Étiquette : microglies

Le rôle des microglies et du métabolisme du cholestérol dans la maladie d’Alzheimer

Les chercheurs portant leur attention sur les conditions neurodégénératives ont récemment mis en avant le rôle crucial des microglies, des cellules immunitaires innées similaires aux macrophages, dans le fonctionnement du cerveau. Ces cellules ont une gamme de tâches variées, allant de la défense contre les pathogènes à la destruction des cellules défaillantes, en passant par la coordination de l’entretien et de la régénération des tissus, ainsi que l’assistance à la modification des connexions synaptiques entre les neurones. Cependant, avec l’âge, certaines microglies deviennent hyperactives et inflammatoires, tandis que d’autres entrent dans un état de sénescence, exacerbant ces comportements et perturbant le fonctionnement cérébral. Parallèlement, des recherches suggèrent que le métabolisme du cholestérol dans le cerveau devient dysfonctionnel avec l’âge, car le cerveau est séparé du reste du corps par la barrière hémato-encéphalique, et les deux parties gèrent séparément le transport et la fabrication du cholestérol. Bien que chaque cellule ait besoin de cholestérol, un excès est toxique. Le cholestérol est principalement fabriqué par les astrocytes, mais un déséquilibre entre la production et le recyclage peut avoir des conséquences néfastes. Des observations indiquent que la microglie âgée accumule des gouttelettes lipidiques résultant d’un excès de cholestérol, et le gène APOE, impliqué dans le transport du cholestérol, a été associé à un risque accru de maladie d’Alzheimer, notamment la variante APOEε4 qui rend les microglies plus inflammatoires. Une étude récente a analysé des données de séquençage d’ARN à cellule unique pour explorer les mécanismes de sénescence cellulaire dans le cerveau, en mettant en avant le rôle central des microglies dans les phénotypes de sénescence associés à la maladie d’Alzheimer. Les analyses ont révélé que les microglies sénescentes présentent des processus liés au cholestérol altérés et un métabolisme du cholestérol dysfonctionnel, avec trois modules d’expression génique représentant les signatures de sénescence liées au cholestérol. Cette recherche fournit des preuves humaines que le métabolisme dysfonctionnel du cholestérol dans les microglies contribue à la sénescence cellulaire dans la maladie d’Alzheimer et suggère que cibler les voies du cholestérol dans ces cellules pourrait être une stratégie prometteuse pour atténuer la progression de la maladie. Source : https://www.fightaging.org/archives/2025/09/microglial-dysfunction-and-cholesterol-metabolism-dysregulation-in-the-aging-brain/

Le Rôle des Cellules Gliales dans le Vieillissement Cérébral et l’Importance du Cervelet

Les cellules gliales constituent un groupe essentiel de cellules de soutien dans le cerveau, englobant tout ce qui n’est pas un neurone. Cela inclut des cellules immunitaires comme les microglies, les oligodendrocytes qui fabriquent la myéline pour les axones, et une population importante d’astrocytes. Chaque groupe de cellules gliales remplit des fonctions distinctes, mais toutes deviennent dysfonctionnelles avec l’âge. Un consensus émerge sur le fait que la dysfonction des cellules gliales joue un rôle significatif dans le vieillissement et les conditions neurodégénératives, chaque population contribuant à la perte de la fonction cognitive de diverses manières. Ce texte se concentre sur le cervelet, une région du cerveau traditionnellement associée au contrôle moteur, mais dont le rôle s’étend à de nombreux processus cognitifs et intégratifs. Bien que la recherche sur le vieillissement ait principalement porté sur d’autres régions du système nerveux central comme le néocortex et l’hippocampe, des preuves croissantes de la connectomique et de l’imagerie fonctionnelle soulignent l’importance du cervelet. Cette revue synthétise les preuves actuelles concernant le vieillissement des cellules gliales dans le système nerveux central, en mettant en évidence comment les circuits cérébelleux suivent des trajectoires distinctes en termes de remodelage cellulaire, de reprogrammation transcriptionnelle et de vulnérabilité structurelle. Des découvertes récentes montrent que les astrocytes et les microglies cérébelleux présentent des signatures spécifiques liées au vieillissement, contrairement à leurs homologues corticaux, notamment une réactivité modérée, une réponse immunitaire sélective et une réorganisation spatiale. La matière blanche cérébelleuse subit des altérations structurelles, suggérant que les cellules oligodendrogliales peuvent connaître des modifications spécifiques à la région, en particulier au sein des faisceaux de matière blanche, bien que ces aspects demeurent peu explorés. Malgré le remodelage glial, le cervelet maintient une intégrité structurelle et fonctionnelle notable au cours du vieillissement. Cette résilience pourrait être le résultat de la capacité du cervelet à conserver une adaptabilité synaptique et un équilibre homéostatique, soutenu par son architecture hautement organisée et compartimentée. Une meilleure compréhension des dynamiques des cellules gliales cérébelleuses en vieillissant pourrait fournir des aperçus nouveaux sur les mécanismes de maintien du cerveau et identifier des biomarqueurs potentiels pour un vieillissement cérébral sain. Source : https://www.fightaging.org/archives/2025/09/reviewing-what-is-known-of-glial-cell-aging-in-the-cerebellum/

L’Environnement Local du Cerveau comme Facteur Clé du Vieillissement des Microglies

Une nouvelle étude préliminaire de Calico a révélé que l’environnement local du cerveau est le principal moteur du vieillissement des microglies. Après avoir été transplantées dans des cerveaux âgés, des cellules jeunes ont adopté des caractéristiques de vieillesse, mais leur susceptibilité à ces signaux pouvait être désactivée. Le vieillissement cérébral est un facteur limitant majeur dans le domaine de la longévité, car, bien que le corps puisse être rajeuni par le remplacement de ses différentes parties et organes, le cerveau, qui contient nos souvenirs et notre personnalité, ne peut pas simplement être remplacé. Cela rend le rajeunissement du cerveau essentiel pour parvenir à une extension significative de la durée de vie. Des études ont montré que les cellules de soutien, appelées glies, vieillissent plus rapidement que les neurones, les microglies, cellules immunitaires spécialisées du cerveau, étant particulièrement affectées par le vieillissement. Ces microglies âgées développent souvent un phénotype pro-inflammatoire qui est soupçonné de conduire à la neurodégénérescence. Une question cruciale est de savoir si le vieillissement des microglies est dû à un processus intrinsèque préprogrammé ou s’il est induit par des signaux provenant de leur environnement détérioré. L’étude de Calico visait à tester ces effets intrinsèques et environnementaux en remplaçant les microglies par des cellules myéloïdes de donneurs dans des cerveaux jeunes et âgés. Les chercheurs ont développé une méthode pour remplacer les microglies natives chez des souris par de nouvelles cellules myéloïdes dérivées de la moelle osseuse de souris donneuses. Ils ont d’abord produit un pool de cellules souches hématopoïétiques (CSH) provenant de jeunes souris femelles, génétiquement modifiées pour produire deux protéines supplémentaires. La niche de moelle osseuse des souris receveuses âgées a ensuite été épuisée pour faire de la place aux cellules souches donneuses. Les chercheurs ont également dû éliminer les microglies âgées en ajoutant un médicament inhibant CSF1R, une protéine cruciale pour la survie des microglies. Une fois que les microglies originales ont disparu, les cellules myéloïdes dérivées des donneurs ont pu entrer dans le cerveau, où elles se sont installées et sont devenues des cellules semblables à des microglies. Lors de l’examen de ce qui se passe lorsque des cellules jeunes et saines sont placées dans un cerveau âgé, il est apparu que l’environnement joue un rôle dominant. Les cellules jeunes dans des cerveaux âgés ont rapidement commencé à adopter des caractéristiques de vieillesse, notamment dans le cervelet, en adoptant des schémas d’expression génique âgés. Les chercheurs ont défini une « signature de vieillissement accéléré du cervelet » (CAAS), une empreinte moléculaire de 403 gènes, et ont observé que les cellules jeunes dans le cerveau âgé acquéraient cette signature. Pour confirmer que l’environnement cérébral pouvait non seulement vieillir des cellules jeunes mais aussi rajeunir des cellules âgées, les chercheurs ont effectué une transplantation inverse. Lorsque des cellules provenant de souris âgées ont été transplantées dans des cerveaux jeunes, elles ont montré un rajeunissement transcriptionnel et morphologique. En comparant les profils d’expression génique des microglies provenant de cerveaux jeunes et âgés, les chercheurs ont constaté un schéma moléculaire puissant, une réponse pro-inflammatoire accrue des interférons. Pour voir si l’atténuation de la réponse aux interférons pouvait empêcher le vieillissement des microglies, l’équipe a décidé de supprimer Stat1, un régulateur maître bien connu de cette voie de signalisation. En utilisant leur plateforme d’édition Cas9, les chercheurs ont produit des cellules jeunes déficientes en Stat1 et ont répété leur protocole de repopulation. Contrairement à l’expérience précédente, ces cellules étaient largement protégées du vieillissement rapide observé précédemment : elles ont résisté aux signaux de vieillissement de l’environnement et n’ont pas activé la signature CAAS. Les chercheurs ont voulu savoir quel type de cellules produisait ces signaux de vieillissement. Pour la réponse aux interférons, il s’est avéré que les coupables étaient des cellules tueuses naturelles (NK) plutôt que des cellules T, qui étaient initialement suspectées. L’épuisement des cellules NK chez des souris âgées a atténué la réponse aux interférons liée à l’âge dans les microglies. Les résultats sont clairs : l’environnement local du cerveau stimule le vieillissement des microglies, avec les cellules NK agissant comme un déclencheur en amont inattendu. Crucialement, cela peut être bloqué, car la délétion de Stat1 protège les cellules jeunes des signaux pro-vieillissants. Cela remet en question les idées simples de « rajeunissement par remplacement ». Ce n’est que le début, et les chercheurs utilisent maintenant cette plateforme pour cartographier d’autres axes de signalisation pro-vieillissants, espérant que leur nouveau système de CSH évolutif sera une ressource puissante pour le domaine, permettant des dépistages in vivo futurs pour trouver de nouvelles cibles pour la neuro-inflammation. Source : https://www.lifespan.io/news/microglial-aging-is-determined-by-their-environment/?utm_source=rss&utm_medium=rss&utm_campaign=microglial-aging-is-determined-by-their-environment

Les cellules immunitaires induites : une nouvelle stratégie pour lutter contre le déclin cognitif lié à l’âge et à la maladie d’Alzheimer

Les cellules immunitaires innées, notamment les monocytes et les macrophages, jouent un rôle crucial dans le fonctionnement des tissus corporels. Avec l’âge, ces cellules peuvent devenir dysfonctionnelles, notamment en devenant plus inflammatoires. Contrairement à d’autres parties du corps, le cerveau possède sa propre population de cellules similaires, appelées microglies. Il est donc intéressant de noter que l’administration de monocytes et de macrophages jeunes et fonctionnels dans la circulation peut améliorer le fonctionnement du cerveau vieillissant. Bien que de nombreux mécanismes indirects puissent être en jeu, il est pertinent de se concentrer sur les effets de l’inflammation. Des études récentes montrent que le plasma de jeunes animaux améliore la fonction cognitive chez des animaux âgés, mais sa disponibilité est limitée. Pour pallier ce problème, des chercheurs ont généré un sous-type de cellules sanguines jeunes à partir de cellules souches pluripotentes induites, et ont évalué leurs effets sur le déclin cognitif et neural associé à l’âge et à la maladie d’Alzheimer. Dans des souris âgées, la livraison intraveineuse de phagocytes mononucléés induits (iMPs) améliore les performances dans des tâches cognitives dépendant de l’hippocampe, favorise la santé neuronale et réduit la neuroinflammation. Les analyses de séquençage d’ARN à noyau unique de l’hippocampe montrent que les iMPs améliorent la santé d’une sous-population de cellules de la moelle qui jouent un rôle crucial dans les tâches cognitives où les iMPs améliorent les performances. De plus, les iMPs semblent inverser l’augmentation des niveaux d’amyloïdes sériques associée à l’âge. Ces résultats ont été confirmés in vitro, où le milieu conditionné par les iMPs a montré une protection des microglies humaines contre la mort cellulaire induite par les amyloïdes sériques. Finalement, les iMPs ont amélioré la cognition chez les souris jeunes et âgées, soulignant leur potentiel tant comme stratégie préventive que d’intervention. Ensemble, ces découvertes suggèrent que les iMPs pourraient constituer une nouvelle stratégie thérapeutique ciblant le déclin cognitif lié à l’âge et à la maladie d’Alzheimer. Source : https://www.fightaging.org/archives/2025/09/treating-neurodegeneration-with-monocytes-and-macrophages-derived-from-induced-pluripotent-stem-cells/

Impact de la Restriction Calorique sur le Cerveau des Mammifères et le Vieillissement

La restriction calorique (RC) est une pratique consistant à réduire l’apport calorique de 40 % par rapport à un apport ad libitum tout en maintenant un niveau adéquat de micronutriments. Cette approche inclut également diverses formes de jeûne intermittent, centrées sur le temps passé en état de faim. Des études sur différentes espèces animales ont démontré que la restriction calorique ralentit le vieillissement et prolonge l’espérance de vie, en modifiant positivement le métabolisme cellulaire. Les études humaines sur une restriction calorique légère à long terme ont reproduit ces changements à court terme, mais il n’existe pas encore de données sur son impact sur l’espérance de vie. Les chercheurs estiment que la RC pourrait entraîner des changements moindres chez les espèces à longue durée de vie, comme les humains, par rapport aux espèces à courte durée de vie, comme les souris. Cette hypothèse repose sur le fait que la réponse à la restriction calorique a évolué en réponse à la famine saisonnière, permettant aux espèces à courte durée de vie d’augmenter leurs chances de reproduction pendant les périodes de prospérité. De plus, il est possible que les changements bénéfiques induits par la RC chez les espèces à courte durée de vie soient en partie responsables de leur longévité. Un article récent se concentre sur les effets de la restriction calorique dans le cerveau des mammifères, en utilisant des techniques avancées de transcriptomique unicellulaire et spatiale pour mesurer les changements d’expression génique au sein de populations cellulaires hétérogènes. L’âge entraîne un déclin fonctionnel du cerveau, rendant ce dernier plus vulnérable aux troubles cognitifs et neurodégénératifs. La RC est particulièrement remarquable pour sa capacité à prolonger la durée de vie à travers différentes espèces, tout en améliorant la fonction cérébrale, l’apprentissage, la mémoire et la résistance aux maladies neurodégénératives. Cependant, les méthodes traditionnelles pour étudier la transcriptomique n’offrent pas une vue d’ensemble sur les effets de la RC sur les populations cellulaires cérébrales. Grâce à des progrès récents, les chercheurs ont développé de nouvelles approches pour étudier la réponse de plus de 500 000 cellules du cerveau de souris sous RC, révélant que la RC retarde l’expansion des populations cellulaires inflammatoires, préserve les cellules progénitrices neuronales, et réduit l’expression de gènes associés au vieillissement. Ces résultats fournissent une carte spatiotemporelle détaillant les mécanismes cellulaires et moléculaires sous-jacents aux effets neuroprotecteurs de la restriction calorique. Source : https://www.fightaging.org/archives/2025/09/investigating-the-slowing-of-brain-aging-via-calorie-restriction/

L’impact de l’agrégation protéique sur le vieillissement cérébral : Étude sur HAPLN2

Un petit nombre de protéines dans le corps et le cerveau sont connues pour devenir mal repliées ou altérées de manière à provoquer la formation d’agrégats protéiques étendus et nuisibles. Les conditions neurodégénératives, en particulier, sont fortement liées aux agrégats de protéines spécifiques, tels que l’amyloïde-β, la tau et l’α-synucléine. Les chercheurs continuent de découvrir de nouvelles protéines capables de produire des agrégats qui contribuent de manière significative aux formes de maladies liées à l’âge. Par exemple, l’agrégation de TDP-43 est une découverte relativement récente qui provoque une forme prédominante de démence. En outre, des recherches montrent que de nombreuses autres protéines, potentiellement des centaines, peuvent produire des agrégats en raison de dysfonctionnements dans les mécanismes de contrôle de la qualité des protéines. Il est donc probable que notre connaissance actuelle soit incomplète concernant les protéines et les agrégats importants dans les maladies liées à l’âge.

L’agrégation des protéines est un marqueur des maladies neurodégénératives et est également observée dans les cerveaux des individus âgés sans ces conditions, ce qui suggère que le vieillissement favorise l’accumulation des agrégats protéiques. Cependant, la compréhension globale des agrégats protéiques dépendants de l’âge impliqués dans le vieillissement cérébral reste floue. Dans cette étude, les chercheurs ont étudié les protéines qui deviennent sarkosyl-insolubles avec l’âge et ont identifié la protéine de liaison à l’hyaluronane et aux protéoglycanes 2 (HAPLN2), une protéine liant l’acide hyaluronique de la matrice extracellulaire aux nœuds de Ranvier, comme une protéine agrégante dépendante de l’âge dans les cerveaux de souris.

Des niveaux élevés d’acide hyaluronique et une fonction microgliale altérée ont réduit l’élimination de HAPLN2, entraînant son accumulation. Les oligomères de HAPLN2 ont induit des réponses inflammatoires microgliales à la fois in vitro et in vivo. En outre, l’agrégation de HAPLN2 associée à l’âge a également été observée dans le cervelet humain. Ces résultats suggèrent que l’agrégation de HAPLN2 résulte du déclin lié à l’âge de l’homéostasie cérébrale et peut aggraver l’environnement cérébral en activant les microglies. Cette étude fournit de nouvelles perspectives sur les mécanismes sous-jacents au vieillissement du cervelet et met en lumière le rôle de HAPLN2 dans les changements associés à l’âge dans le cerveau. Source : https://www.fightaging.org/archives/2025/08/hapln2-forms-aggregates-to-provoke-microglial-inflammation-in-the-aging-brain/

Le rôle des microglies et du récepteur ADGRG1 dans la lutte contre la maladie d’Alzheimer

Les récepteurs spécifiques présents à la surface des cellules immunitaires jouent un rôle crucial dans l’ingestion et l’élimination des déchets métaboliques. Ces récepteurs, qui sont des protéines produites par les mécanismes habituels de l’expression génique, voient leur quantité varier selon l’âge et les circonstances, en raison des régulations épigénétiques de l’expression des gènes. Cette variation influence la capacité des cellules immunitaires à agir contre des cibles spécifiques. Des chercheurs ont étudié la capacité des cellules immunitaires innées, appelées microglies, à éliminer l’excès d’amyloïde-β dans le cerveau, constatant que cette capacité dépendait de l’expression d’un récepteur nommé ADGRG1. Dans les cas graves de la maladie d’Alzheimer, les microglies présentent une insuffisance d’ADGRG1, ce qui les empêche de nettoyer efficacement les plaques amyloïdes. Bien que la question de savoir si cette insuffisance est une cause contribuant à la maladie d’Alzheimer ou un effet secondaire reste à prouver, il existe déjà de nombreuses données suggérant que la dysfonction des microglies est un facteur important dans les maladies neurodégénératives. En effet, dans la maladie d’Alzheimer, les protéines telles que l’amyloïde bêta s’agglutinent en plaques qui endommagent le cerveau. Cependant, chez certaines personnes, les microglies sont capables de décomposer ces protéines avant qu’elles ne causent des dommages, entraînant ainsi des symptômes plus légers. Les chercheurs ont identifié une protéine, l’ADGRG1, qui permet aux microglies de digérer ces plaques. L’élimination de cette protéine chez des souris a conduit à une accumulation rapide des plaques, à une neurodégénérescence et à des problèmes de mémoire et d’apprentissage. Lors d’une réanalyse d’une étude antérieure sur l’expression génique dans le cerveau humain, il a été constaté que les individus décédés avec des symptômes légers d’Alzheimer avaient des microglies riches en récepteurs ADGRG1, indiquant que ces microglies avaient bien fonctionné pour contrôler la maladie. En revanche, ceux qui sont morts de la maladie d’Alzheimer sévère avaient peu de récepteurs, ce qui favorisait la prolifération des plaques. L’ADGRG1 appartient à une grande famille de récepteurs, les récepteurs couplés aux protéines G, souvent ciblés dans le développement de médicaments, ce qui laisse présager une rapide translation de cette découverte en nouvelles thérapies. Source : https://www.fightaging.org/archives/2025/08/adgrg1-in-microglia-facilitates-clearance-of-amyloid-in-the-aging-brain/

OncoC4 : Une nouvelle approche immunothérapeutique contre la maladie d’Alzheimer

Lors de la conférence internationale de l’Alzheimer Association (AAIC) à Toronto, une annonce marquante a été faite par OncoC4, une entreprise biopharmaceutique de Rockville, Maryland, principalement axée sur le cancer et les conditions liées à l’immunité. Cette société a présenté des données suggérant que son anticorps ONC-841, initialement développé pour l’oncologie, pourrait représenter une ‘nouvelle classe’ de traitement pour la maladie d’Alzheimer. OnC-841 est un inhibiteur de point de contrôle immunitaire ciblant la protéine SIGLEC 10, qui joue un rôle crucial dans la régulation immunitaire. Les recherches précliniques ont montré que l’inhibition de l’activité de SIGLEC 10 dans le cerveau pourrait restaurer l’état fonctionnel des microglies, les cellules immunitaires résidentes du cerveau, qui sont essentielles pour éliminer les agrégats protéiques tels que les plaques amyloïdes et les enchevêtrements de tau, caractéristiques de la maladie d’Alzheimer. Dans des modèles murins de la maladie d’Alzheimer, le traitement par ONC-841 a amélioré la migration des microglies et leur capacité à éliminer les plaques amyloïdes, tout en réduisant les niveaux de tau phosphorylé dans le plasma et en atténuant les anomalies structurelles et fonctionnelles liées à la progression de la maladie. Les souris traitées ont également montré des améliorations mesurables en matière de mémoire et d’apprentissage, suggérant que la modulation immunitaire ciblant SIGLEC 10 pourrait influencer à la fois les résultats pathologiques et cognitifs. De plus, une autre recherche a révélé que des souris transgéniques exprimant le gène humain SIGLEC 10 spécifiquement dans les microglies développaient des plaques amyloïdes, même en l’absence de mutations traditionnellement associées à la maladie d’Alzheimer précoce. Cela suggère que l’expression de SIGLEC 10 pourrait contribuer directement à la pathogénie de la maladie d’Alzheimer tardive, une forme de la maladie généralement non liée à des mutations génétiques connues. Selon le cofondateur d’OncoC4, le Dr Yang Liu, la voie SIGLEC 10-CD24, un point de contrôle immunitaire inné, est impliquée dans l’évasion immunitaire des cancers, ce qui a été exploré pour le traitement du cancer. Ces résultats précliniques convaincants soulignent le potentiel d’ONC-841 en tant qu’immunothérapie de première classe pour la neurodégénérescence. ONC-841 est déjà en essais cliniques pour les tumeurs solides en raison de sa capacité à inverser la suppression immunitaire exploitée par les cancers, et il semble que cette voie soit également pertinente dans le cerveau, où la dysrégulation microgliale contribue à la neurodégénérescence. OncoC4 prévoit de commencer des essais cliniques de l’ONC-841 chez des patients atteints de la maladie d’Alzheimer à un stade précoce en 2025. Source : https://longevity.technology/news/cancer-focused-biotech-makes-alzheimers-breakthrough/

Impact des Microglies Sénescentes sur la Dysfonction Cognitive Induite par la Neuroinflammation

Les neurones du cerveau forment des réseaux complexes et dynamiques de connexions synaptiques, qui jouent un rôle crucial dans les processus de mémoire et d’apprentissage. Les synapses sont continuellement créées et détruites, et les populations de cellules de soutien dans le cerveau, telles que les microglies, facilitent ce processus. Les microglies sont des cellules immunitaires innées du système nerveux central, similaires aux macrophages dans le reste du corps, et leur rôle inclut la destruction des synapses indésirables. Au cours des dernières années, les chercheurs ont mis en lumière le dysfonctionnement des microglies comme un facteur contribuant aux pathologies des conditions neurodégénératives inflammatoires. Ces cellules tendent à devenir plus inflammatoires, modifient leur comportement et une fraction d’entre elles acquiert un état de sénescence, où elles cessent de se répliquer et produisent un mélange puissant de signaux pro-inflammatoires et pro-croissance. Dans un article d’accès libre récent, les chercheurs explorent comment les microglies sénescentes pourraient contribuer aux pathologies connues observées dans les conditions neurodégénératives inflammatoires. Des expériences sur des souris montrent que la présence de microglies sénescentes accélère la destruction des synapses. Bien qu’une certaine destruction soit nécessaire pour ajuster les réseaux neuronaux, un excès de destruction peut entraîner des dysfonctionnements cognitifs, caractéristiques de l’inflammation cérébrale. Il est possible d’éliminer globalement les microglies avec des inhibiteurs de CSF1R ou de cibler spécifiquement les cellules sénescentes dans le cerveau avec des sénolytiques, comme la combinaison de dasatinib et de quercétine, qui peuvent traverser la barrière hémato-encéphalique. Bien que cette approche thérapeutique soit prometteuse, les avancées vers une utilisation clinique dans ce contexte progressent lentement. Dans des études utilisant un modèle murin de neuroinflammation induite par des lipopolysaccharides, les chercheurs ont évalué les fonctions cognitives et identifié les microglies sénescentes avec une haute expression de p16INK4a. Ils ont observé que ces microglies dans la région CA1 de l’hippocampe présentaient des signatures d’hyperphagocytose et de sénescence. Le traitement avec un sénolytique a atténué la production de phénotypes sécrétoires associés à la sénescence et restauré la transmission synaptique excitatoire, ainsi que la fonction cognitive. Ces résultats indiquent que la réduction des microglies sénescentes pourrait représenter une approche thérapeutique pour prévenir les dysfonctionnements cognitifs liés à la neuroinflammation. Source : https://www.fightaging.org/archives/2025/07/senescent-microglia-elevate-the-destruction-of-synapses-to-a-pathological-level/

Impact des Microglies Sénescentes sur les Synapses et le Déclin Cognitif : Rôle des Composés Sénolytiques

Des chercheurs ont découvert que les microglies inflammées et sénescentes éliminent trop de synapses dans l’hippocampe et ont démontré qu’un composé sénolytique peut améliorer ce processus. Pendant le développement cérébral, les microglies, qui sont des cellules immunitaires résidentes du cerveau, taillent les synapses inutiles dans le cadre de l’entretien, un processus généralement bénéfique chez les jeunes enfants et les adultes matures, car il facilite la formation de connexions significatives. Cependant, dans des états pathologiques, ce processus de nettoyage peut s’intensifier, causant des dommages, comme on le voit lors de l’inflammation causée par une septicémie, où les microglies détruisent des synapses fonctionnelles, entraînant un déclin cognitif. Les microglies peuvent devenir sénescentes et incapables de se proliférer, mais cela ne signifie pas qu’elles sont complètement inactives. Une étude a exposé des souris à des lipopolysaccharides (LPS) pour induire une neuroinflammation, révélant une expression génique modifiée chez les microglies, avec des gènes liés à la phagocytose et à la sénescence. Le traitement avec le composé sénolytique ABT-737 a inversé le déclin cognitif observé chez les souris exposées au LPS, avec des résultats de navigation et d’intérêt pour des objets nouveaux semblables à ceux du groupe témoin. Ce traitement n’a pas amélioré les biomarqueurs d’inflammation, mais a réduit les marqueurs de sénescence, indiquant que le ABT-737 a efficacement réduit la phagocytose des synapses excitatrices et restauré la neuroplasticité, bien que certaines mesures ne soient pas revenues aux niveaux du groupe témoin. Des recherches supplémentaires sont nécessaires pour déterminer si le ABT-737 ou d’autres sénolytiques peuvent également atténuer le déclin cognitif dû à la sénescence des microglies dans le contexte du vieillissement. Source : https://www.lifespan.io/news/senolytics-may-affect-inflammation-related-cognitive-decline/?utm_source=rss&utm_medium=rss&utm_campaign=senolytics-may-affect-inflammation-related-cognitive-decline