Étiquette : microglies

Utilisation des microglies génétiquement modifiées pour la délivrance de protéines thérapeutiques dans le cerveau

Dans l’article publié dans la revue *Cell Stem Cell*, des chercheurs ont exploré comment des microglies génétiquement modifiées peuvent être utilisées pour délivrer des protéines thérapeutiques dans le cerveau. Un des défis majeurs dans le traitement des maladies neurologiques est la barrière hématoencéphalique (BHE), qui régule strictement les substances pouvant accéder au cerveau, tout en protégeant ce dernier des contaminants. Cependant, cette barrière représente également un obstacle pour l’administration de médicaments, ce qui complique le traitement de diverses pathologies. Les méthodes traditionnelles pour contourner la BHE, telles que l’injection directe de médicaments ou de cellules souches neurales, présentent des inconvénients, comme le risque de formation de tumeurs ou d’inflammations. Les chercheurs ont donc opté pour les microglies, qui sont des cellules auxiliaires du cerveau, comme vecteurs thérapeutiques. Ces cellules ne forment pas de tumeurs et ont montré une capacité d’engraftement efficace dans des modèles animaux.

Les scientifiques ont développé un modèle murin dépourvu de microglies, accumulant des plaques amyloïdes, pour tester leur approche. Ils ont créé des microglies dérivées de cellules souches pluripotentes induites (iPSCs) qui produisent la néprilysine, une enzyme capable de dégrader les peptides amyloïdes, en réponse à la présence de plaques grâce au récepteur CD9. Les résultats initiaux ont montré que ces microglies répondaient spécifiquement aux plaques sans s’exprimer dans d’autres régions du cerveau. De plus, l’approche de sécrétion de la néprilysine (sNEP), par rapport à la production membranaire (NEP), a permis une distribution améliorée de ce composé thérapeutique.

Les microglies sNEP ont montré une capacité accrue à phagocyter les amyloïdes, consommant ces derniers deux fois plus rapidement que les microglies humaines normales. Dans le modèle murin, ces microglies ont réussi à pénétrer et dégrader les plaques amyloïdes, réduisant ainsi la charge en amyloïde et la taille des plaques dans le cerveau. Parallèlement, les microglies sNEP ont contribué à la préservation des synapses, mesurée par le niveau de la protéine synaptophysine (SYP), dont les niveaux ont été restaurés à ceux d’un groupe témoin. Les souris modèles, semblables aux patients atteints de la maladie d’Alzheimer, ont également montré une réduction de l’astrogliose dans l’hippocampe, bien que cette réduction ne soit pas identique à celle observée dans le groupe témoin.

L’étude a également démontré que d’autres cibles de la néprilysine n’étaient pas affectées dans des régions non ciblées du cerveau, confirmant l’efficacité de la localisation de l’approche. Les chercheurs ont trouvé que l’engraftement généralisé des microglies sNEP n’était pas nécessaire pour obtenir des réductions des espèces amyloïdes dans tout le cerveau ; des injections précises dans l’hippocampe et le cortex suffisaient. De plus, la réduction des amyloïdes était accompagnée d’une diminution significative de l’inflammation, avec des niveaux de protéines inflammatoires, comme les interleukines, similaires à ceux du groupe témoin.

Bien que cette recherche soit à un stade précoce et considérée comme une preuve de principe, les auteurs soulignent que chaque élément de l’étude a été soigneusement contrôlé à un niveau génétique, sans impliquer de souris sauvages. La question de savoir si les microglies iPSC peuvent être adaptées à une utilisation humaine demeure ouverte, mais si cela s’avère possible, cette approche pourrait révolutionner la manière de délivrer des médicaments actuellement inaccessibles pour le traitement des maladies neurologiques. Source : https://www.lifespan.io/news/engineering-microglia-to-deliver-an-anti-alzheimers-drug/?utm_source=rss&utm_medium=rss&utm_campaign=engineering-microglia-to-deliver-an-anti-alzheimers-drug

Rôle du STING dans l’inflammation cérébrale et la maladie d’Alzheimer

Les conditions neurodégénératives sont étroitement liées à l’inflammation chronique associée au vieillissement, ce qui nuit à la structure et à la fonction des tissus. De nombreuses preuves indiquent que la fonctionnalité dysrégulée des cellules immunitaires dans le cerveau contribue de manière significative à la pathologie. Cependant, le signalement inflammatoire est complexe, et il est difficile de trouver des moyens d’intervenir dans les réactions inflammatoires soutenues indésirables sans compromettre les réactions inflammatoires nécessaires à court terme. Dans cette étude, les chercheurs se sont concentrés sur un régulateur de l’inflammation bien étudié, le STING (Stimulateur des gènes de l’interféron), et ont démontré que sa désactivation peut réduire à la fois l’inflammation cérébrale et la progression de la pathologie d’Alzheimer dans un modèle murin de la maladie. Bien que la dysfonction immunitaire soit de plus en plus liée à la progression de la maladie d’Alzheimer (MA), de nombreuses molécules de signalisation immunitaire innées majeures n’ont pas encore été explorées dans la pathogénie de la MA en utilisant des approches de ciblage génétique. Pour examiner le rôle de la molécule clé d’adaptateur immunitaire inné, le STING, dans la MA, les chercheurs ont supprimé STING dans le modèle murin 5xFAD lié à l’amyloïdose de la MA et ont évalué les effets sur la pathologie, la neuroinflammation, l’expression génique et la cognition. L’ablation génétique de STING chez les souris 5xFAD a conduit à un meilleur contrôle des plaques d’amyloïde bêta, à des modifications du statut d’activation des microglies, à une diminution des niveaux de dystrophie neuritique et à une protection contre le déclin cognitif. De plus, la récupération de la maladie neurologique chez les souris 5xFAD déficientes en STING était caractérisée par une réduction de l’expression des gènes de signalisation de l’interféron de type I à la fois dans les microglies et dans les neurones excitateurs. Ces résultats révèlent des rôles critiques pour STING dans la maladie neurologique induite par l’Aβ (amyloïde bêta) et suggèrent que des thérapies ciblant STING pourraient offrir des stratégies prometteuses pour traiter la maladie d’Alzheimer. Source : https://www.fightaging.org/archives/2025/06/a-role-for-sting-mediated-inflammation-in-neurodegenerative-conditions/

Impact de la suppression du STING sur la progression de la maladie d’Alzheimer

Des chercheurs ont démontré que l’interruption d’une partie de la voie de détection de l’ADN cGAS-STING ralentit la progression de la maladie d’Alzheimer dans un modèle murin, apaisant les microglies et protégeant les neurones. L’inflammation joue un rôle central dans la pathogenèse de la maladie d’Alzheimer, qui se caractérise par l’accumulation de plaques extracellulaires de la protéine mal repliée amyloïde bêta (Aβ), ainsi que des oligomères Aβ solubles et insolubles et des enchevêtrements de protéine tau. Le stress amyloïde/tau chronique pourrait endommager l’ADN nucléaire et les mitochondries, provoquant la libération d’ADN dans le cytosol et l’activation d’une voie inflammatoire régulée par la protéine STING. Cette activation exacerbe l’inflammation par les microglies, entraînant des dommages neuronaux. Des recherches antérieures ont montré que l’inhibition de STING avec une petite molécule, H-151, réduisait la charge amyloïde, mais avait également des effets indésirables. Dans cette nouvelle étude, des chercheurs de l’Université de Virginie ont réalisé le premier test génétique propre pour déterminer si la voie cGAS-STING était activement impliquée dans la pathologie amyloïde de l’Alzheimer. Ils ont croisé un modèle murin populaire de la maladie (5xFAD) avec une souche dans laquelle STING était génétiquement supprimé. Les résultats ont montré que les souris déficientes en STING avaient une meilleure performance cognitive lors du test du labyrinthe aquatique de Morris, même avant l’apparition de symptômes clairs de la maladie d’Alzheimer. De plus, les niveaux d’Aβ42, une forme particulièrement nocive, avaient diminué de 30 à 40 % dans les cerveaux déficients en STING, et la charge et la couverture des plaques avaient également baissé dans des régions cérébrales clés. Les microglies activées, responsables d’une réponse immunitaire dommageable, étaient moins actives dans les souris déficientes en STING, couvrant moins de tissu et affichant une morphologie de type ‘repos’ plutôt que ‘attaque’. L’analyse de séquençage d’ARN à un seul noyau a révélé que les microglies déficientes en STING désactivaient certains gènes pro-inflammatoires tout en augmentant des marqueurs de l’homéostasie. Ces résultats suggèrent fortement que la suppression de STING réduit l’activation des microglies et protège les neurones, qui présentaient également des neurites plus saines et moins de stress oxydatif et de mort cellulaire. Les chercheurs ont lié ces découvertes à un mécanisme qui pourrait être pertinent pour d’autres maladies neurodégénératives. Ils ont souligné que la recherche sur le rôle de l’activation immunitaire innée dans le cerveau est encore au début, et que des études plus rigoureuses sont nécessaires pour mieux comprendre les signaux qui maintiennent cette activation. Les résultats ouvrent la voie à de nouvelles cibles thérapeutiques pour traiter la maladie d’Alzheimer et d’autres maladies neurodégénératives. Source : https://www.lifespan.io/news/blunting-an-inflammatory-pathway-slows-alzheimers-in-mice/?utm_source=rss&utm_medium=rss&utm_campaign=blunting-an-inflammatory-pathway-slows-alzheimers-in-mice

Développement d’Horloges Biologiques à Partir de Microglies: Une Nouvelle Approche pour Comprendre le Vieillissement

Les horloges biologiques, qui capturent l’âge biologique d’un individu, sont généralement développées à partir d’analyses de cellules et de tissus en vrac. Cependant, des études récentes montrent l’importance d’obtenir des informations au niveau des cellules uniques pour mieux comprendre le processus de vieillissement. Les microglies, des cellules immunitaires clés du cerveau, montrent des changements fonctionnels adaptatifs pendant le vieillissement et la maladie. Des ensembles de données de séquençage d’ARN à cellule unique (scRNA-seq) ont été générés pour profiler transcriptionnellement les microglies durant le vieillissement et le développement. En utilisant ces ensembles de données chez l’homme et chez la souris, les chercheurs ont développé et comparé des approches computationnelles pour établir des horloges de vieillissement robustes et applicables. Les résultats révèlent que les approches de résumé non supervisées, basées sur la fréquence, qui encodent les distributions de cellules à travers des sous-types moléculaires, parviennent à équilibrer précision, interprétabilité et efficacité computationnelle. Les marqueurs dérivés des microglies ont montré une forte précision dans la prédiction de l’âge chronologique à partir de trois ensembles de données de cellules uniques divers, suggérant que les microglies subissent des changements caractéristiques dans l’expression génique au cours du vieillissement et du développement. Les chercheurs ont également démontré l’applicabilité des horloges basées sur les microglies à des données de séquençage d’ARN en vrac, en tenant compte d’entrées environnementales comme le stress précoce de la vie. Cela indique un potentiel d’utilité large de leurs modèles à travers différentes modalités génomiques et pour tester des hypothèses sur la façon dont les facteurs environnementaux influencent l’âge du cerveau. Ces marqueurs dérivés des cellules uniques peuvent fournir des éclairages sur les déterminants du vieillissement cérébral, favorisant ainsi des interventions qui modulent positivement les trajectoires de santé et de maladie. Source : https://www.fightaging.org/archives/2025/05/building-an-aging-clock-from-microglial-transcriptomics/

L’impact du vieillissement sur le système immunitaire du cerveau et les macrophages dérivés des monocytes

Le système immunitaire du cerveau est distinct de celui du reste du corps, bien que des recherches récentes montrent que des cellules immunitaires du corps peuvent pénétrer dans le cerveau, surtout en vieillissant. Ce phénomène est lié à une défaillance croissante de la barrière hémato-encéphalique, qui contrôle le passage des cellules et des molécules entre le sang et le cerveau. Lorsque cette barrière est compromise, cela peut entraîner une inflammation persistante dans le tissu cérébral. Les microglies, des macrophages cérébraux, sont présentes depuis l’embryogenèse et constituent un compartiment cellulaire autonome. Des macrophages dérivés de monocytes (MoMΦs) s’accumulent dans le cerveau de souris âgées, adoptant une morphologie et des profils d’expression similaires à ceux des microglies. Contrairement à ces dernières, les MoMΦs dérivent des cellules souches hématopoïétiques et sont soumis à des mutations somatiques liées à l’hématopoïèse clonale associée à l’âge. Des études utilisant un modèle chimérique ont démontré que l’expression d’une variante humaine de l’hématopoïèse clonale rendait les MoMg pathogènes et favorisait des déficits moteurs semblables à ceux de troubles parkinsoniens atypiques. En somme, les MoMg se diffusent progressivement dans le cerveau des souris âgées en bonne santé et, lorsqu’ils portent une mutation somatique, peuvent entraîner des pathologies cérébrales. Source : https://www.fightaging.org/archives/2025/05/macrophages-accumulate-in-the-aging-brain-to-promote-dysfunction/

Lutte contre le Vieillissement : Nouvelles Approches et Innovations

Le site Fight Aging! se consacre à la publication de nouvelles et de commentaires relatifs à l’objectif d’éradiquer toutes les maladies liées à l’âge, en apportant les mécanismes du vieillissement sous le contrôle de la médecine moderne. Cette newsletter hebdomadaire est envoyée à des milliers d’abonnés intéressés. Les services de consultation en matière de longévité sont offerts par Reason, le fondateur de Fight Aging! et de Repair Biotechnologies, qui propose des conseils stratégiques aux investisseurs et entrepreneurs intéressés par l’industrie de la longévité et ses complexités. Le champ de recherche sur le vieillissement a vu une transformation significative au cours de la dernière décennie, notamment avec l’émergence de la géroscience, une discipline qui cherche à comprendre les mécanismes biologiques du vieillissement et leur contribution aux maladies liées à l’âge. La géroscience se concentre sur la manipulation des opérations métaboliques pour ralentir le vieillissement et vise à développer des interventions qui peuvent prolonger la qualité de vie et la santé des individus. Les approches de la géroscience sont souvent comparées aux stratégies de réparation des dommages, telles que les SENS (Strategies for Engineered Negligible Senescence), qui cherchent à traiter les causes sous-jacentes du vieillissement. Les recherches actuelles explorent également le rôle des microglies dans les maladies neurodégénératives, la résilience immunitaire, ainsi que l’impact du microbiome intestinal sur l’hématopoïèse clonale. Des thérapies basées sur des médicaments sénolytiques, qui ciblent les cellules sénescentes, présentent un potentiel prometteur pour traiter le vieillissement et la sénescence immunitaire. Par ailleurs, des études indiquent que les produits de glycation avancée dans la peau peuvent être corrélés à une mobilité altérée chez les personnes âgées. En somme, la recherche sur le vieillissement pointe vers des approches innovantes et variées, allant de la biologie des systèmes à la médecine de précision, visant à transformer notre compréhension du vieillissement et des maladies qui y sont associées. Source : https://www.fightaging.org/archives/2025/05/fight-aging-newsletter-may-5th-2025/

Le rôle complexe des microglies dans la maladie d’Alzheimer

Les microglies sont des cellules immunitaires innées résidant dans le cerveau, similaires aux macrophages présents dans le reste du corps. Ces cellules présentent une diversité d’états et peuvent passer d’un état à un autre en fonction des circonstances. Les recherches se concentrent souvent sur l’état inflammatoire M1, capable de chasser et de détruire les pathogènes, en opposition à l’état anti-inflammatoire M2, qui est axé sur la régénération et le maintien des tissus. Cependant, cette dichotomie simplifie à l’excès un continuum d’états plus complexe, dont certains ne s’insèrent pas bien dans ces catégories. La compréhension des microglies est cruciale, notamment dans le contexte des maladies neurodégénératives, où un trop grand nombre de ces cellules devient inflammatoire et dysfonctionnelle en réponse à l’environnement tissulaire vieillissant du cerveau. Certaines microglies sont plus nuisibles que d’autres, et des tentatives pour ajuster broadement leur état peuvent ne pas être aussi bénéfiques qu’espéré. Il est suggéré que davantage d’états de microglies doivent être compris en détail et ciblés de manière distincte.

Dans le cas de la maladie d’Alzheimer (MA), le rôle des microglies reste complexe et dual. Cette revue vise à résumer les avancées récentes concernant le rôle des microglies dans la MA, en tenant compte des mécanismes d’activation de ces cellules, de leur effet sur le nettoyage de l’amyloïde-β (Aβ), de la pathologie tau et de l’impact des variations génétiques sur leurs fonctions. L’état fonctionnel des microglies, principales cellules immunitaires du système nerveux central, est bien plus complexe que la simple polarisation des phénotypes M1 et M2. Les études récentes ont montré que l’état des microglies dans la MA peut comprendre une grande variété de phénotypes différents jouant divers rôles à différentes étapes de la maladie et dans divers microenvironnements.

Au-delà des phénotypes M1 et M2 classiques, des conditions comme les microglies associées à la maladie (DAM) et les microglies réactives (RAM) ont des profils fonctionnels et moléculaires spécifiques dans la pathologie de la MA. Les microglies M1 sont activées par des facteurs pro-inflammatoires, libérant des cytokines pro-inflammatoires qui aggravent les réactions neuroinflammatoires et les lésions neuronales, tout en promouvant l’accumulation d’Aβ et l’hyperphosphorylation de la protéine tau. En revanche, les microglies M2, activées par des facteurs anti-inflammatoires, sécrètent des facteurs neurotrophiques qui favorisent la régénération. De plus, les DAM présentent des motifs d’expression génique distincts associés à la MA et jouent un rôle crucial dans l’élimination de l’Aβ et la modulation de la pathologie tau. Les variantes de TREM2 sont significativement associées à un risque accru de MA, et leur fonction physiologique est de permettre la formation de DAM, facilitant ainsi le nettoyage de l’Aβ. La pathologie tau augmente également de manière significative avec une fonction TREM2 déficiente ou une déficience microgliale, soulignant le rôle essentiel des DAM dans la prévention de la propagation de tau. En somme, les phénotypes des microglies dans la MA vont au-delà des simples M1 et M2, englobant des phénotypes plus évolués tels que les DAM. Chaque état remplit des fonctions correspondantes à différentes étapes de la maladie et dans divers microenvironnements, et des recherches futures devront explorer les mécanismes moléculaires et les différences fonctionnelles entre ces états pour élucider le rôle multifonctionnel des microglies dans la MA. Source : https://www.fightaging.org/archives/2025/04/microglia-in-neurodegenerative-conditions-more-complex-than-simply-a-double-edged-sword/

Microglies humaines modifiées par CRISPR : Une avancée dans le traitement de la maladie d’Alzheimer et d’autres maladies du SNC

Une équipe de chercheurs de l’Université de Californie, Irvine, a développé une méthode innovante pour administrer des protéines thérapeutiques au cerveau en utilisant des microglies humaines modifiées, dérivées de cellules souches pluripotentes induites (iPSCs). Ces cellules modifiées servent de systèmes de livraison de médicaments vivants, capables de détecter l’accumulation de plaques amyloïdes, un signe distinctif de la maladie d’Alzheimer, et de répondre en produisant une enzyme dégradant l’amyloïde, la néprilysine, à proximité de la pathologie. L’un des défis majeurs dans le traitement des maladies neurodégénératives est la barrière hémato-encéphalique (BHE), qui limite l’efficacité de l’administration systémique des médicaments. L’approche développée par le groupe de l’UC Irvine contourne cette barrière en transplantant des microglies déjà présentes dans le système nerveux central (SNC), qui peuvent réagir de manière dynamique aux états pathologiques. Les microglies modifiées utilisent le promoteur CD9, un interrupteur génétique réactif à la pathologie, pour activer l’expression de la néprilysine uniquement à proximité des plaques amyloïdes. Cette étude, publiée dans la revue Cell Stem Cell, démontre le potentiel des microglies humaines modifiées comme une plateforme dynamique de livraison de médicaments à l’échelle du cerveau. En associant des microglies dérivées d’iPSC modifiées par CRISPR avec des promoteurs réactifs à la pathologie, l’équipe a développé un système capable de détecter les plaques amyloïdes et de répondre par une livraison ciblée d’enzymes thérapeutiques, une avancée tant recherchée dans la recherche sur l’Alzheimer. Ce qui est particulièrement intéressant, c’est la nature autorégulatrice de la thérapie, avec une sécrétion de néprilysine proportionnelle à la charge de la maladie, et sa capacité à atténuer non seulement la charge de plaques, mais aussi les signes de neuroinflammation et de perte synaptique, des résultats étroitement liés au déclin cognitif. Ce ciblage précis pourrait être crucial pour éviter les effets secondaires systémiques qui ont entravé les approches biologiques précédentes. Cependant, plusieurs obstacles restent à surmonter avant la traduction clinique : la durabilité de l’effet chez l’humain, la différenciation et l’édition à grande échelle des iPSC, et les voies réglementaires pour les thérapies cellulaires vivantes dans le SNC. De plus, bien que la transplantation autologue – utilisant les propres cellules d’un patient – offre une voie vers l’immunocompatibilité, cela limite plutôt la scalabilité. Ce qui est nécessaire ensuite, c’est une exploration minutieuse de la sécurité, des méthodes de livraison alternatives et peut-être une expansion à d’autres maladies du SNC liées à l’âge, comme la maladie de Parkinson ou la sclérose en plaques, des domaines où cette plateforme polyvalente montre des promesses précoces. En tant que preuve de concept, ce travail élargit considérablement les outils pour cibler la neurodégénérescence dans le cerveau vieillissant, avec des implications significatives pour la durée de santé et la longévité. Pour évaluer l’efficacité, les chercheurs ont utilisé un modèle murin de la maladie d’Alzheimer génétiquement modifié pour permettre l’engraftement de microglies humaines dans tout le cerveau. Ces souris ont montré une expression de néprilysine réactive à la pathologie spécifiquement aux sites des plaques amyloïdes, entraînant des réductions significatives des formes solubles et insolubles de l’amyloïde-bêta, y compris les oligomères neurotoxiques les plus étroitement associés à la dysfonction synaptique. Il est important de noter que le bénéfice thérapeutique ne se limitait pas à la proximité des cellules transplantées. « Remarquablement, nous avons découvert que le placement des microglies dans des zones cérébrales spécifiques pouvait réduire les niveaux d’amyloïde toxique et d’autres neuropathologies associées à la maladie d’Alzheimer dans tout le cerveau », a déclaré Jean Paul Chadarevian, chercheur postdoctoral au laboratoire de Blurton-Jones et premier auteur de l’étude. « Et parce que la protéine thérapeutique n’était produite qu’en réponse aux plaques amyloïdes, cette approche était très ciblée mais largement efficace. » De plus, des analyses ont révélé des effets bénéfiques s’étendant à de multiples pathologies secondaires. Des protéines synaptiques telles que la synaptophysine et le PSD-95 ont été préservées, les marqueurs de neuroinflammation tels que le GFAP et les cytokines pro-inflammatoires ont été réduits, et la chaîne légère de neurofilaments plasmatique – un biomarqueur circulant de dommage neuronal – a diminué de manière significative chez les animaux traités. La conception de l’étude va au-delà de la maladie d’Alzheimer ; les chercheurs ont également testé les microglies modifiées dans des modèles murins de métastases cérébrales et de démyélinisation. Dans ces contextes, les microglies ont adopté des états transcriptionnels distincts en réponse à la pathologie spécifique de la maladie, suggérant que la même plateforme de livraison pourrait être adaptée pour traiter d’autres maladies du SNC. Les cellules modifiées ont montré des preuves de réponse à des signaux associés aux tumeurs ou spécifiques à la démyélinisation, les positionnant comme des véhicules polyvalents pour une livraison précise dans divers environnements neuropathologiques. Comme l’a expliqué Mathew Blurton-Jones, professeur de neurobiologie et de comportement à l’UC Irvine et co-auteur de l’étude : « Livrer des biologiques au cerveau a longtemps été un défi majeur en raison de la barrière hémato-encéphalique. Nous avons développé un système de livraison vivant et programmable qui contourne ce problème en résidant dans le cerveau lui-même et en ne répondant que lorsque et où il est nécessaire. » Dans cette approche, l’ingénierie CRISPR a été utilisée pour intégrer des gènes thérapeutiques en aval de promoteurs natifs, garantissant que des protéines telles que la néprilysine ne soient exprimées que sous les signaux moléculaires de la maladie. Contrairement aux vecteurs viraux ou aux perfusions biologiques continues, qui peuvent provoquer des réponses immunitaires ou des effets hors cible, le système microglial offre le potentiel d’un contrôle spatial et temporel du traitement au sein du SNC. « Ce travail ouvre la voie à une toute nouvelle classe de thérapies cérébrales », a déclaré Robert Spitale, professeur de sciences pharmaceutiques à l’UC Irvine et co-auteur de l’étude. « Au lieu d’utiliser des médicaments synthétiques ou des vecteurs viraux, nous faisons appel aux cellules immunitaires du cerveau comme véhicules de livraison de précision. » Bien que les résultats représentent une avancée significative dans le domaine du traitement des maladies neurodégénératives, leur traduction en utilisation clinique nécessitera encore des travaux supplémentaires. Les complexités immunologiques et logistiques de la thérapie cellulaire autologue, la variabilité potentielle des iPSC dérivées des patients et la sécurité à long terme des cellules modifiées par génome dans le cerveau sont toutes des questions critiques. Néanmoins, la démonstration que les microglies humaines peuvent être exploitées in vivo pour livrer des charges thérapeutiques de manière sélective et durable marque une avancée importante dans le développement de stratégies régénératives pour prolonger la durée de vie en bonne santé du SNC. Les efforts futurs exploreront probablement des applications élargies à d’autres conditions neurodégénératives, des améliorations des méthodes de livraison et la possibilité d’interventions multiplexées. À mesure que le domaine passe de la preuve de concept à l’application pratique, les microglies modifiées pourraient jouer un rôle croissant dans la définition de la prochaine génération de thérapies axées sur la longévité. Source : https://longevity.technology/news/engineered-microglia-offer-precision-delivery-for-brain-therapies/

Le Rôle des Microglies et de Tim-3 dans la Maladie d’Alzheimer

Le système immunitaire du système nerveux central (SNC) diffère de celui du reste du corps, bien qu’il existe une interaction significative entre les deux. Les cellules immunitaires innées, connues sous le nom de microglies, jouent un rôle crucial dans la défense contre les pathogènes, l’élimination des déchets métaboliques et le maintien des connexions synaptiques entre les neurones. Cependant, avec l’âge, les microglies adoptent un comportement de plus en plus inflammatoire, ce qui peut avoir des conséquences néfastes et contribuer à l’apparition et à la progression des maladies neurodégénératives. Les chercheurs s’efforcent de trouver des moyens de modifier le comportement des microglies pour mieux lutter contre ces conditions. Parmi les cibles thérapeutiques émergentes, la molécule Tim-3 a récemment été identifiée comme un élément clé dans la recherche sur la maladie d’Alzheimer. Tim-3, qui est un ‘immune checkpoint’, a été lié à la maladie d’Alzheimer à début tardif, mais son rôle dans le cerveau n’était pas bien compris jusqu’à présent. Des études précliniques ont révélé que Tim-3 est présent uniquement dans les microglies du SNC, où il aide à maintenir un état de santé cellulaire. Cependant, il peut également empêcher le cerveau d’éliminer efficacement les plaques amyloïdes toxiques qui s’accumulent dans la maladie d’Alzheimer. Les chercheurs ont constaté que la suppression de Tim-3 favorisait l’élimination des plaques en incitant les microglies à ingérer davantage de ces plaques, tout en produisant des protéines anti-inflammatoires pour réduire la neuroinflammation et limiter les troubles cognitifs. Actuellement, plusieurs essais cliniques testent des thérapies ciblant Tim-3 pour traiter des cancers résistants aux immunothérapies. L’étude met en lumière le potentiel thérapeutique d’adapter ces traitements pour améliorer l’élimination des plaques et atténuer la neurodégénérescence dans la maladie d’Alzheimer. Source : https://www.fightaging.org/archives/2025/04/tim-3-inhibition-in-microglia-encourages-amyloid-clearance-in-the-brain/

L’irisine : Un espoir pour lutter contre la maladie de Parkinson grâce à l’exercice

La maladie de Parkinson est une affection neurodégénérative caractérisée par la présence de corps de Lewy et la perte de neurones dopaminergiques. Des recherches récentes ont établi un lien entre la dégénérescence neuronale et l’inflammation neurogène, notamment l’augmentation de l’activité des microglies et des composés inflammatoires dans le cerveau. L’accumulation de l’α-synucléine dans l’hippocampe joue un rôle clé dans cette inflammation, et réduire cette neuroinflammation pourrait ralentir le déclin des symptômes associés à la maladie de Parkinson. Des études antérieures ont montré que l’exercice physique diminue naturellement l’inflammation, y compris dans le cerveau, et peut être bénéfique pour atténuer les symptômes de Parkinson. En effet, des expériences ont démontré que le plasma dérivé de rongeurs ayant fait de l’exercice et injecté à des rongeurs souffrant de symptômes de Parkinson avait des effets positifs. Cependant, ces études n’avaient pas totalement élucidé les mécanismes biochimiques impliqués, ce qui a conduit les chercheurs à se concentrer sur l’irisine, un composé lié à l’exercice qui semble avoir des effets bénéfiques sur l’inflammation neurogène. Dans leurs expériences, les chercheurs ont utilisé des souris traitées avec MPTP, un composé induisant des symptômes similaires à ceux de Parkinson, et ont observé une augmentation de la pathologie de Parkinson et une diminution de la neurogenèse. Cependant, l’exercice a partiellement atténué ces effets négatifs. Après 10 semaines d’exercice sur tapis roulant, la neurogenèse était largement restaurée, et les performances des souris sur le test de la piscine de Morris s’étaient améliorées. Fait intéressant, l’exercice a également diminué le niveau d’α-synucléine dans le cerveau. De plus, l’exercice a réduit la mort cellulaire par apoptose dans l’hippocampe, et des marqueurs clés d’inflammation ont également été modifiés. Les chercheurs ont ensuite étudié l’irisine dans des cultures cellulaires, montrant qu’elle pouvait réduire l’expression de NLRP3, une protéine inflammatoire augmentée dans la maladie de Parkinson. Des expériences sur des rats ayant couru sur un tapis roulant ont montré que le sérum de ces animaux réduisait les marqueurs inflammatoires lorsqu’il était exposé à l’α-synucléine, grâce à l’augmentation d’irisine. L’administration directe d’irisine a également reproduit de nombreux avantages de l’exercice, y compris la réduction des marqueurs d’inflammation et d’apoptose, ainsi qu’une amélioration de la neurogenèse et des performances. Ces découvertes sont encourageantes pour les personnes atteintes de la maladie de Parkinson. Étant donné les effets délétères de cette maladie sur la fonction motrice, elle empêche souvent l’exercice comme traitement. Ainsi, un mimétique de l’exercice, comme l’irisine semble l’être, pourrait constituer une partie clé des traitements futurs. Cependant, ces résultats doivent encore être validés par des essais cliniques sur des êtres humains pour confirmer l’efficacité de l’irisine dans le traitement de la maladie de Parkinson. Source : https://www.lifespan.io/news/how-exercise-may-fight-parkinsons-disease/?utm_source=rss&utm_medium=rss&utm_campaign=how-exercise-may-fight-parkinsons-disease