Étiquette : métabolisme

Impact de la nicotine sur la fonction motrice et le métabolisme chez les souris âgées

Une étude récente a démontré que la consommation de nicotine à long terme a un impact positif sur la fonction motrice chez des souris mâles. Les effets bénéfiques seraient médiés par le métabolisme des sphingolipides et de la NAD+. Bien que le tabagisme soit largement associé à des risques accrus de cancer et de mortalité prématurée, il existe des études épidémiologiques suggérant des effets positifs de la nicotine sur certains troubles inflammatoires et neurodégénératifs, comme la maladie de Parkinson. Les effets bénéfiques de la nicotine seraient plus marqués à des concentrations inférieures à celles rencontrées lors du tabagisme, ce qui souligne l’importance d’étudier les effets dépendants de la dose. Dans cette étude, les chercheurs ont ajouté de la nicotine à l’eau de boisson des souris, à faible ou forte dose, pendant 22 mois. Les souris âgées ayant reçu de la nicotine ont montré une augmentation de l’activité locomotrice, de la force motrice et une réduction des comportements anxieux, en particulier chez celles ayant reçu les doses les plus élevées. Ces souris avaient des comportements similaires à ceux des jeunes souris. Les analyses métaboliques ont révélé des changements dans la distribution des tissus adipeux et des modifications des métabolites énergétiques, suggérant que la nicotine modifie les voies métaboliques liées à l’énergie. Les chercheurs ont introduit un score composite, le Behavior-Metabolome Age Score (BMAge), pour quantifier les effets de la nicotine sur le vieillissement biologique, montrant que les souris traitées avec des doses élevées de nicotine avaient un score similaire à celui des jeunes animaux. De plus, la nicotine a également modifié la composition du microbiote intestinal, favorisant la croissance de microbes bénéfiques. Les résultats suggèrent que la disponibilité accrue de NAD+ par la nicotine améliore le métabolisme énergétique chez les souris âgées, ce qui est lié à une performance motrice améliorée. Cependant, les chercheurs mettent en garde contre la généralisation de ces résultats à l’homme, en raison des risques connus associés à la nicotine et de son potentiel addictif. Des différences potentielles selon le sexe n’ont pas été abordées dans cette étude, et des résultats antérieurs ont montré des effets parfois contradictoires de la nicotine, soulignant la dépendance contextuelle de ses effets biologiques. Source : https://www.lifespan.io/news/nicotine-consumption-improves-motor-functions-in-male-mice/?utm_source=rss&utm_medium=rss&utm_campaign=nicotine-consumption-improves-motor-functions-in-male-mice

Avancées dans la régénération du cartilage : Nanoparticules et nouvelles thérapies

Le cartilage est un tissu à faible capacité de régénération, ce qui en fait une zone vulnérable au vieillissement et aux blessures articulaires. Malgré cela, le cartilage se forme durant le développement, ce qui indique qu’il existe des programmes de régénération qui pourraient être activés par des thérapies appropriées. Des chercheurs ont développé une approche utilisant des nanoparticules ciblées pour livrer un chargement thérapeutique aux chondrocytes dans les tissus cartilagineux endommagés. Cette méthode a permis d’améliorer la fonction mitochondriale et la capacité de régénération du cartilage. Dans le traitement de l’arthrose, un défi majeur réside dans le fait que les injections intra-articulaires conventionnelles ne pénètrent que superficiellement et entraînent une libération incontrôlée du médicament. Des nanoparticules de silice mésoporeuses cationiques, modifiées par des acides aminés, ont été conjuguées avec des peptides ciblant le cartilage pour créer une architecture semblable à un cheval de Troie visant à envelopper le fucoïdan prochondrogénique. Des microsphères d’hydrogel, composées de méthacryloyl de gélatine et de méthacryloyl de sulfate de chondroïtine, ont été fabriquées à l’aide d’une plateforme microfluidique pour la livraison de cargaison. Ces microsphères nanoparticule-hydrogel cationiques (CTNM@FU) possèdent des caractéristiques programmables en trois étapes qui permettent un transport réactif vers le cartilage blessé, une pénétration efficace de la matrice extracellulaire du cartilage et une entrée sélective dans les chondrocytes, tout en échappant aux lysosomes et en libérant des bio-activateurs. Le métabolisme cartilagineux altéré a été significativement inversé grâce à la co-culture avec CTNM@FU. L’administration intra-articulaire de CTNM@FU a non seulement atténué la dégénérescence du cartilage, mais a également accéléré la formation de nouveau cartilage. Mécaniquement, CTNM@FU a protégé le cartilage en activant SIRT3, améliorant ainsi l’énergie mitochondriale et contrant le vieillissement. Collectivement, une stratégie guidée spatiotemporellement permet des traitements plus précis pour les troubles articulaires dégénératifs. Source : https://www.fightaging.org/archives/2025/08/improving-mitochondrial-function-in-chondrocytes-to-improve-cartilage-regeneration/

Découverte d’une protéine inhibitrice de l’arthrose chez les souris

Dans un article publié dans le journal Cell iScience, des chercheurs ont découvert qu’une protéine inhibe l’arthrose chez les souris en réduisant la production d’acides gras. Des travaux antérieurs avaient établi un lien fort entre l’obésité et l’arthrose du genou, et il a été démontré que des quantités excessives d’acétyl-CoA, un composé lié aux acides gras, sont nuisibles dans ce contexte. L’enzyme ACOT12 décompose l’acétyl-CoA, entraînant de meilleurs résultats dans un modèle murin. De plus, d’autres éléments du métabolisme des acides gras ont également été associés à la progression de l’arthrose. Le facteur de transcription SREBP1 joue un rôle clé dans la génération de ces acides gras, et son expression est liée à la dégradation des disques. Un gène chez la souris, Sesn2, inhibe la production d’acides gras ; les souris privées de ce gène accumulent des dépôts de graisse mortels dans leurs foies. L’augmentation indirecte de ce gène est associée à une meilleure santé du cartilage du genou. Dans leur première expérience, les chercheurs ont examiné le cartilage humain de donneurs, constatant que les échantillons endommagés contenaient moins de SESN2 que les échantillons sains. Un suivi a révélé que les souris modèles d’arthrose présentaient également des niveaux inférieurs de SESN2. Le silençage de Sesn2 dans les chondrocytes murins a entrainé des résultats similaires, avec une augmentation des métalloprotéinases et une diminution des facteurs constructifs. À l’inverse, l’augmentation de Sesn2 a amélioré l’équilibre entre destruction et construction en présence d’IL-1β, réduisant l’accumulation de lipides et des biomarqueurs de sénescence. Les chercheurs ont établi que ces résultats étaient dus à SREBP1, inversement corrélé à l’expression de Sesn2. L’activation directe de SREBP1 a eu des effets similaires à ceux du silençage de Sesn2, tandis que l’augmentation de Sesn2 sans affecter SREBP1 a apporté des avantages contre l’arthrose chez les souris. Moins de signes d’arthrose du genou ont été observés, avec des réductions significatives des acides gras et un meilleur bien-être. Les chercheurs considèrent que cibler SESN2 pourrait représenter une approche thérapeutique prometteuse pour traiter l’arthrose chez l’homme, bien qu’il reste encore beaucoup de travail à faire pour déterminer comment appliquer cette stratégie en clinique. Source : https://www.lifespan.io/news/fighting-osteoarthritis-by-targeting-fatty-acids/?utm_source=rss&utm_medium=rss&utm_campaign=fighting-osteoarthritis-by-targeting-fatty-acids

Les Bienfaits de l’Exercice Précoce sur la Santé des Souris

L’exercice physique est largement reconnu pour ses bienfaits sur la santé, mais son impact sur l’espérance de vie maximale des souris reste peu compris. Une étude récente a examiné les effets de l’exercice régulier effectué au début de la vie sur la santé et la longévité ultérieures. Les souris C57BL/6J ont été soumises à un programme d’exercice aquatique pendant trois mois, correspondant à leurs jeunes années, puis ont été laissées sans entraînement pour le reste de leur vie. Les résultats ont montré que, bien que l’exercice précoce n’ait pas prolongé l’espérance de vie des souris, il a significativement amélioré leur santé, augmentant leur ‘healthspan’, la période durant laquelle elles restent en bonne santé. Les souris ayant fait de l’exercice présentaient une meilleure fonction métabolique, cardiovasculaire et musculaire, ainsi qu’une réduction de l’inflammation et de la fragilité avec l’âge. En analysant les transcriptomes de plusieurs organes, l’étude a mis en évidence une amélioration du métabolisme des acides gras dans les muscles squelettiques des souris ayant fait de l’exercice durant leur jeunesse. Ces résultats soulignent les bénéfices durables d’une activité physique précoce, révélant son rôle crucial dans l’amélioration de la santé à long terme. En résumé, cette recherche met en avant l’importance de l’exercice précoce pour la santé, bien que cela ne se traduise pas par une augmentation de l’espérance de vie maximale. Source : https://www.fightaging.org/archives/2025/07/early-life-exercise-improves-healthspan-but-not-lifespan-in-mice/

Impact des cellules sénescentes sur l’obésité et le diabète de type 2

Le texte aborde le rôle des cellules sénescentes dans l’inflammation chronique de l’âge et leur impact sur la structure et le fonctionnement des tissus. Il souligne que l’accumulation de cellules sénescentes est exacerbée par un excès de tissu adipeux viscéral, qui perturbe également le métabolisme et contribue à l’inflammation chronique. Bien que les cellules sénescentes soient cruciales dans les dommages causés par l’obésité, il est incertain dans quelle mesure les médicaments sénolytiques, qui visent à détruire sélectivement ces cellules, pourraient atténuer les conséquences de l’obésité. Le texte met en lumière la lenteur et le coût élevé des essais cliniques nécessaires pour obtenir des données humaines suffisantes, ce qui décourage l’industrie de financer la recherche sur des sénolytiques existants et peu coûteux. Par ailleurs, l’obésité et le diabète de type 2 (T2DM) sont des menaces sanitaires majeures, aggravées par l’accumulation de cellules sénescentes dans le tissu adipeux viscéral, entraînant des dysfonctionnements métaboliques. Le texte évoque également la charge financière massive associée au traitement des complications du T2DM, qui consomme une part importante des coûts de traitement. Les approches pharmacologiques actuelles se concentrent sur les défauts physiopathologiques du T2DM, sans prévenir les processus sous-jacents. Par conséquent, cibler et éliminer les cellules sénescentes pourrait représenter une stratégie prometteuse pour le traitement des maladies métaboliques. Source : https://www.fightaging.org/archives/2025/07/how-much-of-the-harm-of-obesity-is-caused-by-senescent-cells/

Le lien entre le métabolisme du glycogène et l’accumulation de tau dans les maladies neurodégénératives

Les scientifiques ont démontré que le métabolisme aberrant du glycogène dans les neurones est lié à l’accumulation de la protéine tau, qui est nuisible. La restriction calorique, les interventions génétiques et certaines petites molécules pourraient offrir des solutions. L’agrégation anormale de la protéine tau est une caractéristique marquante de plusieurs maladies neurodégénératives, notamment la maladie d’Alzheimer, où l’accumulation de tau sous forme de filaments neurofibrillaires hyperphosphorylés endommage les neurones. En outre, un métabolisme glycogénique anormal et une accumulation de glycogène sont également observés dans ces maladies. Le glycogène, forme stockée de glucose, est principalement présent dans le foie et les muscles, mais aussi dans les cellules du cerveau. Un métabolisme glycogénique altéré nuit à l’apprentissage et à la mémoire. La restriction alimentaire est connue pour prolonger la durée de vie et retarder la neurodégénérescence dans des modèles animaux de maladies neurodégénératives. Dans une étude récente, des chercheurs du Buck Institute for Research on Aging ont cherché à comprendre le lien entre ces deux faits.

Les chercheurs ont utilisé deux modèles de mouches Drosophila. L’un présentait une accumulation accélérée de la protéine tau sauvage, tandis que l’autre contenait une mutation connue de MAPT (R406W), causant une maladie familiale sévère chez l’homme. Les mouches étaient soit nourries librement, soit soumises à une restriction calorique. La restriction calorique a significativement augmenté la durée de vie, même chez les contrôles sains. Dans les deux modèles de maladie, l’effet était encore plus marqué. Dans les mouches soumises à restriction calorique, les niveaux de mort neuronale ont chuté de manière spectaculaire.

Les analyses protéomiques des cerveaux des mouches ont révélé que les voies liées au métabolisme des graisses et du glycogène étaient parmi les plus modifiées par la restriction calorique, et les niveaux de glycogène étaient effectivement élevés dans les cerveaux des mouches tauopathiques. Cependant, la restriction calorique ne semblait pas modifier les niveaux globaux de glycogène, malgré son impact bénéfique. Les chercheurs suspectent que la clé réside dans le taux de renouvellement du glycogène. Les enzymes impliquées, y compris la glycogène phosphorylase (GlyP), étaient régulées à la hausse dans les mouches mutantes soumises à restriction calorique. L’élévation de GlyP a augmenté la durée de vie des mouches mutantes de près de 70 % et réduit de manière significative la mort neuronale.

Les chercheurs ont utilisé des analyses métabolomiques et le séquençage de l’ARN pour étudier les effets moléculaires de l’augmentation de GlyP. Étonnamment, les voies de production d’énergie, telles que la glycolyse et le cycle de l’acide citrique, étaient en fait régulées à la baisse. En revanche, le glucose provenant de la dégradation du glycogène était dirigé vers la voie des pentoses phosphate (PPP), dont la fonction principale est de générer des antioxydants. Les espèces réactives de l’oxygène (ROS) étaient en effet significativement réduites dans les cerveaux des mouches avec une dégradation accrue du glycogène.

Les chercheurs ont également mené des expériences in vitro sur des neurones humains dérivés de cellules souches pluripotentes induites (iPSCs) provenant de patients atteints de FTLD-tau. Des cellules génétiquement corrigées des mêmes donneurs ont été utilisées comme témoins. Ils ont prouvé qu’il y avait une accumulation accrue de glycogène dans les cellules FTLD-tau et ont testé le mécanisme de sauvetage en surexprimant la version humaine de l’enzyme de dégradation du glycogène (PYGB) dans les neurones humains malades. Cela a réduit l’accumulation anormale de glycogène et restauré l’abondance mitochondriale, qui diminue avec cette maladie.

Il est important de noter qu’en utilisant ces neurones humains, l’équipe a montré que la protéine tau et le glycogène se co-localisent dans les cellules et interagissent physiquement, soutenant l’hypothèse selon laquelle une interaction directe entre les deux pourrait faire partie du problème. Les auteurs avancent l’hypothèse que cela pourrait créer un cycle vicieux néfaste dans lequel la liaison de tau favorise l’accumulation de glycogène, exacerbant ainsi la pathologie tau et le stress oxydatif. Les découvertes suggèrent que le glycogène est plus qu’un simple réservoir métabolique ; il pourrait agir comme un piège collant pour tau, créant une boucle de rétroaction dangereuse. Rompre ce cycle pourrait ouvrir une nouvelle voie thérapeutique dans la lutte contre la maladie d’Alzheimer. Source : https://www.lifespan.io/news/fixing-sugar-metabolism-shows-promise-against-dementia/?utm_source=rss&utm_medium=rss&utm_campaign=fixing-sugar-metabolism-shows-promise-against-dementia

Un vaccin peptidique cible CD38 pour améliorer la santé physique et cognitive chez les souris âgées

Les chercheurs d’une récente étude publiée dans Aging Cell ont décrit un nouveau vaccin peptidique ciblant le CD38, qui a montré des améliorations significatives de la santé physique et a prévenu le déclin cognitif chez des souris âgées. Contrairement aux stratégies anti-âge nécessitant une prise quotidienne, un vaccin peut avoir des effets durables après une seule administration. Ce vaccin cible le CD38, une protéine associée à des activités enzymatiques multifonctionnelles liées au métabolisme du NAD. L’augmentation des niveaux de CD38 avec l’âge a été liée à une diminution du NAD+ et à une dysfonction mitochondriale. Des recherches antérieures ont montré les bienfaits de la cible CD38 pour des problèmes tels que l’intolérance au glucose et l’inflammation neurogène. Les chercheurs ont créé trois vaccins peptidiques à partir de séquences d’acides aminés du CD38, en choisissant celui qui a suscité la meilleure réponse immunitaire. Les souris âgées immunisées ont montré des améliorations en termes de distance de marche totale, de vitesse maximale de marche, de force de préhension et d’endurance. De plus, les souris vaccinées ont affiché des résultats cognitifs meilleurs dans des tests tels que le labyrinthe aquatique de Morris. Les améliorations observées ont également inclus une meilleure tolérance au glucose et une sensibilité à l’insuline. En analysant les mécanismes moléculaires sous-jacents, les chercheurs ont constaté une réduction des niveaux de CD38 et des marqueurs de sénescence dans les organes solides des souris. Ils ont également observé des changements dans l’expression des gènes liés au métabolisme, notamment une régulation positive des processus métaboliques des acides gras. Le vaccin a également contribué à restaurer le rapport NAD+/NADH dans le foie et le tissu cérébral des souris âgées. Bien que les résultats soient prometteurs et montrent le potentiel anti-âge du vaccin CD38, des études supplémentaires sont nécessaires pour confirmer ces effets chez l’homme et explorer son efficacité dans d’autres maladies liées à l’âge, comme la maladie d’Alzheimer. Le vaccin a démontré une spécificité et une sécurité élevées, sans effets secondaires observés, bien qu’une surveillance des infections soit suggérée en raison du rôle du CD38 dans la réponse immunitaire. Des réponses inflammatoires, bien que transitoires, ont également été notées, soulignant la nécessité d’explorer davantage comment ce vaccin affecte le système immunitaire. Source : https://www.lifespan.io/news/healthspan-effects-of-an-anti-aging-vaccine-on-mice/?utm_source=rss&utm_medium=rss&utm_campaign=healthspan-effects-of-an-anti-aging-vaccine-on-mice

Découverte d’un nouveau médicament anti-obésité : SANA et ses effets sur la thermogenèse

La désaccouplement mitochondrial est un processus par lequel les mitochondries des cellules passent de la production de l’adénosine triphosphate (ATP), une molécule de stockage d’énergie chimique, à la libération de cette énergie sous forme de chaleur. Ce phénomène suscite un intérêt particulier dans le contexte du vieillissement, car une régulation à la hausse du désaccouplement mitochondrial semble ralentir le vieillissement dans des études animales. En outre, cette régulation prolongée produit une réduction des tissus adipeux et une perte de poids, ce qui attire davantage l’attention des humains, surtout à l’heure où les médicaments pour la perte de poids représentent une source de revenus importante pour les grandes entreprises pharmaceutiques.

Historiquement, les chercheurs ont rencontré des difficultés à développer des médicaments de désaccouplement mitochondrial qui ne provoquent pas de surchauffe mortelle lorsqu’ils sont pris à des doses élevées. L’un des premiers médicaments de ce type, le 2,4-dinitrophénol (DNP), a été largement utilisé au début du XXe siècle. Bien qu’il existe peu de documentation sur les décès accidentels dus à son utilisation, il est possible de prendre une dose fatale de DNP et de mourir d’hyperthermie sans signes immédiats d’overdose. Tout médicament qui régule directement le désaccouplement de la même manière est susceptible d’avoir des caractéristiques similaires.

Les chercheurs d’aujourd’hui affirment avoir découvert une approche sûre qui contourne le mécanisme utilisé par les méthodes précédentes pour réguler le désaccouplement, ce qui signifie influencer l’activité de la protéine de désaccouplement 1 (UCP1). Dans cette approche, UCP1 n’est pas impliquée dans le passage de la production d’ATP à la thermogenèse, et l’effet se produit uniquement dans les cellules adipeuses, et non dans tout le corps. Compte tenu des biais actuels en matière de financement et d’intérêt, les chercheurs présentent bien sûr cela comme une stratégie pour perdre du poids, mais cela pourrait également être intéressant dans le contexte du vieillissement.

Le médicament expérimental, actuellement appelé SANA (abréviation de salicylate-nitroalkène), est un dérivé du salicylate, un composé chimique possédant des propriétés analgésiques et anti-inflammatoires, que l’on trouve naturellement dans les plantes et qui est utilisé pour produire des médicaments comme l’aspirine. Les chercheurs ont d’abord cherché à développer un médicament anti-inflammatoire et ont testé plusieurs modifications chimiques de la molécule de salicylate. Au lieu de protéger contre l’inflammation, la molécule synthétisée protège contre l’obésité induite par le régime alimentaire.

Deux modèles différents ont été utilisés pour tester cet effet sur des animaux. Dans le premier modèle, SANA a été administré à des souris avec un régime riche en graisses, empêchant toute prise de poids, tandis que le groupe témoin a pris entre 40 % et 50 % de leur poids corporel au cours de huit semaines. Dans le second modèle, le traitement a commencé après que les animaux étaient obèses. Après trois semaines, les souris avaient perdu 20 % de leur masse corporelle, avec une réduction de la glycémie, une amélioration de la sensibilité à l’insuline et une diminution de la graisse accumulée dans le foie.

Les expériences ont montré que SANA cible spécifiquement le tissu adipeux, activant la thermogenèse par un mécanisme non conventionnel. Il peut donc être considéré comme le premier d’une nouvelle classe de médicaments anti-obésité. Il n’affecte pas le système nerveux central ou le système digestif, ni l’appétit. La thermogenèse est généralement médiée par une protéine appelée UCP1, activée dans certaines situations, comme l’exposition au froid. Cependant, SANA entraîne les adipocytes à utiliser la créatine, un composé formé par trois acides aminés, comme source d’énergie pour produire de la chaleur sans impliquer la protéine UCP1.

Les chercheurs affirment que l’impact observé sur la température corporelle est faible et ne présente pas de risque significatif pour la santé. Contrairement aux agents thermogéniques plus anciens, SANA agit uniquement sur les mitochondries du tissu adipeux, sans surcharger le système cardiovasculaire.

Enfin, une étude clinique randomisée, en double aveugle et contrôlée par placebo a été réalisée, comprenant deux parties avec quatre bras. SANA a montré une bonne sécurité et tolérabilité, tout en ayant des effets bénéfiques sur le poids corporel et la gestion du glucose dans les deux semaines suivant le traitement. Source : https://www.fightaging.org/archives/2025/07/a-novel-approach-to-thermogenesis-without-involving-uncoupling-protein-1/

Les Réactions Différentielles de la Graisse Viscerale et Sous-Cutanée à l’Obésité

Les scientifiques ont découvert que la graisse viscérale, qui s’accumule autour des organes dans l’abdomen, et la graisse sous-cutanée, qui s’accumule sous la peau, réagissent différemment à l’obésité chez les souris mâles et les patients humains, et ont identifié un régulateur clé de ces processus. Des études épidémiologiques ont montré une corrélation plus forte entre la graisse viscérale et les dysfonctionnements métaboliques, les maladies et la mortalité. La recherche a également révélé que les tissus adipeux sont hautement vascularisés, jouant un rôle crucial dans la régulation du métabolisme énergétique. Une étude récente du Centre allemand de recherche cardiovasculaire (DZHK) a utilisé des outils avancés pour analyser le comportement des cellules endothéliales (CE) dans le tissu adipeux blanc (WAT) chez des souris nourries avec un régime normal ou un régime riche en graisses (HFD) pendant huit semaines. Les résultats ont montré une réduction significative de la densité des vaisseaux sanguins dans le WAT sous-cutané (sWAT) et le WAT viscéral (vWAT) en réponse au HFD, un phénomène connu sous le nom de raréfaction vasculaire. Grâce à une analyse de séquençage RNA à cellule unique, les chercheurs ont découvert un sous-ensemble unique de CE dans le sWAT caractérisé par des pores appelés « fenestrations ». Ces CE fenestrés étaient plus abondants dans le sWAT des souris maigres mais considérablement réduits chez les souris obèses. Le marqueur moléculaire de ces cellules, ITM2A, était également significativement régulé à la baisse dans les tissus de patients humains obèses par rapport aux individus maigres. Les auteurs suggèrent que ces CE fenestrés facilitent l’échange rapide et efficace de nutriments, d’hormones et de molécules de signalisation entre le tissu adipeux et la circulation sanguine. Leur perte pendant l’obésité pourrait donc nuire à la fonction métabolique saine du dépôt adipeux. L’étude a identifié le facteur de croissance endothélial vasculaire A (VEGFA) comme essentiel pour maintenir ces cellules spécialisées. Les niveaux de VEGFA étaient significativement réduits chez les souris obèses, mais cela ne se produisait que dans le sWAT et non dans le vWAT. De plus, il a été révélé que le HFD avait un effet dépendant du temps, avec une régulation temporaire à la hausse de VEGFA après quatre semaines, suggérant une réponse compensatoire éphémère. Pour prouver le rôle de VEGFA, les chercheurs ont bloqué systématiquement VEGFA chez des souris, ce qui a entraîné une réduction de la densité totale des vaisseaux sanguins et de la population spécifique de vaisseaux fenestrés dans le sWAT. Un modèle de perte de fonction du gène Vegfa a également montré une diminution significative des vaisseaux fenestrés. En revanche, une expérience de gain de fonction a révélé que des niveaux plus élevés de VEGFA entraînaient une densité vasculaire globale plus élevée. Les chercheurs ont noté que les CE du vWAT réagissaient différemment au HFD en suivant un programme d’augmentation vasculaire, alors que ceux du sWAT réagissaient en augmentant les facteurs liés à l’inflammation. Les résultats montrent que les changements vasculaires liés à l’obésité commencent plus tôt que prévu et varient considérablement en fonction de l’emplacement de la graisse. Ces découvertes pourraient fournir une base précieuse pour de futures thérapies visant à améliorer la fonction des vaisseaux sanguins dans le tissu adipeux et à prévenir des maladies secondaires telles que le diabète ou les crises cardiaques. Cependant, il est important de noter que l’étude a utilisé exclusivement des souris mâles et des tissus de patients humains mâles, ce qui limite sa généralisation en raison des différences biologiques connues entre les sexes dans le tissu adipeux. Source : https://www.lifespan.io/news/subcutaneous-and-visceral-fat-react-differently-to-obesity/?utm_source=rss&utm_medium=rss&utm_campaign=subcutaneous-and-visceral-fat-react-differently-to-obesity

Le potentiel du rapamycine et de la restriction calorique dans l’extension de la durée de vie

Le texte aborde les approches pharmaceutiques pour ralentir le vieillissement, en mettant particulièrement en avant le rapamycine, un inhibiteur de mTOR qui imite certains effets bénéfiques de la restriction calorique sur le métabolisme, la santé à long terme et la durée de vie. L’autophagie, un processus cellulaire crucial pour le recyclage des protéines et des structures indésirables, est considérée comme l’un des résultats les plus importants de l’utilisation de rapamycine. Bien que le rapamycine ait été utilisé pendant longtemps à des doses relativement élevées, les données humaines concernant des doses plus faibles, potentiellement anti-vieillissement, sont encore limitées. Cependant, les données disponibles suggèrent qu’il s’agit d’un médicament sûr avec peu ou pas d’effets secondaires. En parallèle, la restriction alimentaire (DR) a prouvé qu’elle prolonge robustement la durée de vie chez diverses espèces. Néanmoins, la DR est difficile à maintenir à long terme chez les humains, entraînant la recherche de composés capables de réguler le métabolisme et d’augmenter la durée de vie sans réduire l’apport calorique. Une analyse méta, qui a examiné 911 tailles d’effet à partir de 167 études sur huit espèces de vertébrés différentes, a confirmé que la DR prolonge significativement la durée de vie, tout comme le rapamycine, alors que le métformin ne produit pas de prolongement significatif de la durée de vie. Aucune influence constante du sexe n’a été observée à travers tous les traitements, et les résultats ont montré une hétérogénéité élevée et un biais de publication significatif. L’étude conclut que le rapamycine et la DR confèrent une extension comparable de la durée de vie dans un large éventail de vertébrés. Source : https://www.fightaging.org/archives/2025/06/animal-study-data-shows-rapamyin-to-be-a-robust-calorie-restriction-mimetic/