Étiquette : inflammation chronique

FOXO3 et son rôle dans la régénération cellulaire et la longévité : résultats prometteurs chez les singes âgés

Le gène FOXO3 est reconnu comme un régulateur clé de la longévité, de la résistance au stress et du maintien des cellules souches. Des variantes de ce gène sont associées à une longévité accrue, probablement en raison d’une distribution modifiée des différentes formes de la protéine FOXO3. Une étude récente a permis d’ingénier une lignée cellulaire humaine pluripotente en modifiant favorablement la séquence de FOXO3, ce qui a permis de différencier ces cellules en cellules progénitrices mésenchymateuses. Lors de l’injection de ces cellules dans des singes âgés, une amélioration générale de la santé et des fonctions a été observée, semblable à celle d’une thérapie par cellules souches. Cependant, les mécanismes sous-jacents à ces effets bénéfiques restent incertains, bien que la suppression de l’inflammation chronique liée à l’âge soit suggérée comme un facteur clé. En effet, la plupart des cellules transplantées meurent rapidement, et les effets positifs proviennent principalement des signaux qu’elles produisent, modifiant temporairement le comportement des cellules natives. L’issue la plus fiable observée est une réduction de l’inflammation.

Dans un effort pionnier pour reprogrammer les circuits génétiques liés au vieillissement, des chercheurs ont introduit des mutations phospho-null (S253A et S315A) dans le locus FOXO3. Cela a permis de générer des cellules souches embryonnaires humaines qui, lors de leur différenciation en cellules mésenchymateuses, ont donné naissance à des cellules progénitrices dotées d’une résilience accrue au stress et d’une capacité de renouvellement autonome, désignées sous le nom de cellules résistantes à la sénescence (SRCs).

L’administration intraveineuse de SRCs à des singes cynomolgus âgés sur une période de 44 semaines a entraîné une série de changements réparateurs. Comparées aux cellules mésenchymateuses de type sauvage, les SRCs ont inversé plus efficacement les modifications liées à l’âge dans le cerveau, le système immunitaire, les os, la peau et les tissus reproducteurs. Des évaluations multi-modales, incluant des analyses comportementales, histologiques, transcriptomiques et méthylomiques, ont systématiquement indiqué un renversement de l’âge biologique.

Il est à noter que les singes traités aux SRCs ont montré une amélioration de la fonction cognitive, une restauration de l’architecture corticale et une connectivité hippocampique améliorée. La densité osseuse a augmenté, la dégénérescence parodontal a été atténuée, et les profils transcriptionnels des cellules immunitaires ont évolué vers un état juvénile. Au niveau moléculaire, les horloges d’âge transcriptomiques ont montré un renversement moyen de 3,34 ans grâce aux SRCs, tandis que les horloges de méthylation de l’ADN ont corroboré ces effets dans plusieurs tissus. De plus, une restauration de la santé du système reproducteur a été observée. Chez les singes mâles et femelles, le traitement par SRCs a réduit les marqueurs sénescents, amélioré la préservation des cellules germinales et inversé l’horloge de vieillissement transcriptionnelle dans les ovaires et les testicules. L’analyse transcriptomique unicellulaire a révélé que les ovocytes, les cellules granulosa et les cellules germinales testiculaires ont particulièrement bien répondu, se rajeunissant jusqu’à 5-6 ans. Source : https://www.fightaging.org/archives/2025/08/mesenchymal-progenitor-cells-with-modified-foxo3-improve-health-in-aged-monkeys/

L’impact de l’âge phénotypique et de l’activité physique sur la fonction cognitive des personnes âgées

Dans l’article de recherche publié aujourd’hui en accès libre, les chercheurs examinent les corrélations entre l’âge phénotypique et la fonction cognitive chez les personnes âgées. L’âge phénotypique est un indicateur du vieillissement qui utilise un petit nombre de mesures de chimie sanguine, telles que des portions d’une numération sanguine complète, la créatine et la protéine C-réactive. L’avantage majeur de cette approche par rapport aux horloges épigénétiques est qu’elle permet d’observer les changements suite à une intervention et de théoriser sur leur signification. Par exemple, une diminution des niveaux de protéine C-réactive pendant une réduction de l’âge phénotypique pourrait indiquer des effets positifs sur l’inflammation chronique caractéristique de la vieillesse. Ce type de raisonnement n’est pas encore possible avec les horloges épigénétiques, car bien que l’on puisse observer les sites CpG sur le génome qui sont différemment méthylés, il n’y a pas de lien direct avec le reste de la biologie humaine, ce qui en fait une impasse.

L’un des résultats les plus intéressants du présent étude est que l’âge chronologique ne corrèle pas avec la fonction cognitive. Cela peut être perçu comme un signal d’espoir. Le déclin cognitif n’est pas inévitable au cours d’une vie humaine normale, même en tenant compte des mécanismes de vieillissement dégénératif et du manque d’interventions pour ralentir le vieillissement au-delà de l’exercice et des choix de mode de vie. L’âge phénotypique accéléré corrèle avec un déclin de la fonction cognitive dans la population étudiée, ce qui souligne l’importance de prendre soin de sa santé à long terme. Les données suggèrent que ces différences sont principalement liées à l’exercice et à la condition physique.

Dans cette étude, la relation entre l’âge phénotypique et l’accélération de l’âge phénotypique par rapport à la performance cognitive a été explorée, ainsi que le rôle modérateur de l’activité physique. Des données provenant de l’Enquête nationale sur la santé et la nutrition ont été utilisées, analysant 1 298 participants âgés de 60 ans et plus. L’âge phénotypique a été calculé à l’aide de 10 biomarqueurs, et l’accélération de l’âge phénotypique a été dérivée de la différence entre l’âge chronologique et l’âge phénotypique. La performance cognitive a été évaluée à l’aide du test de substitution de symboles numériques. Les résultats ont montré que les scores d’âge phénotypique et d’accélération d’âge phénotypique étaient significativement associés à une faible performance cognitive. Les quartiles les plus élevés d’âge phénotypique et d’accélération d’âge phénotypique étaient associés à des cotes plus élevées de faible performance cognitive. En revanche, l’âge chronologique n’a pas montré de relation significative avec la performance cognitive. L’activité physique a été identifiée comme un modérateur de l’association entre l’accélération de l’âge phénotypique et la performance cognitive, atténuant ainsi l’impact du vieillissement accéléré sur la cognition. En conclusion, l’accélération de l’âge phénotypique et l’activité physique sont des prédicteurs significatifs du déclin cognitif, l’activité physique offrant un effet protecteur contre l’impact de l’âge phénotypique accéléré sur la cognition. Source : https://www.fightaging.org/archives/2025/08/chronological-age-doesnt-correlate-well-with-cognitive-decline/

Impact du vieillissement sur la régénération musculaire : rôle des macrophages et de la sélénoprotéine P

Le vieillissement a un impact négatif sur la régénération musculaire pour des raisons qui ne sont pas complètement comprises. Cette incompréhension découle en partie du fait que la régénération musculaire implique un ensemble complexe d’interactions entre différents types de cellules, dont les comportements évoluent au fil du temps en réponse aux blessures. Il est bien établi que le vieillissement altère l’activité des cellules souches musculaires, modifie les niches où résident ces cellules, et perturbe le comportement des cellules immunitaires. Les mécanismes de cette dégradation sont encore mal connus, mais il existe des points de départ pour la recherche. Par exemple, l’inflammation chronique liée à l’âge peut interférer avec la signalisation inflammatoire normale qui suit une blessure. Les chercheurs cherchent à identifier les mécanismes réglementaires spécifiques qui entraînent des réactions inadaptées des cellules dans les muscles âgés blessés, avec pour objectif le développement de thérapies ciblant ces mécanismes. Ces approches ne réparent pas les dommages sous-jacents, mais peuvent atténuer la réponse à ces dommages. Un article récent illustre ce type de recherche, en soulignant comment les macrophages dans les muscles âgés sont altérés, ce qui réduit leur capacité de régénération. Il a été observé qu’il y a une réduction de la sélénoprotéine P dans ces macrophages, et des expériences visant à inhiber ou à stimuler les niveaux de cette protéine montrent que cela peut respectivement diminuer ou augmenter la capacité régénérative. Cependant, le rôle de la sélénoprotéine P dans la biologie cellulaire n’est pas bien compris, bien qu’elle soit considérée comme une molécule antioxydante. L’article conclut que le vieillissement des cellules du niche des cellules souches musculaires est asynchrone et établit la sélénoprotéine P comme un facteur clé du déclin de la régénération musculaire liée à l’âge. En résumé, le vieillissement entraîne des modifications tant intrinsèques qu’extrinsèques qui affectent la régénération musculaire, rendant nécessaire une meilleure compréhension des interactions cellulaires et des mécanismes moléculaires en jeu. Source : https://www.fightaging.org/archives/2025/07/age-related-loss-of-selenoprotein-p-in-macrophages-impairs-muscle-regeneration/

Impact du vieillissement sur les niches des cellules souches hématopoïétiques et la fonction immunitaire

Le système immunitaire subit une diminution de son efficacité avec l’âge, en grande partie à cause de la dégradation des cellules souches hématopoïétiques présentes dans la moelle osseuse. Ces cellules sont essentielles pour la production de cellules immunitaires, mais elles deviennent progressivement endommagées et dysfonctionnelles. Ce déclin n’affecte pas seulement les cellules souches elles-mêmes, mais aussi leur environnement, connu sous le nom de niche, qui joue un rôle crucial dans leur fonctionnement. La niche cellulaire devient également endommagée avec l’âge, ce qui complique davantage la situation. Pour pallier cette dégradation, une approche consiste à introduire des cellules souches jeunes et non endommagées dans l’organisme, par exemple par le biais de cellules souches pluripotentes induites, dérivées d’un échantillon de tissu du patient. Bien que cette méthode soit déjà utilisée pour traiter certaines maladies graves via des greffes de cellules souches hématopoïétiques, le processus de préparation est stressant pour le patient et pourrait être amélioré pour rendre la procédure moins éprouvante. Cependant, le problème fondamental réside dans l’état vieillissant de la niche des cellules souches : il ne suffit pas de transplanter des cellules jeunes, car elles sont bloquées par une niche endommagée qui les contraint à adopter des caractéristiques proches de celles des cellules vieilles, rendant leur efficacité limitée. Ce phénomène est universel à toutes les populations de cellules souches. Des recherches récentes mettent en évidence que le vieillissement du niche des cellules souches hématopoïétiques est lié à divers dysfonctionnements du système immunitaire et à des problèmes de santé tels que l’inflammation chronique, une vulnérabilité accrue aux infections, le cancer et des maladies auto-immunes. L’accumulation d’adipocytes et des changements dans le microenvironnement moléculaire de la niche des cellules souches sont des facteurs qui influencent le développement et la fonction des cellules immunitaires. En particulier, l’impact de la niche vieillissante sur la fonction des cellules dendritiques, un type de cellule immunitaire, reste mal compris. La transplantation de cellules souches autologues hétérochroniques est considérée comme une intervention prometteuse pour prévenir les troubles liés à l’âge et prolonger la durée de vie en bonne santé. Cependant, certaines expériences sur des modèles murins n’ont pas produit les résultats escomptés, ce qui suggère que le problème réside dans la niche vieillissante des cellules souches. En réponse, des modèles in vitro de niches jeunes et âgées ont été développés pour examiner comment ces microenvironnements affectent la différenciation et la fonctionnalité des cellules dendritiques dérivées de la moelle osseuse. Les analyses des milieux conditionnés provenant des niches jeunes et âgées ont révélé que les niches âgées présentaient une augmentation de l’adiponectine, ce qui a été utilisé dans les protocoles de différenciation des cellules dendritiques. Les résultats ont montré que le microenvironnement des niches âgées favorise une activation prématurée des cellules dendritiques, marquée par une expression élevée de MHC de classe II et une capacité allostimulatoire accrue des cellules dendritiques à leurs stades immatures. Bien que la stimulation des cellules dendritiques par des lipopolysaccharides ait entraîné une augmentation de l’expression de CD86 dans les cellules provenant de la niche âgée, leur capacité allostimulatoire n’était pas supérieure à celle de leurs homologues issues de la niche jeune. L’analyse du profil des cytokines a révélé que les cellules dendritiques cultivées dans un milieu conditionné de niche âgée sécrétaient des niveaux significativement plus élevés d’IL-6, indiquant un état d’activation pro-inflammatoire accru. Ces résultats suggèrent que les changements liés à l’âge dans la niche des cellules souches hématopoïétiques peuvent altérer considérablement la fonctionnalité des cellules dendritiques en perturbant leur développement normal à partir des précurseurs de la moelle osseuse. Source : https://www.fightaging.org/archives/2025/07/the-aged-stem-cell-niche-obstructs-hematopoietic-stem-cell-rejuvenation-via-transplantation/

Essai clinique de MRT-8102 : un traitement innovant contre l’inflammation chronique

Monte Rosa Therapeutics, une société biopharmaceutique basée à Boston, a lancé un essai clinique de phase 1 pour évaluer MRT-8102, un dégradateur de colle moléculaire (Molecular Glue Degrader, MGD) conçu pour cibler la protéine NEK7, qui joue un rôle clé dans les conditions inflammatoires liées à l’inflammasome NLRP3. Cette thérapie expérimentale est développée comme un traitement oral visant à traiter diverses maladies associées à l’inflammation chronique. Les MGDs sont des petites molécules qui favorisent la dégradation de protéines cibles spécifiques dans les cellules, les reliant au système naturel d’élimination des protéines de la cellule, contrairement aux inhibiteurs conventionnels qui bloquent simplement l’activité de la protéine cible. MRT-8102 vise à dégrader NEK7, une protéine essentielle à l’activation de l’inflammasome NLRP3 et des cytokines pro-inflammatoires IL-1β et IL-6. La dérégulation de cette voie est liée à une large gamme de conditions, y compris les maladies cardiovasculaires, l’arthrose et des troubles neurologiques tels que la maladie de Parkinson et la maladie d’Alzheimer. NEK7 agit comme une protéine d’échafaudage qui interagit physiquement avec NLRP3, facilitant l’assemblage et l’activation de l’inflammasome. Sans NEK7, l’inflammasome NLRP3 ne peut pas se former ou s’activer efficacement, empêchant ainsi la signalisation en aval et la libération de cytokines pro-inflammatoires. Selon Monte Rosa, ses études précliniques ont démontré que MRT-8102 dégradait de manière sélective et durable NEK7, entraînant une suppression presque complète de la production d’IL-1β après stimulation des cellules immunitaires dans un modèle de primate non humain. L’entreprise affirme également que son médicament présente une marge de sécurité significative, dépassant 200 fois la dose thérapeutique humaine projetée lors des études de toxicologie. En plus d’évaluer la sécurité, la tolérabilité et la pharmacocinétique, l’essai de phase 1 étudiera des marqueurs pharmacodynamiques tels que les niveaux de protéine NEK7 et les réponses à l’activation de l’inflammasome. Une cohorte supplémentaire recrutera des individus présentant un risque cardiovasculaire élevé en raison de l’obésité et de niveaux accrus de protéine C-réactive (CRP). Ce groupe permettra d’évaluer les premiers effets biologiques sur une population avec inflammation systémique, en examinant les changements dans les niveaux de CRP et d’autres marqueurs inflammatoires pouvant signaler une activité thérapeutique précoce. Le PDG de Monte Rosa, Dr Markus Warmuth, a déclaré : « MRT-8102 est le seul MGD en phase clinique qui cible sélectivement NEK7, une protéine centrale à l’activation de l’inflammasome NLRP3 et à la dérégulation en aval d’IL-1β et d’IL-6 qui sous-tendent de nombreuses maladies inflammatoires. Nous croyons que MRT-8102 pourrait offrir une approche différenciée pour traiter ces maladies en raison de la puissance, de la sélectivité et de la pharmacodynamique durable observées dans nos études précliniques. » Les premiers résultats de l’essai en cours sont attendus dans la première moitié de 2026. Source : https://longevity.technology/news/protein-degrader-trial-targets-chronic-inflammation/

Développement d’EpInflammAge : Une nouvelle approche pour l’estimation de l’âge basée sur l’inflammation et l’épigénétique

Les chercheurs ont présenté une approche novatrice pour le développement d’une horloge épigénétique, qui repose sur un ensemble de données d’entraînement étendu. En utilisant des données épigénétiques, ils ont pu prédire des biomarqueurs cliniques, en l’occurrence des protéines circulantes mesurées dans un échantillon de sang, pertinentes pour l’inflammation chronique liée au vieillissement, qui évalue l’état inflammatoire du système immunitaire. Les biomarqueurs d’inflammation prédits ont ensuite servi de base pour estimer l’âge. Cette méthode de développement d’horloge présente l’avantage de produire des résultats plus explicables que la prédiction directe de l’âge à partir des données épigénétiques. Il sera probable que l’on observe davantage de ces horloges en deux étapes à l’avenir. Les chercheurs ont introduit EpInflammAge, un cadre d’apprentissage profond qui relie les aspects épigénétiques et inflammatoires du vieillissement. Les résultats ont démontré trois avancées clés : (1) la prédiction réussie des marqueurs inflammatoires à partir des données de méthylation de l’ADN, (2) une estimation précise de l’âge utilisant des profils inflammatoires synthétiques, et (3) une sensibilité robuste aux maladies à travers plusieurs conditions pathologiques. L’un des objectifs principaux de cette recherche était d’intégrer les deux caractéristiques du vieillissement – à savoir, les modifications épigénétiques et l’immunosénescence. Pour ce faire, une évaluation simultanée des données de méthylation de l’ADN et des niveaux de cytokines et de chimiokines a été effectuée. Des modèles ont été développés pour estimer les niveaux de marqueurs inflammatoires à partir des profils épigénétiques et leur performance a été évaluée sur un large échantillon de personnes en bonne santé et malades. Étant donné que la mesure de l’inflammation est cliniquement significative, le modèle développé permet d’acquérir des données épigénétiques et de prédire des biomarqueurs inflammatoires basés sur la méthylation. Cette avancée ouvre la voie à l’évaluation de l’inflammaging, caractérisée par une inflammation de bas grade associée à l’âge et aux maladies liées à l’âge. EpInflammAge atteint des performances compétitives par rapport à 34 modèles d’horloge épigénétique, avec une erreur absolue moyenne de 7 ans et un coefficient de corrélation de Pearson de 0,85 chez les témoins sains, tout en montrant une sensibilité robuste à travers plusieurs catégories de maladies. L’IA explicable a permis de révéler la contribution de chaque caractéristique à la prédiction de l’âge. La sensibilité à plusieurs maladies grâce à la combinaison de profils inflammatoires et épigénétiques est prometteuse tant pour la recherche que pour les applications cliniques. EpInflammAge est disponible en tant qu’outil web facile à utiliser, générant des estimations d’âge et des niveaux de paramètres inflammatoires à partir de données de méthylation, avec un rapport détaillé sur la contribution des variables d’entrée au résultat du modèle pour chaque échantillon. Source : https://www.fightaging.org/archives/2025/07/an-aging-clock-integrating-epigenetic-and-inflammatory-measures/

Accord stratégique entre Sironax et Novartis pour une technologie de livraison à travers la barrière hémato-encéphalique

Sironax, une entreprise de biotechnologie spécialisée dans le domaine de la longévité, a récemment annoncé un accord stratégique avec le géant pharmaceutique Novartis. Cet accord confère à Novartis une option exclusive d’acquérir la plateforme propriétaire de Sironax, conçue pour améliorer la livraison de traitements au travers de la barrière hémato-encéphalique (BHE). Cette étape permettra à Novartis d’évaluer le potentiel de la plateforme durant une période déterminée, après quoi l’entreprise pourra choisir d’acquérir les droits mondiaux complets. En contrepartie, Sironax pourrait recevoir jusqu’à 175 millions de dollars en paiements initiaux et à court terme.

Avec l’âge, des changements structurels et fonctionnels dans la BHE peuvent aggraver la progression de maladies et compliquer la délivrance de médicaments au cerveau. Trouver des moyens de contourner la nature restrictive de la BHE demeure un enjeu clé dans la gestion des troubles neurologiques liés à l’âge. Novartis semble croire que Sironax a réalisé des progrès dans ce domaine grâce à une plateforme visant à améliorer la pénétration cérébrale d’une variété de modalités thérapeutiques.

Robert Baloh, responsable des neurosciences et de la recherche biomédicale chez Novartis, a déclaré : « La livraison efficace de traitements à travers la barrière hémato-encéphalique reste l’un des défis les plus importants de la découverte de médicaments. Nous sommes ravis d’entrer dans cet accord avec Sironax pour explorer pleinement la promesse de la plateforme BDM, en tirant parti de notre expertise et de nos capacités en neurosciences pour développer des thérapies de prochaine génération pour les patients dans le besoin. »

Dans un communiqué, Sironax a précisé qu’elle conserverait le droit de continuer à développer certains actifs thérapeutiques utilisant sa plateforme de livraison à travers la BHE. L’entreprise se concentre sur des thérapies qui abordent les causes fondamentales des maladies dégénératives liées à l’âge, en ciblant des mécanismes biologiques fondamentaux, tels que la mort cellulaire dysrégulée, l’inflammation chronique et le déséquilibre énergétique.

Les recherches de Sironax englobent plusieurs approches axées sur des voies spécifiques, telles que la modulation de la voie NAD+, des mécanismes neuroprotecteurs et la neuroinflammation. Cela a abouti à un pipeline comprenant plusieurs programmes, tant pour des petites que pour de grandes molécules, pour des indications comprenant des maladies neurodégénératives, musculaires dégénératives et inflammatoires.

Dr Shefali Agarwal, PDG de Sironax, a déclaré : « Ce partenariat allie l’expertise mondiale de Novartis en neurosciences à l’innovation de haute qualité de Sironax, maximisant l’impact potentiel de notre plateforme de livraison cérébrale. En même temps, nous continuerons à explorer nos cibles d’intérêt avec la plateforme et à livrer des traitements capables de pénétrer dans le cerveau. » Source : https://longevity.technology/news/sironax-inks-potential-175m-deal-with-novartis-for-bbb-delivery-tech/

Cibler la protéine WSTF pour combattre l’inflammation chronique liée au vieillissement

L’inflammation chronique liée au vieillissement est un facteur majeur contribuant au développement et à la progression des maladies liées à l’âge. Le système immunitaire réagit de manière maladaptée aux formes de dommages moléculaires et de dysfonctionnements caractéristiques du vieillissement, entraînant des conséquences néfastes à long terme. Bien que l’inflammation à court terme soit nécessaire pour des situations telles que l’infection, la suppression du cancer et la régénération après une blessure, une inflammation soutenue et non résolue perturbe la structure et la fonction des tissus. L’un des plus grands défis pour trouver des moyens de supprimer l’inflammation à long terme réside dans le fait que celle-ci utilise les mêmes systèmes de régulation que l’inflammation à court terme. Par conséquent, les approches réussies pour réduire l’inflammation indésirable pourraient également nuire à l’efficacité du système immunitaire. Si une méthode pour contourner ce problème était trouvée, cela pourrait ouvrir la voie à des thérapies visant à réduire l’inflammation liée à l’âge sans nuire aux fonctions essentielles du système immunitaire. Une étude récente a identifié une protéine appelée WSTF qui pourrait être ciblée pour bloquer l’inflammation chronique. Cette stratégie ne devrait pas interférer avec l’inflammation aiguë, permettant ainsi au système immunitaire de continuer à répondre adéquatement aux menaces à court terme, comme les infections virales ou bactériennes. Les chercheurs ont découvert que WSTF interagit avec d’autres protéines à l’intérieur des noyaux cellulaires, ce qui entraîne son excrétion et sa dégradation. Étant donné que WSTF est responsable de la dissimulation des gènes pro-inflammatoires, cette éviction du noyau révèle ces gènes et amplifie ainsi l’inflammation. Les chercheurs ont confirmé que la perte de WSTF pouvait promouvoir l’inflammation dans des modèles murins de vieillissement et de cancer. À l’aide de cellules humaines, ils ont observé que la perte de WSTF ne se produisait qu’en cas d’inflammation chronique, pas aiguë. En utilisant ces résultats, les chercheurs ont conçu un traitement restaurateur de WSTF pour supprimer l’inflammation chronique et ont observé un succès préliminaire dans des modèles murins de vieillissement, de stéatose hépatique associée à une dysfonction métabolique (MASH) et d’arthrose. L’examen d’échantillons de tissus de patients atteints de MASH ou d’arthrose a révélé que WSTF était perdu dans les foies des patients atteints de MASH, mais pas dans ceux des donneurs en bonne santé. En utilisant des cellules des genoux de patients arthrosiques subissant une chirurgie de remplacement articulaire, les chercheurs ont montré qu’un traitement restaurateur de WSTF réduisait l’inflammation chronique des cellules enflammées du genou. Ces résultats mettent en lumière le potentiel de développement de nouveaux traitements ciblant WSTF pour combattre les maladies inflammatoires chroniques. Source : https://www.fightaging.org/archives/2025/07/a-possible-approach-to-suppressing-only-chronic-inflammation-not-acute-inflammation/

Impact de la Pollution de l’Air par les Particules Fines sur la Fibrose Myocardique : Une Étude Rétrospective

L’exposition à la pollution de l’air par les particules fines, notamment les particules PM2.5, est bien établie comme un facteur augmentant la mortalité et le risque de conditions liées à l’âge. Le principal mécanisme sous-jacent serait l’inflammation chronique, qui découle des interactions entre les particules inhalées et les cellules des tissus épithéliaux, entraînant des conséquences telles que la fibrose. Cette fibrose, qui est une dysfonction dans l’entretien normal des tissus, se caractérise par la formation d’une matrice extracellulaire excessive, créant des structures semblables à des cicatrices qui altèrent le fonctionnement des tissus. Dans ce contexte, des chercheurs ont corrélé l’augmentation de la fibrose dans le tissu cardiaque avec une exposition prolongée aux particules, ce qui n’est pas surprenant compte tenu des données épidémiologiques établissant un lien entre les maladies cardiovasculaires et l’exposition aux particules. Les particules PM2.5, qui ont un diamètre aérodynamique de 2,5 µm ou moins, sont les composants les plus étudiés de la pollution de l’air. Elles sont associées à un risque accru de maladies cardiovasculaires, telles que l’infarctus du myocarde, l’insuffisance cardiaque et les AVC, et favorisent le développement de facteurs de risque cardiovasculaires comme l’hypertension et le diabète. Selon l’Organisation mondiale de la santé, 31 % des maladies cardiovasculaires sont attribuables à des facteurs environnementaux. Cependant, les mécanismes physiopathologiques sous-jacents à l’exposition aux PM2.5 menant à des résultats cardiovasculaires défavorables ne sont pas encore clairs. Les mécanismes hypothétiques incluent le stress oxydatif, l’inflammation et la stimulation autonome, qui pourraient entraîner l’activation des fibroblastes cardiaques et une augmentation du dépôt de protéines de la matrice extracellulaire. Étant donné son rôle dans le remodelage ventriculaire maladaptatif, la fibrose myocardique pourrait potentiellement médiatiser les effets cardiovasculaires défavorables de la pollution de l’air par les particules et aider à expliquer certaines des variations dans la progression de l’insuffisance cardiaque et d’autres événements cardiaques indésirables non expliqués par les facteurs de risque cardiovasculaires traditionnels. Cette étude rétrospective visait à déterminer la relation entre l’exposition à long terme à la pollution de l’air ambiant par les PM2.5 et l’étendue de la fibrose myocardique diffuse quantifiée par IRM cardiaque. Des patients atteints de cardiomyopathie dilatée (DCM) ou des témoins avec des résultats normaux à l’IRM cardiaque ont été inclus. La fibrose myocardique diffuse a été quantifiée à l’aide de scores z de cartographie T1 native par IRM cardiaque. Au total, 694 patients (âge moyen de 47 ans) ont été inclus. Dans des modèles multivariés, chaque augmentation de 1 µg/m3 de l’exposition moyenne annuelle aux PM2.5 était associée à une augmentation de 0,30 du score z T1 natif chez les patients atteints de DCM et à une augmentation de 0,27 chez les témoins. En conclusion, une exposition à long terme plus élevée à la pollution de l’air par des particules fines ambiantes est associée à une fibrose myocardique diffuse plus importante. Source : https://www.fightaging.org/archives/2025/07/long-term-exposure-to-particulate-air-pollution-correlates-with-greater-fibrosis-in-heart-tissue/

Cynata Therapeutics : Vers une révolution des thérapies par cellules souches pour contrer le vieillissement

Cynata Therapeutics, une entreprise biotechnologique australienne, se positionne comme un acteur majeur dans le domaine de la médecine régénérative, spécialisée dans les cellules souches mésenchymateuses (CSM). Grâce à leur processus de fabrication exclusif, Cymerus, Cynata produit des CSM à partir de cellules souches pluripotentes induites (CSPi), évitant ainsi les limitations des thérapies à base de cellules provenant de donneurs. Cette méthode permet de créer des produits standardisés et potentiellement accessibles pour traiter et prévenir les maladies liées à l’âge. La société développe un pipeline clinique visant plusieurs conditions liées à l’âge, telles que l’inflammation chronique, la guérison altérée et le déclin immunitaire, se concentrant sur les mécanismes biologiques fondamentaux du vieillissement. Leurs essais cliniques, en phase II et III, portent sur des problèmes tels que l’arthrose du genou, les ulcères du pied diabétique et la tolérance aux transplantations rénales. Le CEO, Dr Kilian Kelly, souligne que les CSM ne sont pas seulement des solutions thérapeutiques, mais des leviers biologiques pour moduler les processus de vieillissement. La capacité des CSM à secréter des cytokines anti-inflammatoires et à régénérer d’autres populations de cellules souches pourrait jouer un rôle crucial dans la lutte contre l’inflammaging et le déclin de la capacité régénérative. Cynata se distingue par sa capacité à produire des CSM de manière industrielle, ce qui pourrait transformer le paysage des thérapies à base de cellules souches. Les résultats préliminaires des essais montrent des promesses dans la guérison des plaies et la préservation de la fonction articulaire, ce qui pourrait améliorer la qualité de vie des personnes âgées. À long terme, Cynata explore également l’application de sa plateforme à des domaines comme la neurodégénérescence et l’inflammation systémique, élargissant ainsi son impact potentiel sur la santé des populations vieillissantes. Source : https://longevity.technology/news/can-stem-cells-tackle-aging-at-scale-cynata-thinks-so/