Étiquette : Maladie d’Alzheimer

La Dysfonction de la Barrière Hémato-Encéphalique et son Impact sur les Maladies Neurodégénératives

La barrière hémato-encéphalique est constituée de cellules spécialisées qui tapissent les vaisseaux sanguins dans le système nerveux central, permettant de manière sélective le passage de molécules et de cellules entre la circulation sanguine et le cerveau. Une dysfonction de cette barrière permet à des molécules et cellules indésirables d’entrer dans le cerveau, causant une inflammation chronique et contribuant ainsi à l’apparition et à la progression de conditions neurodégénératives. Cette dysfonction apparaît tôt dans le vieillissement du cerveau, suggérant qu’elle pourrait être un mécanisme causal principal. Cependant, certaines pathologies associées aux conditions neurodégénératives peuvent également provoquer des dysfonctionnements de la barrière hémato-encéphalique. Les problèmes vasculaires dans le cerveau sont souvent l’un des premiers changements menant à la perte de mémoire et à d’autres symptômes dans la maladie d’Alzheimer et d’autres formes de démence. Ces problèmes concernent généralement l’unité neurovasculaire, un groupe de différents types cellulaires, y compris les cellules des vaisseaux sanguins, les cellules de soutien et les neurones, qui travaillent ensemble pour maintenir la santé du cerveau. Cette unité régule le flux sanguin dans le cerveau, contrôle la livraison des nutriments et de l’énergie, et protège le cerveau de l’inflammation et des substances nocives. Récemment, des chercheurs ont réalisé des expériences in vitro pour comprendre le rôle des agrégats de protéine tau au niveau des vaisseaux sanguins du cerveau. Ils ont découvert que l’exposition à la tau protofibrillaire, qui apparaît tôt dans la maladie d’Alzheimer, affaiblissait la barrière, la rendant plus perméable et moins efficace pour protéger le cerveau. De plus, après cette exposition, les cellules des vaisseaux sanguins du cerveau modifiaient rapidement leur production d’énergie, déclenchant une inflammation et affaiblissant la barrière protectrice, ce qui indique que ces changements nuisibles se produisent très tôt dans le processus de la maladie. Source : https://www.fightaging.org/archives/2025/05/tau-aggregation-in-the-aging-brain-causes-blood-brain-barrier-dysfunction/

Le rôle du facteur de transcription EB (TFEB) dans la promotion de la protéostasie et ses implications pour le vieillissement

Dans une étude publiée dans Aging Cell, des chercheurs ont examiné comment le facteur de transcription EB (TFEB) favorise la protéostasie dans un modèle de vieillissement commun. La protéostasie, essentielle pour le bon fonctionnement des protéines, est maintenue par un système de contrôle qualité qui utilise un réseau de chaperons et co-chaperons, responsables du repliement, du déroulement et de la destruction des protéines mal repliées. Parmi les éléments clés de ce système se trouve la coenzyme A (CoA), impliquée dans diverses réactions biochimiques essentielles, y compris la gestion des protéines. Les chercheurs ont mis en évidence que la réduction de la production de PanK, une enzyme cruciale pour la synthèse de la CoA, n’entraîne pas de diminution de la durée de vie des vers C. elegans, mais plutôt des améliorations dans leur capacité à gérer des maladies liées à la protéostasie. Ils ont observé que les vers présentant une mutation génétique entraînant une expansion de PolyQ, un trouble de protéostasie, avaient moins de foyers d’agrégation musculaire et une meilleure activité motrice lorsque leur production de PanK était réduite. De plus, des expériences sur des protéines étiquetées ont montré que la réduction de PanK améliorait le traitement des protéines mal repliées. Les vers présentant moins de PanK réussissaient mieux à gérer le stress chimique et thermique. Ces résultats ont également été confirmés dans des cellules humaines, où les cellules cancéreuses traitées avec un inhibiteur de PanK ont mieux survécu au stress thermique. Ces effets bénéfiques étaient liés à des niveaux réduits de CoA. En parallèle, les chercheurs ont examiné le rôle des clusters de fer et de soufre (ISCs) associés à la CoA et ont découvert que la réduction de la production d’ISCs améliorait également la protéostasie. Ils ont identifié que la diminution de CoA et des ISCs due à la réduction de PanK activait TFEB, ce qui entraînait des effets bénéfiques sur le repliement des protéines par le biais des chaperons. Bien que l’étude ait fourni des détails sur les mécanismes biochimiques, elle reste préliminaire, car aucune des interventions n’a entraîné d’augmentation significative de la durée de vie des vers. Les chercheurs notent que des travaux supplémentaires sur des modèles de vers et de souris seront nécessaires pour évaluer si le renforcement direct des chaperons pourrait constituer un traitement efficace pour des troubles de la protéostasie tels que la maladie d’Alzheimer et la maladie de Parkinson. Source : https://www.lifespan.io/news/limiting-one-protein-maintenance-pathway-enhances-another/?utm_source=rss&utm_medium=rss&utm_campaign=limiting-one-protein-maintenance-pathway-enhances-another

Therini Bio avance vers un nouveau traitement pour la maladie d’Alzheimer et l’œdème maculaire diabétique

Therini Bio, une biotech axée sur la neurodégénérescence, a récemment annoncé des résultats prometteurs d’un essai clinique de Phase 1a pour son candidat médicament phare, le THN391, administré à des volontaires sains. Ce traitement est exploré pour son potentiel à traiter des maladies neurodégénératives en ciblant l’inflammation neurogène induite par le fibrinogène, un processus pathologique clé associé à la dysfonction vasculaire. Le THN391 est un anticorps monoclonal humanisé à haute affinité, conçu pour bloquer sélectivement les effets inflammatoires du fibrin sans interférer avec son rôle dans la coagulation. Les dépôts de fibrine, qui s’accumulent lors de blessures vasculaires, se liées aux récepteurs du complément sur les cellules immunitaires innées, déclenchant une inflammation chronique et des dommages neuronaux dans le cerveau et la rétine. Ce mécanisme est considéré comme central dans le développement et la progression de maladies liées à l’âge, telles que la maladie d’Alzheimer et l’œdème maculaire diabétique (DME). Les études précliniques menées par la co-fondatrice et chercheuse Dr Katerina Akassoglou ont montré que le ciblage de l’épitopes inflammatoire sur les dépôts de fibrine avec des anticorps comme le THN391 peut protéger contre la dégénérescence vasculaire et neuronale. En intervenant à ce point en amont de la cascade inflammatoire, l’entreprise vise à modifier le cours des maladies neurodégénératives et rétiniennes plutôt que de simplement atténuer les symptômes. Dans l’étude de première administration chez l’homme, le THN391 a été administré à des doses uniques et multiples dans le cadre d’une étude randomisée, en double aveugle et contrôlée par placebo. Le traitement a été bien toléré sans événements indésirables graves, n’a pas eu d’impact sur la coagulation ou la fibrinolyse, et n’a pas provoqué de réponse d’anticorps anti-médicament. L’analyse pharmacocinétique a révélé une exposition proportionnelle à la dose et une demi-vie compatible avec une posologie mensuelle. Suite aux résultats positifs de la Phase 1a, Therini Bio prévoit de lancer deux essais de Phase 1b – l’un pour évaluer le potentiel du THN391 chez des patients atteints de la maladie d’Alzheimer et l’autre pour étudier son efficacité dans le traitement du DME. Le PDG de Therini Bio, Dr Tara Nickerson, a déclaré que l’entreprise vise à traiter les causes fondamentales de la neurodégénérescence en ciblant la dysfonction vasculaire et l’inflammation neurochronique. Les données de l’étude de Phase 1a seront présentées à la Conférence internationale de l’Association Alzheimer 2025 à Toronto. Source : https://longevity.technology/news/therini-bio-advances-neurodegeneration-drug-to-next-phase/

Le rôle complexe des microglies dans la maladie d’Alzheimer

Les microglies sont des cellules immunitaires innées résidant dans le cerveau, similaires aux macrophages présents dans le reste du corps. Ces cellules présentent une diversité d’états et peuvent passer d’un état à un autre en fonction des circonstances. Les recherches se concentrent souvent sur l’état inflammatoire M1, capable de chasser et de détruire les pathogènes, en opposition à l’état anti-inflammatoire M2, qui est axé sur la régénération et le maintien des tissus. Cependant, cette dichotomie simplifie à l’excès un continuum d’états plus complexe, dont certains ne s’insèrent pas bien dans ces catégories. La compréhension des microglies est cruciale, notamment dans le contexte des maladies neurodégénératives, où un trop grand nombre de ces cellules devient inflammatoire et dysfonctionnelle en réponse à l’environnement tissulaire vieillissant du cerveau. Certaines microglies sont plus nuisibles que d’autres, et des tentatives pour ajuster broadement leur état peuvent ne pas être aussi bénéfiques qu’espéré. Il est suggéré que davantage d’états de microglies doivent être compris en détail et ciblés de manière distincte.

Dans le cas de la maladie d’Alzheimer (MA), le rôle des microglies reste complexe et dual. Cette revue vise à résumer les avancées récentes concernant le rôle des microglies dans la MA, en tenant compte des mécanismes d’activation de ces cellules, de leur effet sur le nettoyage de l’amyloïde-β (Aβ), de la pathologie tau et de l’impact des variations génétiques sur leurs fonctions. L’état fonctionnel des microglies, principales cellules immunitaires du système nerveux central, est bien plus complexe que la simple polarisation des phénotypes M1 et M2. Les études récentes ont montré que l’état des microglies dans la MA peut comprendre une grande variété de phénotypes différents jouant divers rôles à différentes étapes de la maladie et dans divers microenvironnements.

Au-delà des phénotypes M1 et M2 classiques, des conditions comme les microglies associées à la maladie (DAM) et les microglies réactives (RAM) ont des profils fonctionnels et moléculaires spécifiques dans la pathologie de la MA. Les microglies M1 sont activées par des facteurs pro-inflammatoires, libérant des cytokines pro-inflammatoires qui aggravent les réactions neuroinflammatoires et les lésions neuronales, tout en promouvant l’accumulation d’Aβ et l’hyperphosphorylation de la protéine tau. En revanche, les microglies M2, activées par des facteurs anti-inflammatoires, sécrètent des facteurs neurotrophiques qui favorisent la régénération. De plus, les DAM présentent des motifs d’expression génique distincts associés à la MA et jouent un rôle crucial dans l’élimination de l’Aβ et la modulation de la pathologie tau. Les variantes de TREM2 sont significativement associées à un risque accru de MA, et leur fonction physiologique est de permettre la formation de DAM, facilitant ainsi le nettoyage de l’Aβ. La pathologie tau augmente également de manière significative avec une fonction TREM2 déficiente ou une déficience microgliale, soulignant le rôle essentiel des DAM dans la prévention de la propagation de tau. En somme, les phénotypes des microglies dans la MA vont au-delà des simples M1 et M2, englobant des phénotypes plus évolués tels que les DAM. Chaque état remplit des fonctions correspondantes à différentes étapes de la maladie et dans divers microenvironnements, et des recherches futures devront explorer les mécanismes moléculaires et les différences fonctionnelles entre ces états pour élucider le rôle multifonctionnel des microglies dans la MA. Source : https://www.fightaging.org/archives/2025/04/microglia-in-neurodegenerative-conditions-more-complex-than-simply-a-double-edged-sword/

La restriction de méthionine : Une approche prometteuse pour ralentir le vieillissement

La restriction calorique est un sujet de recherche important dans le domaine du vieillissement et de la longévité. Elle est régulée par la détection des niveaux de méthionine, un acide aminé essentiel que le corps ne peut pas synthétiser et qui doit donc être obtenu par l’alimentation. Des études ont prouvé que la restriction de méthionine, c’est-à-dire la création d’un régime alimentaire pauvre en méthionine sans réduire l’apport calorique, peut ralentir le vieillissement chez les rongeurs. Des chercheurs ont montré que cette approche reste bénéfique même lorsqu’elle est initiée à un âge avancé chez les souris. Fait intéressant, cette restriction ne semble pas influencer l’âge épigénétique, une observation qui rappelle l’insensibilité des horloges épigénétiques précoces à la condition physique. Les niveaux de méthionine et son flux sont modifiés avec l’âge, selon des études menées sur le modèle de la drosophile. En manipulant le métabolisme de la méthionine à travers des modifications diététiques ou enzymatiques, on a constaté que cela prolonge la durée de vie et améliore la santé métabolique, la fonction neuromusculaire, la fonction pulmonaire, et l’indice de fragilité chez les souris. Dans une expérience, une restriction alimentaire en méthionine a été instaurée tard dans la vie de souris C57BL/6J, et les résultats ont montré des améliorations dans divers aspects de la santé métabolique sans affecter les horloges épigénétiques. De plus, des études avec des techniques avancées comme le séquençage d’ARN de noyau unique et l’analyse de l’accessibilité de la chromatine ont révélé des processus spécifiques à certains sous-types de cellules et des facteurs de transcription activés par cette restriction. Les effets bénéfiques de cette restriction sur la fonction neuromusculaire ont aussi été confirmés dans un modèle de souris de la maladie d’Alzheimer. Ces résultats suggèrent que cibler le métabolisme de la méthionine pourrait être une intervention prometteuse pour lutter contre le vieillissement chez les humains. Source : https://www.fightaging.org/archives/2025/04/late-life-methionine-restriction-improves-health-in-mice/

Microglies humaines modifiées par CRISPR : Une avancée dans le traitement de la maladie d’Alzheimer et d’autres maladies du SNC

Une équipe de chercheurs de l’Université de Californie, Irvine, a développé une méthode innovante pour administrer des protéines thérapeutiques au cerveau en utilisant des microglies humaines modifiées, dérivées de cellules souches pluripotentes induites (iPSCs). Ces cellules modifiées servent de systèmes de livraison de médicaments vivants, capables de détecter l’accumulation de plaques amyloïdes, un signe distinctif de la maladie d’Alzheimer, et de répondre en produisant une enzyme dégradant l’amyloïde, la néprilysine, à proximité de la pathologie. L’un des défis majeurs dans le traitement des maladies neurodégénératives est la barrière hémato-encéphalique (BHE), qui limite l’efficacité de l’administration systémique des médicaments. L’approche développée par le groupe de l’UC Irvine contourne cette barrière en transplantant des microglies déjà présentes dans le système nerveux central (SNC), qui peuvent réagir de manière dynamique aux états pathologiques. Les microglies modifiées utilisent le promoteur CD9, un interrupteur génétique réactif à la pathologie, pour activer l’expression de la néprilysine uniquement à proximité des plaques amyloïdes. Cette étude, publiée dans la revue Cell Stem Cell, démontre le potentiel des microglies humaines modifiées comme une plateforme dynamique de livraison de médicaments à l’échelle du cerveau. En associant des microglies dérivées d’iPSC modifiées par CRISPR avec des promoteurs réactifs à la pathologie, l’équipe a développé un système capable de détecter les plaques amyloïdes et de répondre par une livraison ciblée d’enzymes thérapeutiques, une avancée tant recherchée dans la recherche sur l’Alzheimer. Ce qui est particulièrement intéressant, c’est la nature autorégulatrice de la thérapie, avec une sécrétion de néprilysine proportionnelle à la charge de la maladie, et sa capacité à atténuer non seulement la charge de plaques, mais aussi les signes de neuroinflammation et de perte synaptique, des résultats étroitement liés au déclin cognitif. Ce ciblage précis pourrait être crucial pour éviter les effets secondaires systémiques qui ont entravé les approches biologiques précédentes. Cependant, plusieurs obstacles restent à surmonter avant la traduction clinique : la durabilité de l’effet chez l’humain, la différenciation et l’édition à grande échelle des iPSC, et les voies réglementaires pour les thérapies cellulaires vivantes dans le SNC. De plus, bien que la transplantation autologue – utilisant les propres cellules d’un patient – offre une voie vers l’immunocompatibilité, cela limite plutôt la scalabilité. Ce qui est nécessaire ensuite, c’est une exploration minutieuse de la sécurité, des méthodes de livraison alternatives et peut-être une expansion à d’autres maladies du SNC liées à l’âge, comme la maladie de Parkinson ou la sclérose en plaques, des domaines où cette plateforme polyvalente montre des promesses précoces. En tant que preuve de concept, ce travail élargit considérablement les outils pour cibler la neurodégénérescence dans le cerveau vieillissant, avec des implications significatives pour la durée de santé et la longévité. Pour évaluer l’efficacité, les chercheurs ont utilisé un modèle murin de la maladie d’Alzheimer génétiquement modifié pour permettre l’engraftement de microglies humaines dans tout le cerveau. Ces souris ont montré une expression de néprilysine réactive à la pathologie spécifiquement aux sites des plaques amyloïdes, entraînant des réductions significatives des formes solubles et insolubles de l’amyloïde-bêta, y compris les oligomères neurotoxiques les plus étroitement associés à la dysfonction synaptique. Il est important de noter que le bénéfice thérapeutique ne se limitait pas à la proximité des cellules transplantées. « Remarquablement, nous avons découvert que le placement des microglies dans des zones cérébrales spécifiques pouvait réduire les niveaux d’amyloïde toxique et d’autres neuropathologies associées à la maladie d’Alzheimer dans tout le cerveau », a déclaré Jean Paul Chadarevian, chercheur postdoctoral au laboratoire de Blurton-Jones et premier auteur de l’étude. « Et parce que la protéine thérapeutique n’était produite qu’en réponse aux plaques amyloïdes, cette approche était très ciblée mais largement efficace. » De plus, des analyses ont révélé des effets bénéfiques s’étendant à de multiples pathologies secondaires. Des protéines synaptiques telles que la synaptophysine et le PSD-95 ont été préservées, les marqueurs de neuroinflammation tels que le GFAP et les cytokines pro-inflammatoires ont été réduits, et la chaîne légère de neurofilaments plasmatique – un biomarqueur circulant de dommage neuronal – a diminué de manière significative chez les animaux traités. La conception de l’étude va au-delà de la maladie d’Alzheimer ; les chercheurs ont également testé les microglies modifiées dans des modèles murins de métastases cérébrales et de démyélinisation. Dans ces contextes, les microglies ont adopté des états transcriptionnels distincts en réponse à la pathologie spécifique de la maladie, suggérant que la même plateforme de livraison pourrait être adaptée pour traiter d’autres maladies du SNC. Les cellules modifiées ont montré des preuves de réponse à des signaux associés aux tumeurs ou spécifiques à la démyélinisation, les positionnant comme des véhicules polyvalents pour une livraison précise dans divers environnements neuropathologiques. Comme l’a expliqué Mathew Blurton-Jones, professeur de neurobiologie et de comportement à l’UC Irvine et co-auteur de l’étude : « Livrer des biologiques au cerveau a longtemps été un défi majeur en raison de la barrière hémato-encéphalique. Nous avons développé un système de livraison vivant et programmable qui contourne ce problème en résidant dans le cerveau lui-même et en ne répondant que lorsque et où il est nécessaire. » Dans cette approche, l’ingénierie CRISPR a été utilisée pour intégrer des gènes thérapeutiques en aval de promoteurs natifs, garantissant que des protéines telles que la néprilysine ne soient exprimées que sous les signaux moléculaires de la maladie. Contrairement aux vecteurs viraux ou aux perfusions biologiques continues, qui peuvent provoquer des réponses immunitaires ou des effets hors cible, le système microglial offre le potentiel d’un contrôle spatial et temporel du traitement au sein du SNC. « Ce travail ouvre la voie à une toute nouvelle classe de thérapies cérébrales », a déclaré Robert Spitale, professeur de sciences pharmaceutiques à l’UC Irvine et co-auteur de l’étude. « Au lieu d’utiliser des médicaments synthétiques ou des vecteurs viraux, nous faisons appel aux cellules immunitaires du cerveau comme véhicules de livraison de précision. » Bien que les résultats représentent une avancée significative dans le domaine du traitement des maladies neurodégénératives, leur traduction en utilisation clinique nécessitera encore des travaux supplémentaires. Les complexités immunologiques et logistiques de la thérapie cellulaire autologue, la variabilité potentielle des iPSC dérivées des patients et la sécurité à long terme des cellules modifiées par génome dans le cerveau sont toutes des questions critiques. Néanmoins, la démonstration que les microglies humaines peuvent être exploitées in vivo pour livrer des charges thérapeutiques de manière sélective et durable marque une avancée importante dans le développement de stratégies régénératives pour prolonger la durée de vie en bonne santé du SNC. Les efforts futurs exploreront probablement des applications élargies à d’autres conditions neurodégénératives, des améliorations des méthodes de livraison et la possibilité d’interventions multiplexées. À mesure que le domaine passe de la preuve de concept à l’application pratique, les microglies modifiées pourraient jouer un rôle croissant dans la définition de la prochaine génération de thérapies axées sur la longévité. Source : https://longevity.technology/news/engineered-microglia-offer-precision-delivery-for-brain-therapies/

Défis du financement et de l’innovation dans le secteur biopharmaceutique

Naviguer dans une startup pharmaceutique ou biotechnologique, depuis la preuve de concept préclinique d’une nouvelle technologie potentiellement utile jusqu’à la phase des essais cliniques, est un défi. Les investisseurs institutionnels, ceux qui ont les moyens de financer les coûts réglementaires énormes liés à la fabrication de médicaments et aux essais cliniques, évitent généralement de financer des directions nouvelles et des thérapies réellement novatrices. Ils préfèrent des ajustements mineurs sur des médicaments existants, ce qui entraîne un surinvestissement dans des stratégies pour réduire le cholestérol LDL, malgré l’inefficacité de ces médicaments à inverser les maladies cardiovasculaires. Le marché pour le développement de médicaments a été morose au cours de la dernière décennie, et de bonnes technologies ont été négligées, comme l’illustre le cas de Covalent Biosciences, qui développe des anticorps catalytiques et qui est maintenant en train de fermer. Les anticorps catalytiques, qui peuvent interagir avec de nombreuses molécules cibles, avaient pour but de traiter des maladies comme l’amyloïdose transthyretin et la maladie d’Alzheimer. Cependant, des thérapies concurrentes ont émergé, rendant difficile l’attraction de fonds nécessaires pour les essais cliniques. Les investisseurs se préoccupent également de la durée de vie restante des brevets, car la valeur élevée d’une entreprise de développement de médicaments dépend de son monopole légal sur sa technologie. Si une entreprise tarde trop à faire le saut vers la clinique, sa valeur potentielle diminue, comme cela a été le cas pour Covalent Biosciences avec des brevets déjà anciens. L’espoir demeure qu’une fois dans le domaine public, la plateforme des anticorps catalytiques puisse être avancée par une nouvelle société, mais cela nécessiterait l’établissement de nouveaux brevets. La situation actuelle montre que des technologies hors brevets ne reçoivent pas d’investissements, bien qu’elles puissent être utiles, comme l’indiquent des traitements potentiels pour éliminer les cellules sénescentes. La question de la manière dont la recherche médicale et le développement devraient être gérés reste d’actualité, car des voix s’élèvent pour revendiquer une approche plus efficace. Source : https://www.fightaging.org/archives/2025/04/the-catalytic-antibody-work-of-covalent-biosciences-is-headed-for-the-public-domain/

Coya Therapeutics : Une thérapie combinée pour lutter contre l’inflammation chronique et les maladies neurodégénératives

Un nouvel article publié dans le Journal of NeuroImmune Pharmacology and Therapeutics met en lumière le potentiel du dernier traitement combiné de Coya Therapeutics, visant à moduler la réponse immunitaire dans les conditions inflammatoires et neurologiques. Coya développe des biologiques combinés qui ciblent les maladies inflammatoires chroniques et neurodégénératives, caractérisées par une dysfonction des cellules T régulatrices (Treg) et une inflammation persistante. Les Treg jouent un rôle essentiel dans le maintien de l’équilibre immunitaire et la prévention de l’inflammation excessive. Dans les maladies neurodégénératives, souvent marquées par une activation immunitaire persistante, les Treg montrent fréquemment des dysfonctionnements, entraînant une inflammation chronique et du stress oxydatif. L’étude réalisée au Houston Methodist Research Institute a évalué les effets synergiques de COYA 303, une thérapie biologique à deux composants. Cette thérapie combine une faible dose d’interleukine-2 (également connue sous le nom de COYA 301) avec un agoniste des récepteurs GLP-1. Le traitement investigué vise à améliorer la fonction des Treg et à supprimer l’inflammation chronique en ciblant simultanément deux voies immunitaires clés. L’IL-2 à faible dose se lie préférentiellement au récepteur IL-2 alpha, qui est fortement exprimé sur les Treg, renforçant ainsi leurs capacités suppressives. Les agonistes des récepteurs GLP-1, déjà utilisés cliniquement pour des troubles métaboliques, interagissent également avec le système immunitaire et influencent les populations de cellules immunitaires myéloïdes et régulatrices. L’étude a démontré que l’utilisation combinée des médicaments dans COYA 303 augmentait significativement la fonction suppressive des Treg au-delà de ce qui a été observé avec chaque agent pris séparément. Dans un système in vitro utilisant des cellules immunitaires de donneurs humains en bonne santé, l’IL-2 à faible dose a augmenté la suppression des myéloïdes pro-inflammatoires de 15 %, tandis que l’agoniste GLP-1 a réalisé une augmentation de 20 %. En revanche, COYA 303 a conduit à une augmentation de 42 % de la fonction suppressive, une amélioration statistiquement significative indiquant une synergie potentielle entre les deux composants. Dr Arun Swaminathan, CEO de Coya, a déclaré que COYA 303 pourrait offrir une approche différenciée et synergique pour traiter plusieurs conditions, y compris des maladies neurodégénatives comme la maladie d’Alzheimer, où les agonistes GLP-1 ont récemment montré des promesses. De plus, l’étude a montré que COYA 303 améliorait également la survie des Treg en modulant les voies apoptotiques. L’étude a trouvé que COYA 303 réduisait l’expression des marqueurs pro-apoptiques tout en augmentant l’expression des gènes liés à la survie. Les Treg traitées avec la combinaison présentaient des marqueurs élevés associés à la capacité suppressive et à la stabilité. En plus de ses effets sur les Treg, COYA 303 a démontré sa capacité à réguler à la baisse les médiateurs inflammatoires dans les cellules myéloïdes. La thérapie combinée a supprimé les transcrits d’IL-6 et de TNF tout en promouvant l’expression d’ARG1, un marqueur associé à l’activité myéloïde anti-inflammatoire. Ces effets étaient associés à une production réduite d’IL-6 et à une diminution de la prolifération des cellules T répondeuses, suggérant un impact immunorégulateur plus large. Dr Fred Grossman, CMO de Coya, a exprimé sa conviction que les résultats encourageants de cette étude soutiennent leur approche combinée multi-ciblée en tant qu’option de traitement potentiellement viable pour des conditions graves et menaçantes pour la vie, caractérisées par une inflammation chronique et une dysfonction des Treg, pour lesquelles les traitements actuellement disponibles offrent des bénéfices limités. Source : https://longevity.technology/news/combination-therapy-demonstrates-synergistic-anti-inflammatory-effects/

L’impact des astrocytes réactifs sur la neurodégénérescence et la mémoire dans la maladie d’Alzheimer

Les astrocytes réactifs dans le tissu cérébral sont des cellules qui deviennent inflammatoires en réponse à l’environnement local. Ce phénomène devient particulièrement fréquent avec l’âge, à cause de divers types de dommages moléculaires caractéristiques du vieillissement, tels qu’une signalisation inflammatoire accrue provenant d’autres cellules, y compris les cellules sénescentes, et l’accumulation de déchets métaboliques dans le cerveau en raison d’une défaillance du drainage du liquide céphalorachidien. La réactivité des astrocytes entraîne des effets maladaptatifs et contribue à l’apparition et à la progression des maladies neurodégénératives. Plutôt que de se concentrer sur la prévention de la réactivité en réparant les dommages liés à l’âge, la communauté de recherche a tendance à adopter une stratégie consistant à essayer d’améliorer le comportement des astrocytes réactifs, un aspect à la fois. Une étude récente a examiné le comportement des astrocytes dans la maladie d’Alzheimer, où ces cellules modifient leur comportement en réponse à la présence de plaques amyloïdes, un marqueur de la maladie. Bien qu’elles tentent de nettoyer ces plaques, ce processus déclenche une chaîne de réactions néfastes. Les astrocytes absorbent les plaques par autophagie et les dégradent, mais cette dégradation entraîne une surproduction de GABA, un neurotransmetteur qui réduit l’activité cérébrale et entraîne des troubles de la mémoire. De plus, ce processus génère du peroxyde d’hydrogène, un sous-produit toxique qui cause davantage de dommages neuronaux et de neurodégénérescence. Les chercheurs ont donc cherché à identifier les enzymes responsables de cette production excessive de GABA, espérant trouver un moyen de bloquer sélectivement ses effets nocifs sans interférer avec d’autres fonctions cérébrales. Grâce à des analyses moléculaires, de l’imagerie microscopique et de l’électrophysiologie, ils ont identifié SIRT2 et ALDH1A1 comme des enzymes clés impliquées dans la surproduction de GABA chez les astrocytes affectés par la maladie d’Alzheimer. L’inhibition de l’expression astrocytaire de SIRT2 chez des souris modèles de la maladie d’Alzheimer a permis d’observer une récupération partielle de la mémoire et une réduction de la production de GABA. Cependant, la récupération n’a été que partielle et a principalement concerné la mémoire de travail, tandis que la mémoire spatiale n’a pas montré d’amélioration. Cette inhibition a également maintenu la production de peroxyde d’hydrogène, indiquant que la dégénérescence neuronale pourrait continuer même si la production de GABA est réduite. Les résultats soulèvent ainsi de nouvelles questions sur la complexité des interactions entre les astrocytes et la neurodégénérescence dans le contexte du vieillissement et des maladies neurodégénératives. Source : https://www.fightaging.org/archives/2025/04/sirt2-inhibition-in-reactive-astrocytes-reduces-their-harmful-impact-in-alzheimers-disease/

La fonction glymphatique et son impact sur les troubles cognitifs légers et la maladie d’Alzheimer

Il y a environ une décennie, des chercheurs ont développé une méthode utilisant l’imagerie par résonance magnétique (IRM) pour mesurer le passage des fluides à travers les canaux reliant le cerveau au corps. L’IRM permet d’évaluer la diffusion des molécules d’eau dans de nombreux petits volumes de tissu scannés. Un flux apparent dans les canaux du système glymphatique, qui draine le liquide céphalorachidien du cerveau, peut être mesuré grâce à cette technique. Cette capacité à mesurer le flux de liquide glymphatique est cruciale, car le drainage du liquide céphalorachidien élimine les déchets métaboliques du cerveau. Ce processus de drainage se produit par différents canaux, mais le taux de flux diminue avec l’âge, ce qui pourrait entraîner une accumulation de déchets dans le cerveau et contribuer à l’inflammation et à la neurodégénérescence. Des études récentes ont lié une réduction du flux glymphatique à la progression de la maladie d’Alzheimer. Dans une étude ouverte, les chercheurs ont examiné la relation entre le flux glymphatique et l’apparition précoce des troubles cognitifs légers menant à l’Alzheimer. Ils ont trouvé que le drainage altéré du liquide céphalorachidien était associé à une perte de fonction cognitive et à une progression vers la maladie. Des signes prometteurs indiquent que la perte de flux glymphatique pourrait être due à une dysfonction des vaisseaux lymphatiques, qui ne se contractent pas efficacement pour maintenir un flux pulsatile. Des classes de médicaments pourraient restaurer cette capacité chez les vaisseaux glymphatiques âgés. De plus, des recherches sur la manipulation du comportement des vaisseaux sanguins pourraient offrir des options supplémentaires pour restaurer le drainage du liquide céphalorachidien. Le système glymphatique et le système lymphatique méningé jouent un rôle crucial dans l’élimination des déchets métaboliques du liquide céphalorachidien. Leur dysfonction, notamment en ce qui concerne l’accumulation d’amyloïde-β et de tau, pourrait contribuer à la maladie d’Alzheimer. Les chercheurs ont récemment développé une méthode pour mesurer la diffusivité le long de l’espace périvasculaire, permettant une évaluation non invasive et efficace de la fonction glymphatique. Cette approche quantifie la diffusion de l’eau dans l’espace périvasculaire le long des veines médullaires profondes et a été corrélée avec le drainage glymphatique. Des études récentes ont montré que l’indice ALPS, qui évalue la fonction glymphatique, est associé au déclin cognitif et aux troubles neurologiques, et pourrait servir de biomarqueur pour les maladies neurodégénératives. Cependant, aucune étude n’a été réalisée sur l’association de l’indice ALPS avec les troubles cognitifs légers et leur progression vers la maladie d’Alzheimer. Dans une étude incluant 519 adultes, les chercheurs ont mesuré la fonction glymphatique par l’indice ALPS au départ, puis ont suivi les participants pendant une durée médiane de 3,6 ans. Les résultats ont montré que les participants avec un indice ALPS plus élevé avaient un risque réduit de développer des troubles cognitifs légers et que cet indice retardait la progression vers la maladie d’Alzheimer d’environ 3,5 ans. En conclusion, un indice ALPS élevé diminue le risque de troubles cognitifs légers et retarde la progression vers la maladie d’Alzheimer, ce qui a des implications importantes pour la compréhension et le traitement de ces maladies neurodégénératives. Source : https://www.fightaging.org/archives/2025/04/reduced-glymphatic-flow-of-cerebrospinal-fluid-correlates-with-risk-of-cognitive-impairment/