Étiquette : Mitochondries

L’Hématopoïèse Clonale et ses Implications sur le Vieillissement et la Santé

L’hématopoïèse clonale est une condition liée à de nombreux troubles liés à l’âge, qui survient lorsque des cellules souches hématopoïétiques (HSPC) acquièrent des mutations leur conférant un avantage compétitif dans leur reproduction. Ce phénomène, bien que rare chez les personnes de moins de 40 ans, devient de plus en plus fréquent avec l’âge, touchant près de 50 % des octogénaires. Il est associé à des risques accrus de cancers sanguins, de maladies cardiovasculaires et d’épuisement immunitaire. Une telle hématopoïèse clonale pourrait influencer le vieillissement immunitaire et l’inflammaging, et pourrait être l’un des facteurs limitant l’espérance de vie humaine à environ 120 ans. Une étude récente s’est penchée sur la mutation la plus courante liée à l’hématopoïèse clonale, identifiée dans le gène DNMT3A, qui joue un rôle dans la méthylation de l’ADN. Les chercheurs ont utilisé un modèle murin pour simuler l’environnement de la moelle osseuse âgée, découvrant que cette mutation augmentait l’efficacité mitochondriale des cellules, doublant leur production d’énergie. Cependant, cette surproduction d’énergie les rendait également vulnérables à des traitements comme MitoQ, un antioxydant qui, en accumulant des quantités excessives dans les mitochondries, entraînait la mort de la moitié des cellules mutées tout en améliorant la respiration des cellules saines. Parallèlement, le médicament metformine a également montré un potentiel pour réduire l’avantage compétitif des cellules mutantes en perturbant leur métabolisme. Ces découvertes fournissent des perspectives sur la manière dont les cellules souches sanguines changent avec l’âge et soulignent de nouvelles opportunités d’intervention pour prévenir des conditions liées à l’âge, non seulement dans le sang mais également dans d’autres tissus. Source : https://www.lifespan.io/news/researchers-fight-some-mutations-by-targeting-mitochondria/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-fight-some-mutations-by-targeting-mitochondria

L’Élastine : Rôle Essentiel dans l’Élasticité Tissulaire et la Sénescence Cellulaire

L’élastine est un composant essentiel de la matrice extracellulaire dans les tissus flexibles, nécessaire à l’élasticité des tissus. Avec l’âge, les fibres d’élastine subissent des dommages, modifiant non seulement les propriétés structurelles des tissus, mais affectant également le comportement cellulaire de manière négative. La fragmentation de l’élastine peut conduire à des inflammations et d’autres réponses inadaptées. Les recherches actuelles se concentrent sur la compréhension des rôles de l’élastine à l’intérieur des cellules, notamment son interaction avec les mitochondries et son potentiel à protéger contre la sénescence cellulaire. Une hypothèse émergente est que l’élastine pourrait avoir des fonctions non canoniques, indépendantes des fibres élastiques, et jouer un rôle dans les conditions physiologiques et pathologiques. L’expression de l’élastine diminue avec l’âge, ce qui contribue à la dégradation des fibres élastiques. Cette dégradation engendre la production de peptides dérivés de l’élastine, liés à divers effets néfastes, notamment dans les pathologies associées aux cellules sénescentes. Des études récentes ont démontré le rôle clé de l’élastine dans la régulation de la sénescence cellulaire, suggérant une connexion fonctionnelle entre l’élastine et les processus de vieillissement. Des analyses transcriptomiques ont révélé une enrichissement significatif de gènes associés à la réponse au stress oxydatif après la réduction de l’expression de l’élastine. Il est proposé que la perte d’élastine entraîne des modifications de l’activité de la chaîne de transport des électrons mitochondriaux, favorisant la production de espèces réactives de l’oxygène et l’induction de la sénescence. En somme, bien que l’élastine ait des effets mécaniques sur les tissus, sa degradation et ses produits dérivés pourraient également réguler la sénescence cellulaire par divers mécanismes. Source : https://www.fightaging.org/archives/2025/04/elastin-expression-may-reduce-cellular-senescence-via-interactions-with-mitochondria/

TMEM65 : Une protéine clé pour la régulation du calcium mitochondrial et ses implications thérapeutiques

Une équipe de scientifiques a identifié une protéine de membrane mitochondriale, TMEM65, comme un élément clé dans le maintien de l’équilibre calcique cellulaire, avec des implications potentielles pour le traitement des maladies cardiovasculaires et neurodégénératives. Les résultats, publiés dans la revue Nature Metabolism, montrent comment TMEM65 régule NCLX, l’échangeur sodium-calcium mitochondrial, offrant un nouvel éclairage sur la façon dont les perturbations dans la gestion du calcium contribuent à la pathologie liée à l’âge. Les mitochondries jouent un rôle central dans la production d’énergie et la survie cellulaire, mais leur fonction peut être gravement compromise lorsque le calcium s’accumule à des niveaux pathologiques. NCLX est essentiel pour maintenir l’homéostasie calcique au sein des mitochondries en extrudant les ions calcium en échange de sodium; cependant, peu d’informations étaient disponibles sur la régulation de cet échangeur. Selon l’équipe de recherche, la complexité de la structure de NCLX a historiquement entravé les efforts pour disséquer sa régulation. Dr John W. Elrod, auteur principal et professeur au Lewis Katz School of Medicine de l’Université Temple à Philadelphie, a déclaré que leur étude a adopté une approche différente, utilisant le marquage à la biotine, ce qui leur a permis de suivre les interactions de NCLX avec d’autres protéines dans des cellules intactes. Cette étude éclaire un mécanisme longtemps insaisissable régulant l’efflux calcique mitochondrial, un point de contrôle émergent dans la biologie du vieillissement. En identifiant TMEM65 comme un activateur direct de NCLX, l’étude offre une image plus claire de la façon dont la dysrégulation calcique contribue à la dysfonction liée à l’âge dans le cœur, le cerveau et le muscle squelettique. Les implications pour la géroscience sont claires : la surexpression de TMEM65 protège contre la mort cellulaire induite par le calcium, ouvrant la voie à de nouvelles stratégies thérapeutiques pour éviter l’effondrement mitochondrial dans les tissus vieillissants. Bien que les résultats soient précliniques et axés sur des modèles murins, ils marquent une avancée stratégiquement importante. L’application du marquage de proximité pour cartographier l’interactome de NCLX représente une plateforme puissante pour de futures interventions spécifiques aux tissus. Cependant, une prudence est de mise. La complexité de la dynamique calcique mitochondriale – et leur enchevêtrement avec d’autres caractéristiques du vieillissement – signifie que la modulation de TMEM65 doit être étudiée attentivement dans divers contextes, y compris des modèles humains. À mesure que les chercheurs travaillent à la modulation sûre et ciblée de cette voie, TMEM65 pourrait émerger comme un levier prometteur pour changer la trajectoire du vieillissement à son cœur métabolique. L’équipe a employé la biotinylation de proximité – une technique protéomique avancée qui permet d’identifier les protéines à proximité d’une protéine cible dans des cellules vivantes – pour rechercher des régulateurs de NCLX. Parmi les protéines interagissantes découvertes, TMEM65 s’est démarqué. Bien que précédemment non caractérisé, TMEM65 est intégré dans la membrane mitochondriale et a émergé comme un interacteur direct et fonctionnellement significatif de NCLX. Cette connexion clinique a poussé les chercheurs à mener des investigations plus approfondies; en utilisant des modèles génétiques chez la souris, ils ont démontré qu’une carence en TMEM65 entraînait un surcroît de calcium mitochondrial, une mort cellulaire, une dysfonction neuromusculaire et des signes de vieillissement prématuré. En revanche, la surexpression de TMEM65 était protectrice – préservant l’intégrité mitochondriale et la fonction cellulaire dans des conditions de stress calcique. Ces découvertes suggèrent que le complexe TMEM65-NCLX joue un rôle central dans la protection de la fonction mitochondriale pendant le vieillissement et les maladies. Étant donné que les tissus cardiaques et neuronaux dépendent fortement de l’efficacité mitochondriale, le potentiel thérapeutique de cibler ce complexe pourrait s’étendre à plusieurs conditions associées à l’âge. TMEM65 est considéré comme une cible thérapeutique prometteuse. Comprendre comment augmenter ou modifier son interaction avec NCLX pourrait offrir une option de traitement importante pour les patients touchés par des maladies impliquant une accumulation de calcium pathologique dans les mitochondries. La recherche a une pertinence particulière pour des conditions telles que l’insuffisance cardiaque et la maladie d’Alzheimer, qui sont toutes deux connues pour impliquer une dysfonction mitochondriale et une gestion calcique altérée. Dans des modèles murins, des modifications de l’expression de TMEM65 ont eu un impact sur les marqueurs de la fonction cardiaque et de la neurodégénération, soulignant davantage sa pertinence systémique. Amy J. Goldberg, MD, FACS, doyenne du Lewis Katz School of Medicine, a souligné l’importance plus large des résultats. Cette découverte illustre la science transformative qui se déroule au Lewis Katz School of Medicine. En approfondissant notre compréhension de la fonction mitochondriale, nos chercheurs ouvrent la voie à des traitements innovants qui pourraient avoir un impact profond sur les patients souffrant d’insuffisance cardiaque, de la maladie d’Alzheimer et au-delà. Bien que l’étude offre une base mécanistique claire, d’autres recherches sont nécessaires pour évaluer la sécurité et l’efficacité des thérapies basées sur TMEM65. Des questions demeurent sur la façon dont cette voie se comporte à travers différents tissus et états pathologiques chez les humains, et comment la modulation pharmacologique pourrait être réalisée sans perturber les gradients d’ions essentiels. Néanmoins, l’identification de TMEM65 comme régulateur de l’efflux calcique mitochondrial représente une avancée significative dans l’élucidation de l’architecture moléculaire du vieillissement et des maladies. À mesure que les chercheurs continuent de déchiffrer la chorégraphie cellulaire de la régulation du calcium, cette découverte pourrait aider à informer une nouvelle classe d’interventions ciblant la résilience mitochondriale face au stress lié à l’âge. Source : https://longevity.technology/news/new-mitochondrial-regulator-may-aid-aging-disease-therapies/

Lutte contre le vieillissement : Vers une médecine moderne pour une longévité sans maladies

Fight Aging! est une plateforme dédiée à la publication d’actualités et de commentaires sur l’objectif d’éliminer toutes les maladies liées à l’âge, en contrôlant les mécanismes du vieillissement grâce à la médecine moderne. Ce bulletin hebdomadaire est envoyé à des milliers d’abonnés intéressés par la longévité et les défis associés à l’industrie de la santé des personnes âgées. Au sein de cette initiative, Reason, le fondateur de Fight Aging! et de Repair Biotechnologies, offre des services de conseil stratégique aux investisseurs et aux entrepreneurs, cherchant à naviguer dans l’industrie de la longévité.

Le contenu de cette plateforme explore divers sujets liés à la santé et au vieillissement, notamment les effets de la citrulline, un acide aminé, sur l’inflammation liée à l’âge chez les souris, ainsi que la composition du microbiome intestinal et son impact sur la masse musculaire chez les personnes âgées. Des études montrent que la supplémentation en citrulline peut réduire l’inflammation chronique et améliorer divers aspects du métabolisme, suggérant un potentiel thérapeutique pour contrer le vieillissement.

Une autre étude met en avant l’importance du microbiome intestinal dans la santé musculo-squelettique, établissant des corrélations entre la composition microbienne et des conditions liées à l’âge comme l’ostéoporose et la sarcopénie. Les données indiquent que les changements dans le microbiome sont influencés par le sexe et le génotype mitochondrial de l’hôte.

Des recherches sur la production de mitochondries à des fins de transplantation montrent que la fonctionnalité mitochondriale diminue avec l’âge. Des méthodes de fabrication efficaces de mitochondries pour des applications cliniques sont explorées, avec des résultats prometteurs dans des modèles animaux.

En ce qui concerne la recherche sur la maladie d’Alzheimer, un examen de l’état actuel des thérapies montre que de nombreuses approches ont échoué, soulignant la complexité de la maladie. La revue aborde également des thérapies ciblant la neuro-inflammation et le stress oxydatif, des facteurs communs dans le vieillissement cérébral.

L’importance des protéines de surface comme LAMP1 pour identifier les cellules sénescentes est discutée, tout comme le rôle des ARN non codants dans la détermination de la durée de vie des espèces. Les chercheurs se penchent également sur le réseau de régulation génique dans la conception d’approches pour ralentir le vieillissement, soulignant la nécessité d’une approche systémique plutôt que de se concentrer sur des gènes ou des voies isolés.

Enfin, la recherche sur les produits de glycation avancés et leur contribution à la sarcopénie met en lumière les voies inflammatoires et métaboliques qui conduisent à la perte musculaire liée à l’âge. Les macrophages résidents du cœur sont également étudiés pour leur rôle dans la régulation des maladies cardiovasculaires, ouvrant la voie à de nouvelles thérapies ciblées. Globalement, ces travaux soulignent l’importance d’une compréhension approfondie des mécanismes sous-jacents au vieillissement pour développer des interventions efficaces. Source : https://www.fightaging.org/archives/2025/03/fight-aging-newsletter-march-31st-2025/

La production de mitochondries : avancées et défis dans la thérapie clinique

Les mitochondries sont des organites essentiels, souvent décrites comme les centrales énergétiques de la cellule, car elles produisent l’adénosine triphosphate (ATP), la molécule qui stocke l’énergie chimique nécessaire aux processus biochimiques cellulaires. Cependant, la fonction mitochondriale diminue avec l’âge, en partie à cause des dommages à l’ADN mitochondrial et des changements dans l’expression génique nucléaire qui affectent les protéines nécessaires au bon fonctionnement des mitochondries. Cette défaillance est particulièrement marquante dans les tissus ayant de fortes exigences énergétiques, comme les muscles et le cerveau, et contribue au déclin lié à l’âge. Des études sur des souris ont montré que la transplantation de mitochondries issues de cultures cellulaires peut entraîner des bénéfices durables. Bien que le processus de vieillissement qui réduit la fonction mitochondriale soit progressif, des mitochondries jeunes peuvent améliorer cette fonction pendant une période prolongée. Toutefois, un défi majeur réside dans la production fiable des grandes quantités de mitochondries nécessaires pour une utilisation clinique chez les personnes plus âgées. Plusieurs entreprises, dont Cellvie et Mitrix Bio, travaillent sur cette problématique. Un groupe académique a récemment décrit une approche potentielle, bien que celle-ci soit destinée à une injection locale dans le cartilage. L’objectif de perfusions de mitochondries de remplacement à l’échelle corporelle nécessitera une augmentation de l’échelle de production qui reste à prouver. La transplantation mitochondriale est une thérapie clinique prometteuse, mais son application généralisée est limitée par la disponibilité restreinte de mitochondries saines, avec des doses requises atteignant jusqu’à 10^9 mitochondries par injection et par patient. Cela nécessite des méthodes durables pour produire des mitochondries humaines de haute qualité. Une étude récente a mis en évidence une stratégie de production de mitochondries très efficace en manipulant la mitobiogenèse et en équilibrant les organites dans les cellules souches mésenchymateuses humaines (MSCs). En utilisant un milieu de culture optimisé, les chercheurs ont atteint une augmentation de 854 fois la production de mitochondries par rapport à la culture normale de MSC en 15 jours. Ces mitochondries, non seulement largement produites, ont montré une fonction supérieure tant avant qu’après leur isolement, avec des niveaux de production d’ATP atteignant 5,71 fois ceux des mitochondries normales. Les mécanismes sous-jacents impliquent l’activation de la voie AMPK, favorisant une prolifération accrue et une mitobiogenèse tout en supprimant les activités énergivores. De plus, la fonction in vivo de ces mitochondries a été validée dans un modèle murin d’arthrose, entraînant une régénération significative du cartilage sur une période de 12 semaines. Cette étude a ainsi présenté une nouvelle stratégie pour la fabrication de mitochondries humaines prêtes à l’emploi et a fourni des aperçus sur les mécanismes moléculaires régissant la synthèse des organites. Source : https://www.fightaging.org/archives/2025/03/an-approach-to-manufacture-large-numbers-of-mitochondria-for-transplantation/

Les effets de l’elamipretide sur la santé mitochondriale et la fragilité chez les souris

Dans un article publié dans Aging Cell, le Dr. Vadim Gladyshev et son équipe de chercheurs ont examiné les effets bénéfiques de l’elamipretide sur les voies mitochondriales et la réversibilité de la fragilité chez les souris. Elamipretide est un peptide antioxydant ciblant les mitochondries, qui a fait l’objet de nombreuses études depuis 2004, notamment pour ses effets contre les espèces réactives de l’oxygène (ROS) et son potentiel dans le traitement de maladies comme le syndrome de Barth. Bien que des résultats prometteurs aient été observés dans le traitement des défaillances cardiaques, l’elamipretide n’a pas été largement étudié par rapport aux biomarqueurs du vieillissement. Les chercheurs ont voulu explorer si ce médicament pourrait également améliorer certains indicateurs du vieillissement chez les humains. Dans une expérience, des souris de 5 mois et de 24 mois ont reçu de l’elamipretide pendant 8 semaines, et les résultats ont montré une diminution de l’indice de fragilité chez les souris âgées, ainsi qu’une amélioration de la fonction cardiaque et de la fatigue, surtout chez les femelles. Les voies moléculaires affectées étaient principalement liées à l’organisation mitochondriale, à la production d’ATP et au traitement de l’oxygène. Cependant, malgré ces bénéfices, l’elamipretide n’a pas eu d’impact sur l’élargissement du cœur lié à l’âge ni sur la masse musculaire du gastrocnémien. De plus, aucune différence significative n’a été observée dans l’expression des gènes liés au vieillissement, et les horloges biologiques n’ont pas montré que les souris traitées devenaient biologiquement plus jeunes. Bien que l’elamipretide ait démontré des avantages dans le cadre des mitochondries et de la fonction physique, il n’a pas eu d’effets notables sur les prédicteurs de longévité moléculaire. Cette étude met en lumière la distinction entre les bénéfices fonctionnels et les métriques des biomarqueurs, suggérant que l’elamipretide pourrait ne pas influencer le vieillissement épigénétique, mais pourrait apporter des améliorations significatives pour la santé mitochondriale. Des études cliniques futures détermineront son efficacité contre la fragilité chez les humains. Source : https://www.lifespan.io/news/elamipretide-a-potential-new-drug-reduces-frailty-in-mice/?utm_source=rss&utm_medium=rss&utm_campaign=elamipretide-a-potential-new-drug-reduces-frailty-in-mice

L’impact des molécules oxydatives mitochondriales sur le vieillissement : Étude sur les vers nématodes et leurs implications

De nombreuses études ont démontré qu’une augmentation modeste de la génération de molécules oxydatives par les mitochondries permet de ralentir le vieillissement. Selon la vision dominante, cela relèverait de l’hormèse, où une légère augmentation du stress cellulaire entraîne une augmentation compensatoire de l’activité des processus de maintenance cellulaire. Cela aboutit à un meilleur fonctionnement des cellules et des tissus, à une plus grande résilience aux dommages moléculaires caractéristiques du vieillissement et, par conséquent, à un ralentissement du vieillissement. Fait intéressant, des chercheurs ont montré que chez les vers nématodes, il suffit de stresser les cellules intestinales pour ralentir le vieillissement. Les mouches, quant à elles, semblent également très liées à leur intestin en ce qui concerne le vieillissement et la mortalité, mais il reste incertain de savoir si cette leçon peut être appliquée aux mammifères. Les espèces réactives de l’oxygène (ROS) sont des molécules contenant de l’oxygène très réactives, générées par le métabolisme normal. Bien que les ROS puissent endommager les éléments constitutifs des cellules, elles peuvent également agir comme des signaux intracellulaires favorisant la longévité. Les niveaux de ROS dans la cellule peuvent être régulés par des enzymes antioxydantes, telles que la superoxyde dismutase (SOD), qui convertit le superoxyde en peroxyde d’hydrogène. Nos travaux précédents ont montré que la disruption du gène mitochondrial SOD (sod-2) entraîne une augmentation de la durée de vie, suggérant que l’élévation des niveaux de superoxyde mitochondrial peut promouvoir la longévité. Pour explorer les mécanismes moléculaires impliqués, nous avons déterminé les tissus dans lesquels la disruption de sod-2 est nécessaire pour l’extension de la durée de vie et ceux dans lesquels elle est suffisante. Nous avons constaté que la restauration spécifique de l’expression de SOD-2 dans les vers dépourvus de SOD-2 pouvait partiellement inverser les changements de fertilité, de létalité embryonnaire et de résistance au stress, mais n’inhibait pas les effets de la suppression de sod-2 sur la durée de vie. La réduction de l’expression de sod-2 par interférence ARN spécifiquement dans l’intestin, mais pas dans d’autres tissus, était suffisante pour prolonger la longévité. La réduction spécifique de sod-2 dans l’intestin a également augmenté la résistance au stress thermique tout en diminuant la résistance au stress oxydatif. Ces résultats indiquent que la disruption de sod-2 dans les neurones, l’intestin, la lignée germinale ou les muscles n’est pas nécessaire pour l’extension de la durée de vie, mais que la diminution de l’expression de sod-2 uniquement dans l’intestin prolonge la durée de vie. Ce travail définit les conditions nécessaires à la disruption de la superoxyde dismutase mitochondriale pour augmenter la longévité. Source : https://www.fightaging.org/archives/2025/03/reduced-expression-of-superoxide-dismutase-in-intestinal-tissue-extends-life-in-nematode-worms/

Interrelations entre Mitochondries et Réticulum Endoplasmique : Implications pour la Santé Cellulaire et le Vieillissement

Les mitochondries, souvent décrites comme les centrales énergétiques des cellules, jouent un rôle crucial dans la génération de molécules d’énergie chimique qui alimentent les opérations cellulaires. D’autre part, le réticulum endoplasmique, qui est un réseau de membranes parsemé de ribosomes, est essentiel pour l’assemblage des protéines, leur repliement et leur transport à l’intérieur de la cellule. Bien que ces deux structures soient vues comme ayant des fonctions distinctes, elles interagissent de manière complexe et influencent de nombreux processus cellulaires. Des recherches récentes mettent en lumière les interactions directes entre les mitochondries et le réticulum endoplasmique, soulignant l’importance de ces interactions pour la santé cellulaire, le stress et la régulation de la production d’énergie. Ces interactions se déroulent principalement dans des zones spécialisées appelées membranes associées aux mitochondries (MAM), qui agissent comme des hubs de communication cellulaire, facilitant l’échange rapide et précis de signaux et de molécules. La découverte des MAM a révolutionné notre compréhension de la fonction cellulaire et des maladies. Les altérations de la structure et de la fonction des MAM ont été liées à un large éventail de conditions, y compris les maladies neurodégénératives, les troubles métaboliques et les maladies cardiovasculaires. Un dysfonctionnement des MAM peut nuire à la connectivité structurelle et fonctionnelle entre le réticulum endoplasmique et les mitochondries, entraînant des dysfonctionnements cellulaires significatifs. Par exemple, des études ont démontré que des niveaux élevés de glucose peuvent perturber l’intégrité des MAM, provoquant une fragmentation mitochondriale et une respiration altérée. Bien que certaines modifications liées à l’âge des MAM aient été observées, telles que des changements dans le signalement du calcium et la fonction mitochondriale, l’impact total de ces changements sur la fonction cellulaire et la santé des organismes reste une question ouverte. Comprendre comment les MAM évoluent tout au long de la vie pourrait offrir des perspectives sur le processus de vieillissement et mener à des interventions pour favoriser un vieillissement en bonne santé. Source : https://www.fightaging.org/archives/2025/02/contact-between-mitochondrion-and-endoplasmic-reticulum-in-the-context-of-aging/

L’impact des mitochondries sur le diabète de type 2 : Une étude révélatrice sur la défaillance des cellules β

Une nouvelle étude révèle que les mitochondries endommagées activent la réponse au stress intégrée, ce qui entraîne une perte d’identité et un dysfonctionnement des cellules β pancréatiques, ainsi que des cellules hépatiques et adipeuses. En bloquant cette réponse, des bénéfices ont été observés dans des modèles murins. Le lien entre mitochondries et diabète de type 2 est particulièrement pertinent car la prévalence de cette maladie augmente avec l’âge, suggérant une dysrégulation liée à l’âge. La fonction centrale des cellules β, qui produisent l’insuline nécessaire pour le stockage du glucose et le maintien de l’homéostasie, est compromise par la dysfonction mitochondriale, un problème souvent associé à l’âge. Les chercheurs de l’Université du Michigan ont étudié si la défaillance mitochondriale affectait les cellules β ou si c’était l’inverse. Ils ont constaté que les cellules pancréatiques de donneurs diabétiques présentaient des signes de dysfonction mitochondriale, notamment une réduction de l’ADN mitochondrial et une expression diminuée de gènes mitochondriaux par rapport à des témoins sains. L’incapacité à éliminer les mitochondries défectueuses a été identifiée comme un problème majeur de contrôle de la qualité des mitochondries, ce qui n’était pas observé chez des donneurs simplement obèses. Pour explorer si cette défaillance du contrôle de qualité des mitochondries pouvait induire un échec des cellules β, les chercheurs ont créé des modèles murins avec différents chemins mitochondriaux déficients. Dans tous ces modèles, une réponse au stress intégrée a été déclenchée, affectant l’expression des facteurs de transcription essentiels à la maturation et au fonctionnement des cellules β. Ces cellules ont ainsi perdu leur différenciation et leur capacité à produire suffisamment d’insuline. Les expériences sur d’autres tissus métaboliques, comme le foie et les cellules graisseuses, ont montré des résultats similaires, soulignant que le diabète affecte plusieurs systèmes. Les chercheurs ont également testé un bloqueur de la réponse au stress, l’ISRIB, qui a permis de restaurer les marqueurs d’identité des cellules β. Ces résultats ouvrent la voie à de nouvelles thérapies ciblant la fonction mitochondriale dans le diabète et d’autres troubles métaboliques. Des experts en recherche mitochondriale ont salué l’étude, soulignant son impact potentiellement important sur le développement de traitements basés sur la santé mitochondriale. Source : https://www.lifespan.io/news/mitochondrial-damage-may-drive-type-2-diabetes/?utm_source=rss&utm_medium=rss&utm_campaign=mitochondrial-damage-may-drive-type-2-diabetes

Rôle et régulation des mitochondries dans le vieillissement et les maladies liées à l’âge

Les mitochondries sont souvent considérées comme les centrales énergétiques des cellules, car elles produisent la molécule d’énergie chimique, l’adénosine triphosphate (ATP). Chaque cellule humaine possède des centaines de mitochondries, qui ont évolué à partir de bactéries symbiotiques ayant pris résidence dans les ancêtres des eucaryotes modernes. Ces organites se reproduisent de manière similaire aux bactéries et peuvent fusionner ou se diviser, tout en se débarrassant des mitochondries endommagées grâce à un mécanisme de contrôle de qualité appelé mitophagie. Avec l’âge, la fonction mitochondriale diminue, ce qui est lié à une réduction de la mitophagie et à des changements dans les dynamiques mitochondriales. Bien que ce soit un domaine de recherche actif, il reste encore beaucoup à découvrir sur les raisons pour lesquelles les mitochondries deviennent moins efficaces dans les cellules des tissus âgés. Plusieurs projets se concentrent sur l’amélioration de l’efficacité de la mitophagie afin de ralentir le déclin lié à l’âge de la fonction mitochondriale. Cependant, la manière dont les divers médicaments et suppléments agissent sur la mitophagie n’est souvent comprise que de manière sommaire. Certains médicaments sont découverts par criblage, tandis que d’autres sont développés pour cibler un mécanisme spécifique, mais leur importance n’est comprise qu’ultérieurement. Une autre approche consiste à modifier les dynamiques mitochondriales de manière favorable, en ajustant le rythme de la fission ou de la fusion des mitochondries pour altérer leur taille moyenne et d’autres aspects structurels et fonctionnels. La mitophagie et les dynamiques mitochondriales sont clairement interconnectées, mais une compréhension complète de cette relation reste encore à établir.

Le mitochondrion est une structure à double membrane située dans le cytoplasme, contenant son propre génome et générant la majorité de l’énergie cellulaire par la respiration aérobie. Les mitochondries éliminent naturellement les mutations pathogènes de l’ADN mitochondrial (ADNmt) et réparent leurs architectures dynamiques en contrôlant la division et la fusion des organelles via un signalement dépendant de la guanosine triphosphatase (GTPase). Dans ce processus, la fusion compense les mitochondries partiellement endommagées, tandis que la fission génère de nouvelles mitochondries et dilue la fraction dysfonctionnelle. Des défauts dans la biogenèse dépendante de la GTPase entraînent une phosphorylation oxydative dysfonctionnelle, associée au vieillissement des mammifères et à une défaillance organique. Ainsi, cibler efficacement la qualité mitochondriale pourrait avoir le potentiel de rajeunir la biologie cellulaire et d’atténuer les maladies liées à l’âge.

Les GTPases Mitofusins 1 et 2 (MFN1 et MFN2) sont des cibles importantes dans les maladies mitochondriales, car elles initient la fusion de la membrane mitochondriale. Un signe distinctif du vieillissement myocardique est l’accumulation de mitochondries dysfonctionnelles due aux fonctions non redondantes de MFN1 et MFN2. Pour cibler l’activité de fusion de MFN1, un petit agoniste moléculaire, S89, a été récemment développé. Ce dernier a permis de sauver la fragmentation mitochondriale et le gonflement suite à des lésions dues à l’ischémie/reperfusion en interagissant avec le domaine GTPase de MFN1, retardant ainsi la sénescence dérivée des mutations de l’ADN mitochondrial. Pour moduler l’activité fusogénique de MFN2, un autre petit moléculaire peptidomimétique, MASM7, a été découvert. MASM7 active la conformation pro-tethering de MFN2 et permet la fusion mitochondriale, entraînant une augmentation du potentiel membranaire, de la respiration mitochondriale et de la production subséquente d’ATP, promettant ainsi de réduire les maladies métaboliques dégénératives liées à l’âge.

La régulation de la fission mitochondriale dans le vieillissement humain a également été étudiée. La GTPase Drp1 déclenche de manière unique la fission mitochondriale en constrictant chimiquement la surface mitochondriale pour diviser l’organite, conduisant ainsi à la mitophagie. Une activation incontrôlable de Drp1 entraîne une hyper-fragmentation, l’ouverture soutenue des pores de transition de perméabilité mitochondriale et, finalement, à l’apoptose, un phénomène communément détecté au cours du vieillissement. Le plus efficace des inhibiteurs de Drp1 est Mdivi-1, un dérivé de la quinazolinone, largement rapporté pour atténuer diverses maladies allant de l’insuffisance myocardique à la neurodégénérescence anormale. Plus récemment, une nouvelle molécule covalente nommée MIDI a été découverte. MIDI interagit avec les cystéines de Drp1 et bloque efficacement le recrutement de Drp1, offrant ainsi une nouvelle approche pour établir des inhibiteurs de Drp1 ciblant les maladies liées à l’âge. Source : https://www.fightaging.org/archives/2025/02/towards-control-of-mitochondrial-dynamics/