécifiques et leurs métabolites bénéfiques qui pourraient servir de cibles thérapeutiques. La recherche doit se poursuivre pour mieux comprendre les mécanismes et explorer des interventions thérapeutiques visant à moduler le microbiote intestinal afin de prévenir ou de traiter la sarcopénie et ainsi favoriser un vieillissement en santé. Source : https://www.fightaging.org/archives/2025/02/aging-of-the-gut-microbiome-as-a-contribution-to-sarcopenia/

Rôle du NAD dans le vieillissement et la longévité : De NAD World à NAD World 3.0

Les chercheurs s’intéressent de plus en plus à la diminution des niveaux de nicotinamide adénine dinucléotide (NAD) dans les mitochondries et son lien avec le vieillissement. Malgré l’absence de résultats tangibles sur l’augmentation de la longévité et des maladies liées à l’âge en régulant les niveaux de NAD, cette question continue d’être explorée. Les efforts pour comprendre le rôle du NAD dans la fonction mitochondriale n’ont pas encore abouti à des moyens significatifs d’influencer le vieillissement. Il est important de noter que la réduction de NAD n’est pas un problème isolé et que le traitement de cette diminution ne semble pas suffisant. Le concept de ‘NAD World’, introduit en 2009, a cherché à établir un réseau régulateur systémique reliant le métabolisme du NAD+, le rythme biologique et le contrôle du vieillissement et de la longévité chez les mammifères. Deux composants critiques, SIRT1 et NAMPT, ont été identifiés comme des acteurs clés dans ce concept. SIRT1, une protéine déacétylase dépendante du NAD+, régule de nombreux processus cellulaires fondamentaux, tandis que NAMPT génère une oscillation circadienne de production de NAD+. Ces deux éléments contrôlent la dynamique du ‘NAD World’ et influencent le processus de vieillissement. En 2016, le concept a évolué vers le ‘NAD World 2.0’, identifiant trois tissus clés : l’hypothalamus, le muscle squelettique et le tissu adipeux, chacun jouant un rôle spécifique dans le contrôle de l’âge. Une des prédictions majeures de ce modèle est que la sécrétion de NAMPT extracellulaire par le tissu adipeux est cruciale pour la communication inter-tissulaire dans le vieillissement des mammifères. De plus, le nicotinamide mononucléotide (NMN) a été identifié comme un intermédiaire clé du NAD+ et joue un rôle dans le maintien de la robustesse biologique. Avec ces avancées, une version reformulée, le ‘NAD World 3.0’, a été proposée, mettant en avant des boucles de rétroaction multi-niveaux médiées par NMN et eNAMPT pour le contrôle du vieillissement et de la longévité chez les mammifères. Source : https://www.fightaging.org/archives/2025/02/continued-evolution-of-a-nad-centered-view-of-aging/

Rôle de l’Arginase II dans la Sarcopénie Associée à l’Âge : Une Étude sur des Modèles Murins

Les chercheurs ont démontré que l’augmentation du niveau de l’arginase II observée avec l’âge entraîne divers problèmes, en utilisant des souris dont l’arginase II a été supprimée par génie génétique. Les souris dépourvues d’arginase II montrent une perte de masse musculaire ralentie avec l’âge et une charge inférieure de sénescence cellulaire. Il est probable que la réduction de la sénescence cellulaire et des signaux inflammatoires soit un mécanisme médiateur important, bien qu’il existe d’autres possibilités à considérer. Notablement, la suppression de l’arginase II ne semble pas provoquer de problèmes, mais plutôt des bénéfices. La sarcopénie associée à l’âge diminue la mobilité et est favorisée par la sénescence cellulaire, l’inflammation et la fibrose. L’enzyme mitochondriale arginase-II joue un rôle causal dans le vieillissement et les maladies associées à l’âge. L’étude vise à explorer le rôle de l’Arg-II dans le déclin de l’activité physique associée à l’âge et le vieillissement des muscles squelettiques dans un modèle murin. Des souris jeunes (4-6 mois) et âgées (20-24 mois), ainsi que des souris déficientes en arg-ii de deux sexes, ont été examinées. L’étude a montré une diminution de la performance physique des souris âgées, partiellement prévenue chez les animaux arg-ii-/-, notamment chez les mâles. Le phénotype amélioré des souris arg-ii-/- liées au vieillissement est associé à une réduction de la sarcopénie, de la sénescence cellulaire, de l’inflammation et de la fibrose. De plus, le déclin associé à l’âge de la densité des cellules endothéliales microvasculaires, du nombre de cellules satellites et des types de fibres musculaires dans les muscles squelettiques est prévenu chez les souris arg-ii-/-. Enfin, une augmentation de l’expression génique de l’arg-ii dans les muscles squelettiques vieillissants a été observée, ainsi qu’une expression protéique d’Arg-II dans les cellules endothéliales et les fibroblastes, mais pas dans les fibres musculaires squelettiques, les macrophages et les cellules satellites. Les résultats suggèrent que l’augmentation d’Arg-II dans les cellules non musculaires squelettiques favorise la sarcopénie associée à l’âge, en particulier chez les souris mâles. Source : https://www.fightaging.org/archives/2025/01/arginase-ii-deficiency-slows-muscle-aging-in-mice/

L’impact de la fonction mitochondriale musculaire sur le vieillissement cérébral

Les mitochondries sont souvent qualifiées de centrales énergétiques de la cellule, produisant des molécules d’énergie chimique essentielles pour les activités cellulaires. Les tissus ayant des besoins énergétiques élevés, comme les muscles et le cerveau, sont particulièrement sensibles aux variations de la fonction mitochondriale. Une étude menée sur des populations humaines a révélé qu’une meilleure fonction mitochondriale dans les tissus musculaires est corrélée à un vieillissement cérébral plus lent. Cette relation persiste indépendamment de la condition physique, bien qu’il soit vrai qu’un individu donné peut améliorer sa fonction mitochondriale en atteignant un meilleur niveau de forme physique. La condition physique présente de nombreux avantages, mais c’est l’amélioration de la fonction mitochondriale qui est déterminante dans la relation avec le vieillissement cérébral, et non la condition physique elle-même.

Cette étude longitudinale démontre un lien significatif entre la capacité oxidative mitochondriale du muscle squelettique et les changements structurels du cerveau sur une période dépassant une décennie, soulignant ainsi la forte connexion entre la santé mitochondriale et le vieillissement cérébral, ainsi que la neurodégénérescence. En utilisant deux modalités d’imagerie cérébrale différentes, l’étude a identifié des régions cérébrales spécifiques et des voies connectives en relation avec la capacité oxidative mitochondriale évaluée dans le muscle squelettique. Ces résultats longitudinaux offrent des perspectives mécanistiques sur la connexion entre la bioénergétique musculaire et le vieillissement cérébral, et posent des bases pour des recherches futures sur la bioénergétique mitochondriale dans le cerveau.

Un mécanisme potentiel pourrait être que la fonction mitochondriale musculaire indique la santé mitochondriale générale et que les mitochondries musculaires peuvent être considérées comme un indicateur de la santé mitochondriale à travers plusieurs tissus, y compris le cerveau. Une autre possibilité est que la mesure de la capacité oxidative saisit la santé musculaire générale et que des signaux positifs à travers des molécules solubles ou des microvésicules pourraient jouer un rôle dans les signaux neurotrophiques qui favorisent la santé cérébrale. Bien que la capacité oxidative du muscle squelettique soit liée à la condition physique, les associations longitudinales entre la capacité oxidative du muscle squelettique et l’atrophie cérébrale étaient indépendantes des niveaux de condition physique au moment de l’évaluation. Les associations longitudinales avec le changement microstructural ont persisté après ajustement pour la mesure de la condition physique du temps de marche de 400 mètres, mais ont été atténuées après ajustement pour le VO2 max. Cette atténuation n’est pas surprenante, car la condition physique et les facteurs vasculaires sont fortement associés à la microstructure de la matière blanche.

Étant donné la nature observationnelle de cette étude, les associations longitudinales détectées peuvent éclairer mais ne prouvent pas une relation causale. De plus, nous ne pouvons pas exclure que la capacité oxidative plus élevée du muscle squelettique reflète en partie l’historique d’exercice et d’activité physique au cours de la vie, ce qui peut affecter plusieurs aspects de la santé cérébrale, mais qui peut ne pas être entièrement capturé par l’évaluation des niveaux de condition physique actuels. Source : https://www.fightaging.org/archives/2025/01/better-muscle-mitochondrial-function-correlates-with-slower-brain-aging/