Étiquette : Maladie d’Alzheimer

Le rôle des microglies et du récepteur ADGRG1 dans la lutte contre la maladie d’Alzheimer

Les récepteurs spécifiques présents à la surface des cellules immunitaires jouent un rôle crucial dans l’ingestion et l’élimination des déchets métaboliques. Ces récepteurs, qui sont des protéines produites par les mécanismes habituels de l’expression génique, voient leur quantité varier selon l’âge et les circonstances, en raison des régulations épigénétiques de l’expression des gènes. Cette variation influence la capacité des cellules immunitaires à agir contre des cibles spécifiques. Des chercheurs ont étudié la capacité des cellules immunitaires innées, appelées microglies, à éliminer l’excès d’amyloïde-β dans le cerveau, constatant que cette capacité dépendait de l’expression d’un récepteur nommé ADGRG1. Dans les cas graves de la maladie d’Alzheimer, les microglies présentent une insuffisance d’ADGRG1, ce qui les empêche de nettoyer efficacement les plaques amyloïdes. Bien que la question de savoir si cette insuffisance est une cause contribuant à la maladie d’Alzheimer ou un effet secondaire reste à prouver, il existe déjà de nombreuses données suggérant que la dysfonction des microglies est un facteur important dans les maladies neurodégénératives. En effet, dans la maladie d’Alzheimer, les protéines telles que l’amyloïde bêta s’agglutinent en plaques qui endommagent le cerveau. Cependant, chez certaines personnes, les microglies sont capables de décomposer ces protéines avant qu’elles ne causent des dommages, entraînant ainsi des symptômes plus légers. Les chercheurs ont identifié une protéine, l’ADGRG1, qui permet aux microglies de digérer ces plaques. L’élimination de cette protéine chez des souris a conduit à une accumulation rapide des plaques, à une neurodégénérescence et à des problèmes de mémoire et d’apprentissage. Lors d’une réanalyse d’une étude antérieure sur l’expression génique dans le cerveau humain, il a été constaté que les individus décédés avec des symptômes légers d’Alzheimer avaient des microglies riches en récepteurs ADGRG1, indiquant que ces microglies avaient bien fonctionné pour contrôler la maladie. En revanche, ceux qui sont morts de la maladie d’Alzheimer sévère avaient peu de récepteurs, ce qui favorisait la prolifération des plaques. L’ADGRG1 appartient à une grande famille de récepteurs, les récepteurs couplés aux protéines G, souvent ciblés dans le développement de médicaments, ce qui laisse présager une rapide translation de cette découverte en nouvelles thérapies. Source : https://www.fightaging.org/archives/2025/08/adgrg1-in-microglia-facilitates-clearance-of-amyloid-in-the-aging-brain/

Développement d’une horloge transcriptomique pour estimer l’âge cérébral et identifier des interventions contre la neurodégénérescence

Les chercheurs ont développé une horloge basée sur la transcription pour estimer l’âge cérébral, utilisée pour identifier d’éventuelles interventions contre la neurodégénérescence liée à l’âge. Bien que le vieillissement cérébral et la neurodégénérescence soient étroitement liés, ils ne sont pas identiques. Des travaux antérieurs ont montré que des approches visant à traiter le vieillissement cérébral, comme l’utilisation de facteurs de Yamanaka pour faciliter le rajeunissement épigénétique, offrent de meilleurs résultats dans les modèles. Cependant, il est difficile de trouver des approches sûres et efficaces pour les humains. Les chercheurs ont noté des distinctions entre les approches transcriptomiques et protéomiques, qui mesurent l’expression de l’ARN et des protéines, et les approches épigénétiques qui mesurent la méthylation de l’ADN. Bien que les épigénétique soient plus stables et meilleures pour estimer l’âge, cette horloge transcriptomique se concentre sur l’identification des changements dans la fonction cellulaire, plus facilement interprétables. L’équipe avait précédemment créé une horloge similaire pour la peau, mais c’est leur première exploration pour le cerveau. Pour générer leur horloge, ils ont utilisé des données bulk provenant de plusieurs grandes bases de données, comprenant des données liées à la maladie d’Alzheimer, un projet d’expression tissulaire et une étude sur les lésions cérébrales traumatiques. Au total, 778 personnes uniques (toutes en bonne santé, avec un âge variant de 20 à 97 ans) ont été étudiées, résultant en 2 458 échantillons et 43 840 profils transcriptionnels. Leur horloge utilise les transcriptions de 365 gènes pour évaluer comment les interventions pourraient affecter le cerveau. Bien que ce ne soit pas une horloge épigénétique, elle s’est révélée très précise pour estimer l’âge chronologique. Les résultats ont montré une erreur moyenne de 2,55 ans pour l’ensemble de test, et une validation externe a trouvé une déviation d’environ 6 ans. De plus, parmi les 365 gènes, 91 étaient spécifiques aux processus cérébraux, avec une fonctionnalité synaptique fréquemment observée. Un lien significatif a été trouvé entre la neuropathologie et le vieillissement transcriptomique cérébral ; les personnes atteintes de troubles neurodégénératifs avaient des cerveaux plus âgés selon cette horloge. Les chercheurs ont ensuite utilisé des ensembles de données de perturbations chimiques et génétiques pour identifier leurs impacts sur le transcriptome, découvrant 4 047 perturbations affectant les neurones et 5 770 les progéniteurs neuraux. Bien qu’il soit plus facile d’accélérer le vieillissement que de rajeunir, 971 perturbations ont signalé un rajeunissement des progéniteurs neuraux et 68 pour les neurones. Parmi les rajeunisseurs les plus puissants pour les progéniteurs neuraux étaient BGT-226 et WYE-354, inhibiteurs de mTOR. D’autres rajeunisseurs identifiés incluent des médicaments approuvés pour la leucémie et des composés expérimentaux. Certaines perturbations bénéfiques étaient directement liées aux caractéristiques connues du vieillissement. Par exemple, des composés anti-inflammatoires ont été prédits pour réduire l’âge transcriptomique. Les chercheurs ont testé une combinaison de trois composés chez des souris de 18 mois, ce qui a semblé réduire leur anxiété et a entraîné des changements significatifs au niveau transcriptomique, suggérant un rajeunissement fonctionnel. Cependant, cette combinaison n’a pas été évaluée pour une utilisation humaine et des recherches plus approfondies sont nécessaires pour déterminer si cette approche mènera à la découverte ou au repositionnement de nouveaux médicaments pour ralentir ou inverser certains aspects du vieillissement cérébral. Source : https://www.lifespan.io/news/a-brain-clock-for-finding-rejuvenating-medications/?utm_source=rss&utm_medium=rss&utm_campaign=a-brain-clock-for-finding-rejuvenating-medications

Lutter contre le Vieillissement : Avancées Scientifiques et Perspectives

Fight Aging! est une publication qui vise à mettre fin aux maladies liées à l’âge en utilisant les mécanismes de vieillissement sous le contrôle de la médecine moderne. Cette newsletter hebdomadaire est envoyée à des milliers d’abonnés intéressés. Le fondateur de Fight Aging!, Reason, propose également des services de conseil stratégique dans le secteur de la longévité pour les investisseurs et entrepreneurs. Le contenu de la newsletter aborde divers sujets liés au vieillissement, notamment la perte de sélénoprotéine P dans les macrophages et son impact sur la régénération musculaire, la lipase acide lysosomale et la maladie d’Alzheimer, ainsi que la sénescence cellulaire des ostéoblastes comme cause de l’ostéoporose. Les recherches révèlent que l’âge altère les processus de régénération musculaire, perturbe les rythmes circadiens chez les patients atteints de la maladie de Parkinson, et qu’une réponse hypoxique pourrait ralentir le vieillissement. Des études montrent également que des thérapies géniques pourraient traiter le vieillissement, en ciblant des marqueurs spécifiques du vieillissement biologique. Les chercheurs examinent l’impact de l’expression accrue de PAI-1 sur le vieillissement dégénératif, ainsi que les effets négatifs d’un excès de klotho sur le risque de cancer chez les survivants. La recherche sur le vieillissement des intestins est également mise en avant, soulignant son rôle dans le vieillissement systémique. La newsletter vise à sensibiliser et à partager des informations sur les avancées scientifiques dans la lutte contre le vieillissement et les maladies qui en découlent. Source : https://www.fightaging.org/archives/2025/08/fight-aging-newsletter-august-4th-2025/

Partenariat entre Alamar Bio et une étude allemande sur le vieillissement pour découvrir des biomarqueurs protéiques liés à l’inflammation et à la neurodégénérescence

La société Alamar Biosciences, spécialisée dans la protéomique de précision, s’est associée au Centre allemand des maladies neurodégénératives (DZNE) pour appliquer sa technologie à l’une des études de vieillissement basées sur la population les plus complètes au monde, l’étude Rhineland. Cette collaboration permettra aux chercheurs d’analyser 23 000 échantillons de plasma à la recherche de biomarqueurs protéiques associés au vieillissement en bonne santé, à l’inflammation et aux maladies neurodégénératives. L’étude Rhineland est conçue pour suivre des milliers d’individus sur plusieurs décennies, en combinant des données cliniques, d’imagerie, génétiques et liées au mode de vie pour comprendre les facteurs biologiques et environnementaux influençant la santé cérébrale et le développement des maladies. En intégrant le profilage protéomique dans cet ensemble de données, les chercheurs visent à détecter des changements moléculaires précoces liés au déclin cognitif et à la démence, améliorant ainsi la connaissance des trajectoires de vieillissement et la stratification des risques pour des conditions telles que la maladie d’Alzheimer. Le professeur Monique Breteler, investigateur principal de l’étude, a déclaré que la compréhension du vieillissement et de la démence nécessite à la fois une technologie avancée et des cohortes profondément caractérisées. L’intégration des panneaux multiplex d’Alamar dans leur recherche ouvre de nouvelles opportunités pour décoder les signatures moléculaires du vieillissement cérébral. La technologie d’Alamar est conçue pour mesurer des centaines de protéines associées à la santé cérébrale en utilisant de très petits volumes de sang, offrant à la fois une grande sensibilité et spécificité. Une caractéristique clé est sa capacité à différencier le tau phosphorylé d’origine cérébrale du tau phosphorylé total dans le plasma, une capacité qui peut fournir des informations précoces sur les processus pathologiques sous-jacents aux maladies neurodégénératives. En parallèle, la technologie de l’entreprise permet l’analyse détaillée des protéines liées à l’immunité, soutenant la recherche sur l’influence de l’inflammation sur le vieillissement et la neurodégénérescence. Le PDG d’Alamar, Dr Yuling Luo, a salué ce partenariat comme un « étape majeure » pour la recherche sur le vieillissement et la démence. En combinant la sensibilité inégalée de NULISA et la profondeur de l’étude Rhineland, ils espèrent découvrir de nouveaux biomarqueurs protéiques révélant les trajectoires de la santé cognitive et la progression des maladies dans les populations vieillissantes. La collaboration vise à tirer parti des avancées techniques d’Alamar et de la profonde caractérisation de l’étude Rhineland pour accélérer la découverte de biomarqueurs et le diagnostic de précision. Il est espéré qu’en combinant les données protéomiques longitudinales avec les informations d’imagerie, génétiques et cliniques existantes, les chercheurs pourront suivre les changements moléculaires au fil du temps, révéler les signatures précoces de la maladie et informer le développement d’interventions ciblées pour les troubles cérébraux liés à l’âge. Source : https://longevity.technology/news/new-proteomics-partnership-seeks-to-decode-brain-aging/

La Lipase Acide Lysosomale : Un Lien Crucial entre le Vieillissement, le Métabolisme Lipidique et la Maladie d’Alzheimer

Le cerveau vieillissant subit de nombreux changements au niveau de la biochimie cellulaire, dont un grand nombre sont nocifs. Ces modifications interagissent de manière complexe, rendant leur compréhension difficile. Alors que certaines recherches se concentrent sur des zones déjà explorées de la biochimie cérébrale, il devient évident que l’attention devrait également se porter sur les aspects moins connus de cette discipline. Un article récent illustre cette approche en se penchant sur la lipase acide lysosomale, une enzyme dont le dysfonctionnement est lié à des conditions neurodégénératives. La déficience en lipase acide lysosomale, qui empêche l’expression ou la fonction de cette enzyme, a été étudiée depuis longtemps et a conduit à des thérapies protéiques recombinantes pour traiter cette maladie rare. En outre, des recherches ont montré que des dysfonctionnements dans le métabolisme lipidique peuvent jouer un rôle dans le développement de la maladie d’Alzheimer (AD). L’importance de ces travaux réside dans la connexion entre la recherche sur le métabolisme lipidique et les maladies neurodégénératives, en mettant en lumière les liens entre la déficience en lipase acide lysosomale et la progression de l’AD. Environ 90 % des cas d’AD sont sporadiques, souvent associés à des facteurs de risque tels que le tabagisme, l’alcoolisme, le diabète, l’hypertension et l’obésité. Ces facteurs de risque contribuent à une accumulation anormale de protéines amyloïdes dans le cerveau, ce qui est caractéristique de la maladie. Les recherches ont montré que des altérations dans le métabolisme lipidique et le fonctionnement des lysosomes sont à l’origine de cette accumulation, mais les mécanismes précis restent encore à découvrir. En étudiant les effets de l’alcool et de l’obésité sur la pathogénie de l’AD, des chercheurs ont trouvé que l’accumulation de lipides lysosomaux neuronaux est un facteur clé. La perte de la lipase acide lysosomale, qui interviendrait dans ces processus, pourrait être un point d’intervention thérapeutique pour prévenir ou traiter l’AD. En somme, la recherche sur la déficience en lipase acide lysosomale et son impact sur le métabolisme lipidique pourrait ouvrir la voie à de nouvelles stratégies pour lutter contre la maladie d’Alzheimer. Source : https://www.fightaging.org/archives/2025/07/reduced-lysosomal-acid-lipase-in-the-pathology-alzheimers-disease/

Le rôle des protéines mal repliées dans le déclin cognitif : nouvelles perspectives thérapeutiques

Après la création d’une protéine dans la cellule, celle-ci doit être repliée dans la bonne conformation pour fonctionner correctement. Un ensemble complexe de mécanismes est dédié à la fois à l’atteinte d’un repliement correct et à l’élimination des protéines mal repliées lorsque le processus échoue. La recherche sur le repliement incorrect des protéines se concentre principalement sur les protéines qui forment des agrégats solides lorsqu’elles sont mal repliées, car cette pathologie est évidente et mesurable, notamment dans des conditions telles que la maladie d’Alzheimer et les différentes formes d’amyloïdose. Cependant, il existe de nombreuses autres protéines mal repliées qui restent solubles. Des chercheurs ont noté que des centaines de protéines mal repliées peuvent être trouvées dans le cerveau de rats âgés, suggérant que leur rôle collectif dans la neurodégénérescence est significatif. De nombreuses études ont révélé que le réseau de protéostasie, qui maintient les protéines correctement repliées, est altéré avec l’âge, ce qui implique qu’il pourrait y avoir de nombreuses protéines subissant des modifications structurelles au fil du temps. Dans cette étude, une spectrométrie de masse de protéolyse limitée (LiP-MS) a été employée pour identifier les protéines présentant des variations dans leur structure dans l’hippocampe de rats âgés, avec ou sans déficience cognitive, que les chercheurs ont désignées sous le nom de protéines CASC. Au total, 215 protéines CASC ont été identifiées dans la région CA1 de l’hippocampe. La recherche sur le vieillissement, la démence et les maladies neurodégénératives a depuis longtemps établi un lien entre ces processus pathologiques et le repliement incorrect des protéines. Cependant, l’accent a historiquement été mis sur les protéines formant des amyloïdes ou d’autres agrégats insolubles. Cette étude a ciblé la fraction soluble du protéome hippocampique et a utilisé une méthodologie capable de détecter de manière sensible des changements subtils dans la structure des protéines. Les résultats indiquent que le repliement incorrect des protéines pourrait être une caractéristique plus répandue du déclin cognitif que ce que l’on pensait auparavant, et que bon nombre de ces formes mal repliées persistent sous forme soluble. Cette découverte suggère qu’il pourrait exister des pistes auparavant non identifiées pour des cibles thérapeutiques potentielles et des biomarqueurs diagnostiques pour le déclin cognitif, au-delà du petit sous-ensemble de protéines formant des amyloïdes souvent étudiées. Bien entendu, ces interventions devraient être spécifiques à la conformation, ce qui crée des opportunités et des défis supplémentaires. Source : https://www.fightaging.org/archives/2025/07/protein-misfolding-is-pervasive-in-the-aging-brain/

Rôle des Microglies Sénescentes dans la Maladie d’Alzheimer et l’Efficacité de la Delphinidine

Les microglies sont des cellules immunitaires innées du cerveau, comparables aux macrophages dans le reste du corps. Des recherches récentes montrent que le comportement inflammatoire maladaptatif des microglies dans le cerveau vieillissant joue un rôle crucial dans l’apparition et la progression de maladies neurodégénératives comme la maladie d’Alzheimer. Certaines microglies deviennent inflammatoires en réponse à un environnement endommagé dans le tissu cérébral âgé, tandis que d’autres deviennent sénescentes, cessant de se répliquer et se concentrant sur la sécrétion de signaux inflammatoires perturbateurs, nocifs pour la structure et la fonction des tissus à long terme. De plus, des preuves émergentes suggèrent que les microglies sénescentes contribuent à la pathologie des β-amyloïdes et à la neuroinflammation dans la maladie d’Alzheimer. Cibler les cellules sénescentes avec des composés d’origine naturelle présentant une cytotoxicité minimale est une stratégie thérapeutique prometteuse. Cette étude visait à examiner si la delphinidine, un anthocyanine naturelle, peut atténuer les pathologies liées à la maladie d’Alzheimer en réduisant la sénescence microgliale et en élucidant les mécanismes moléculaires sous-jacents. Des souris APP/PS1 et des souris âgées naturellement ont été utilisées pour l’étude. Le traitement à la delphinidine a significativement amélioré les déficits cognitifs, la perte de synapses, et les plaques de peptides amyloïdes-β chez les souris APP/PS1, en régulant à la baisse la signature génique des microglies sénescentes, empêchant la sénescence cellulaire, y compris l’activité de la β-galactosidase associée à la sénescence, le phénotype sécrétoire associé à la sénescence (SASP), le stress oxydatif, et les marqueurs p21 et p16. De plus, le traitement à la delphinidine a également prévenu la sénescence microgliale chez les souris âgées naturellement. Des recherches supplémentaires ont indiqué que le traitement à la delphinidine améliore la voie de signalisation AMPK/SIRT1, et il a été constaté que la delphinidine interagissait directement avec SIRT1. Il est à noter que l’inhibiteur d’AMPK, le composé C, inversait l’effet protecteur de la delphinidine contre la sénescence microgliale. Ces résultats soulignent la delphinidine comme un agent anti-âge naturel prometteur contre le développement du vieillissement et des maladies liées à l’âge. Source : https://www.fightaging.org/archives/2025/07/reducing-microglial-senescence-slows-pathology-in-an-alzheimers-disease-mouse-model/

Rôle des microglies et dysfonction mitochondriale dans les maladies neurodégénératives liées à l’âge

Les microglies sont des cellules immunitaires innées résidant dans le cerveau, jouant un rôle crucial dans le maintien de l’homéostasie cérébrale et dans le bon fonctionnement des réseaux neuronaux. En vieillissant, ces cellules deviennent plus inflammatoires et actives, ce qui peut contribuer à l’apparition et à la progression de conditions neurodégénératives, telles que la maladie d’Alzheimer. Une des causes connues de cette inflammation microgliale est la dysfonction mitochondriale qui se produit au niveau cellulaire. Pour évaluer l’impact de la dysfonction mitochondriale sur les microglies, il serait idéal de corriger cette dysfonction, cependant, les approches actuellement disponibles pour améliorer la fonction mitochondriale, comme les dérivés de la vitamine B3, ne sont pas suffisamment puissantes. Des thérapies de transplantation mitochondriale pourraient être nécessaires pour déterminer si la correction des mitochondries peut ralentir ou inverser de manière significative les conditions neurodégénératives. Des études récentes ont mis en lumière que la dysfonction des microglies est impliquée dans la pathogenèse de diverses maladies neurodégénératives liées à l’âge. Le vieillissement et ces maladies sont liés à une altération de la fonction mitochondriale et à un changement métabolique des microglies, passant de la phosphorylation oxydative à la glycolyse, ce qui pourrait contribuer à une activation microgliale prolongée et à la neuroinflammation. De plus, la fuite de l’ADN mitochondrial dans le cytoplasme est impliquée dans l’activation des réponses inflammatoires et la perturbation de la fonction cérébrale. Cette revue résume les avancées récentes concernant les changements métaboliques des microglies, notamment la glycolyse et la dysfonction mitochondriale, et explore le potentiel de cibler le métabolisme microglial comme approche thérapeutique novatrice pour les modifications de la fonction cérébrale et les maladies neurodégénératives associées au vieillissement. Source : https://www.fightaging.org/archives/2025/06/aged-microglia-exhibit-mitochondrial-dysfunction/

Utilisation des microglies génétiquement modifiées pour la délivrance de protéines thérapeutiques dans le cerveau

Dans l’article publié dans la revue *Cell Stem Cell*, des chercheurs ont exploré comment des microglies génétiquement modifiées peuvent être utilisées pour délivrer des protéines thérapeutiques dans le cerveau. Un des défis majeurs dans le traitement des maladies neurologiques est la barrière hématoencéphalique (BHE), qui régule strictement les substances pouvant accéder au cerveau, tout en protégeant ce dernier des contaminants. Cependant, cette barrière représente également un obstacle pour l’administration de médicaments, ce qui complique le traitement de diverses pathologies. Les méthodes traditionnelles pour contourner la BHE, telles que l’injection directe de médicaments ou de cellules souches neurales, présentent des inconvénients, comme le risque de formation de tumeurs ou d’inflammations. Les chercheurs ont donc opté pour les microglies, qui sont des cellules auxiliaires du cerveau, comme vecteurs thérapeutiques. Ces cellules ne forment pas de tumeurs et ont montré une capacité d’engraftement efficace dans des modèles animaux.

Les scientifiques ont développé un modèle murin dépourvu de microglies, accumulant des plaques amyloïdes, pour tester leur approche. Ils ont créé des microglies dérivées de cellules souches pluripotentes induites (iPSCs) qui produisent la néprilysine, une enzyme capable de dégrader les peptides amyloïdes, en réponse à la présence de plaques grâce au récepteur CD9. Les résultats initiaux ont montré que ces microglies répondaient spécifiquement aux plaques sans s’exprimer dans d’autres régions du cerveau. De plus, l’approche de sécrétion de la néprilysine (sNEP), par rapport à la production membranaire (NEP), a permis une distribution améliorée de ce composé thérapeutique.

Les microglies sNEP ont montré une capacité accrue à phagocyter les amyloïdes, consommant ces derniers deux fois plus rapidement que les microglies humaines normales. Dans le modèle murin, ces microglies ont réussi à pénétrer et dégrader les plaques amyloïdes, réduisant ainsi la charge en amyloïde et la taille des plaques dans le cerveau. Parallèlement, les microglies sNEP ont contribué à la préservation des synapses, mesurée par le niveau de la protéine synaptophysine (SYP), dont les niveaux ont été restaurés à ceux d’un groupe témoin. Les souris modèles, semblables aux patients atteints de la maladie d’Alzheimer, ont également montré une réduction de l’astrogliose dans l’hippocampe, bien que cette réduction ne soit pas identique à celle observée dans le groupe témoin.

L’étude a également démontré que d’autres cibles de la néprilysine n’étaient pas affectées dans des régions non ciblées du cerveau, confirmant l’efficacité de la localisation de l’approche. Les chercheurs ont trouvé que l’engraftement généralisé des microglies sNEP n’était pas nécessaire pour obtenir des réductions des espèces amyloïdes dans tout le cerveau ; des injections précises dans l’hippocampe et le cortex suffisaient. De plus, la réduction des amyloïdes était accompagnée d’une diminution significative de l’inflammation, avec des niveaux de protéines inflammatoires, comme les interleukines, similaires à ceux du groupe témoin.

Bien que cette recherche soit à un stade précoce et considérée comme une preuve de principe, les auteurs soulignent que chaque élément de l’étude a été soigneusement contrôlé à un niveau génétique, sans impliquer de souris sauvages. La question de savoir si les microglies iPSC peuvent être adaptées à une utilisation humaine demeure ouverte, mais si cela s’avère possible, cette approche pourrait révolutionner la manière de délivrer des médicaments actuellement inaccessibles pour le traitement des maladies neurologiques. Source : https://www.lifespan.io/news/engineering-microglia-to-deliver-an-anti-alzheimers-drug/?utm_source=rss&utm_medium=rss&utm_campaign=engineering-microglia-to-deliver-an-anti-alzheimers-drug

L’impact du microbiome intestinal et buccal sur les maladies neurodégénératives

Ces dernières années, des chercheurs ont établi des corrélations entre l’état du microbiome intestinal et le développement de conditions neurodégénératives telles que la maladie d’Alzheimer et la maladie de Parkinson. Le déséquilibre des populations microbiennes constituant le microbiome intestinal change avec l’âge, favorisant une inflammation et une dysfonction accrues dans tout le corps. Il est également possible que le vieillissement du système immunitaire contribue à cette dysbiose intestinale et à la neurodégénérescence. Comprendre dans quelle mesure des mécanismes spécifiques sont responsables de conditions particulières est complexe, compte tenu de la complexité du vieillissement et de ses conséquences. Néanmoins, il y a de bonnes raisons de penser qu’un microbiome intestinal âgé est activement nuisible. Les chercheurs notent également que la migration inappropriée de bactéries buccales dans l’intestin pourrait jouer un rôle dans le vieillissement du microbiome intestinal et son impact sur le vieillissement du cerveau. Le microbiome humain est de plus en plus reconnu pour son rôle crucial dans le développement et la progression des maladies neurodégénératives. Bien que l’axe intestin-cerveau ait été largement étudié, la contribution du microbiome buccal et du tropisme bucco-intestinal dans la neurodégénérescence a été largement négligée. Le déclin cognitif est courant dans les maladies neurodégénératives et se développe sur un spectre. Dans les cas de maladie de Parkinson, le déclin cognitif est l’un des symptômes non moteurs les plus fréquents, mais son développement mécaniste reste flou, compliquant le diagnostic précoce des individus à risque. Dans cette étude, 228 échantillons de métagénomique par shotgun du microbiome intestinal et buccal ont été générés chez des patients atteints de la maladie de Parkinson avec un déclin cognitif léger ou une démence, ainsi que dans un groupe témoin sain, afin d’étudier le rôle des microbiomes intestinal et buccal sur le déclin cognitif dans la maladie de Parkinson. En plus de révéler des signatures compositionnelles et fonctionnelles, le rôle des pathobiontes et des voies métaboliques dérégulées du microbiome buccal et intestinal dans le déclin cognitif léger et la démence a été mis en évidence, ainsi que l’importance de la translocation bucco-intestinale dans l’augmentation de l’abondance des facteurs de virulence dans la maladie de Parkinson et le déclin cognitif. La virulence bucco-intestinale a été intégrée avec la métaprotéomique de la salive, démontrant son rôle potentiel dans la dysfonction de l’immunité de l’hôte et des cellules endothéliales cérébrales. Nos résultats soulignent l’importance de l’axe bucco-intestinal-cerveau et son potentiel pour découvrir de nouveaux biomarqueurs pour la maladie de Parkinson et le déclin cognitif. Source : https://www.fightaging.org/archives/2025/06/further-analysis-of-relationships-between-the-gut-microbiome-and-parkinsons-disease/