Étiquette : infarctus du myocarde

Avancées dans la Thérapie Génique pour l’Infarctus du Myocarde : Étude sur des Primates Non Humains

Cette recherche est remarquable car elle a progressé jusqu’à une étude sur les primates non humains, alors que la sagesse conventionnelle considère que la livraison de gènes bactériens dans les mammifères via des formes de thérapie génique est une mauvaise idée en raison du potentiel de réactions immunogènes. Il est difficile de trouver un financement pour un tel projet, et presque impossible de le faire progresser au sein d’une entreprise biotechnologique. Les investisseurs sont plus sceptiques que les régulateurs et seront très méfiants même en présence de bonnes données. Néanmoins, ce projet est intéressant, même s’il est un peu trop compensatoire : il est préférable de viser la prévention des crises cardiaques plutôt que d’aider les survivants à être moins touchés. Les thérapies cliniques actuelles pour l’infarctus du myocarde (IM) et la mort cardiaque subite montrent une efficacité limitée. La capacité d’améliorer les amplitudes des courants de sodium (Na+) de pointe et de calcium (Ca2+) dans les cardiomyocytes pourrait prévenir de manière unique les arythmies et améliorer la fonction contractile des cœurs infarctés. Auparavant, nous avons tiré parti de la petite taille des canaux sodiques à voltage (BacNav, <1 kb) pour surmonter la contrainte de taille des séquences livrées par le virus associé à l'adénovirus (AAV) et avons démontré que l'expression de BacNav peut directement améliorer l'excitabilité cardiaque. Dans cette étude, nous avons examiné si l'expression spécifique des cardiomyocytes de BacNav pouvait offrir à la fois des bénéfices antiarythmiques et inotropes au cœur blessé. Encouragés par les résultats in vitro, nous avons testé l'efficacité thérapeutique de la livraison de BacNav dans un modèle de macaque cynomolgus de l'IM induit par ischémie-reperfusion (I/R). Sur la lésion I/R, un vecteur de 10^12 génomes/kg du virus AAV9-MHCK7-BacNav-HA (tag d'hémagglutinine humaine) ou du virus AAV9-MHCK7-GFP (protéine fluorescente verte) a été injecté intramyocardiquement dans et autour de l'infarctus. Les animaux ayant subi une chirurgie simulée ont servi de témoin. L'immunomarquage pour le tag HA fusionné à BacNav quatre semaines après l'injection AAV a démontré une expression robuste du transgène autour du site d'infarctus, avec un ciblage réussi des canaux BacNav sur la sarcolemme tubulaire (T-tubules). Un suivi longitudinal de la fonction contractile cardiaque par échocardiographie transthoracique (ECG) a révélé qu'une semaine après l'IM, la fraction d'éjection ventriculaire gauche était diminuée de manière similaire chez les animaux traités par BacNav et GFP par rapport aux témoins. Quatre semaines après l'IM, les animaux traités par GFP mais pas ceux traités par BacNav ont montré une nouvelle diminution de la fraction d'éjection et une augmentation du volume systolique final, tandis que les valeurs de BacNav à 4 semaines n'étaient pas significativement différentes de celles des animaux témoins. Simultanément, le volume télédiastolique ventriculaire gauche ne différait pas entre les groupes ou les points de temps, suggérant que l'expression spécifique des cardiomyocytes BacNav médiée par AAV a directement contrecarré un déficit contractile induit par l'IM. Nous avons également implanté des enregistreurs à boucle au moment de l'induction de l'IM et analysé l'occurrence d'arythmies spontanées à partir des traces ECG enregistrées pendant le suivi de 4 semaines. Tous les 6 animaux du groupe GFP ont développé des événements arythmiques, tandis que seul 1 animal du groupe BacNav et 2 animaux du groupe témoin ont présenté des arythmies. Source : https://www.fightaging.org/archives/2025/09/gene-therapy-delivery-of-bacterial-sodium-channels-improves-outcome-following-stroke/

Le Vieillissement du Système Cardiovasculaire : Mécanismes et Interventions Thérapeutiques

Le vieillissement est un processus progressif et inévitable qui affecte de nombreux organes et tissus, notamment le système cardiovasculaire. La principale cause de mortalité humaine est liée à l’âge avancé du système cardiovasculaire, entraînant des problèmes tels que l’insuffisance cardiaque, les AVC et les infarctus du myocarde. Les manifestations du vieillissement cardiovasculaire sont bien documentées, et les processus sous-jacents qui contribuent aux effets observés sont également relativement bien compris. Cependant, le défi consiste à établir comment les mécanismes de vieillissement à faible niveau entraînent des changements et une perte de fonction dans le cœur et les vaisseaux sanguins. Cela pourrait être moins nécessaire si la communauté de recherche se concentrait plutôt sur des moyens de réparer les dommages moléculaires causés par le vieillissement. En effet, il n’est pas impératif de comprendre comment chaque type de dommage contribue à la maladie cardiovasculaire tant que des thérapies efficaces peuvent être développées et démontrent des bénéfices. Le vieillissement entraîne des dysfonctionnements diastoliques et systoliques, un durcissement progressif des parois vasculaires et une altération de l’endothélium. Ces changements sont souvent causés par un excès de substances profibrotiques et une réduction des métalloprotéinases matricielles. D’autres manifestations incluent des déformations structurelles du cœur, une augmentation de la graisse adipeuse, une atrophie musculaire, une altération de l’homéostasie ionique et une réduction de la fréquence cardiaque. De plus, le vieillissement est souvent associé à un stress oxydatif et à un état pro-inflammatoire de bas grade, caractérisé par une augmentation des cytokines et des cellules inflammatoires sans infection. Ces conditions, connues sous le nom d’inflammaging, constituent des facteurs de risque indépendants pour les maladies cardiovasculaires, entraînant une mortalité élevée et une réduction de la qualité de vie. Des efforts récents visent à atténuer et retarder ces altérations, avec pour objectif de maintenir la santé et la longévité. Ce document examine les mécanismes sous-jacents du vieillissement tout en explorant de nouvelles propositions thérapeutiques pour le stress oxydatif et l’inflammaging, soulignant également l’importance de combiner les biomarqueurs sériques avec des tests d’imagerie appropriés pour stratifier et diriger les traitements les plus adaptés. Source : https://www.fightaging.org/archives/2025/08/reviewing-the-mechanisms-of-cardiovascular-aging/

Développement de patchs cardiaques intraventriculaires pour la régénération myocardique

Le domaine de l’ingénierie tissulaire vise à produire des structures de tissus artificiels capables de soutenir des cellules et de s’intégrer au tissu natif lorsqu’elles sont implantées dans une lésion, favorisant ainsi la régénération qui n’aurait pas eu lieu autrement. À long terme, l’objectif est de créer des organes entièrement artificiels et fonctionnels. Cependant, la production de grandes sections de pseudo-tissus capables de promouvoir de manière fiable la régénération constitue encore un défi, avec de nombreux projets en cours de développement. L’article souligne que les détails fins nécessaires pour reproduire de manière adéquate les propriétés structurelles des tissus peuvent être complexes. En ce qui concerne l’infarctus du myocarde (IM), ce phénomène se produit lorsque l’apport sanguin au cœur est restreint, entraînant la mort des cardiomyocytes, la formation de tissu cicatriciel et une remodeling du myocarde. Ces modifications réduisent l’efficacité cardiaque, augmentant la charge mécanique sur le tissu environnant et provoquant un amincissement de la région infarcie. Dans les cas graves, cela peut mener à une rupture myocardique nécessitant une intervention chirurgicale immédiate. Des patchs cardiaques fabriqués à partir de matériaux biologiques ou synthétiques sont implantés pour stabiliser le cœur, mais ces matériaux ne se dégradent pas, ne se contractent pas et ne s’intègrent pas au myocarde, ce qui complique leur utilisation, notamment chez les patients pédiatriques. Un patch cardiaque idéal serait implantable, facile à manipuler chirurgicalement, fournirait un soutien mécanique à court terme et favoriserait la régénération biologique du myocarde endommagé. Les patchs cardiaques issus de l’ingénierie tissulaire, ou tissus cardiaques ingénierés, offrent une solution potentielle à ces défis. Des recherches antérieures ont montré que de grands tissus cardiaques cliniquement pertinents peuvent être fabriqués et greffés sur des cœurs d’animaux, où ils conservent leurs propriétés structurelles et électriques, subissent une vascularisation et améliorent la fonction cardiaque. Cependant, ces patchs sont principalement appliqués à la surface épicardique du cœur, et il existe peu d’exemples d’implantation intraventriculaire. Dans cette étude, un patch cardiaque intraventriculaire implantable a été développé en renforçant les tissus cardiaques ingénierés avec des matériaux en polycaprolactone (PCL) imprimés en 3D. L’un des principaux défis dans la conception de patchs cardiaques intraventriculaires est de trouver un équilibre entre la compatibilité biologique des matériaux mous et la robustesse mécanique nécessaire pour l’implantation. Pour y remédier, une impression 3D volumétrique a été utilisée pour fabriquer un métamatériau PCL poreux pouvant être infiltré avec un hydrogel chargé de cellules, offrant des propriétés mécaniques ajustables correspondant au myocarde. Ce métamatériau a été combiné avec un maillage en électrofil de fusion imprégné d’hydrogel, ce qui réduit la perméabilité et permet l’implantation du patch par suture. Ce design multi-matériaux a permis l’implantation du patch lors d’un essai sur un grand animal, où il a résisté à la pression intraventriculaire, empêché les saignements et permis une restabilisation hémodynamique, démontrant son potentiel pour la réparation des défauts myocardiques. Source : https://www.fightaging.org/archives/2025/08/towards-tissue-engineered-patches-for-a-ruptured-myocardium/

Les Cellules Sénescentes : Implications et Thérapies dans les Maladies Cardiovasculaires

Les cellules sénescentes augmentent en nombre dans les tissus du corps avec l’âge. Elles deviennent sénescentes tout au long de la vie, principalement en raison de l’atteinte de la limite de Hayflick sur la réplication, mais aussi en réponse à des blessures ou à divers stress cytotoxiques. Normalement, ces cellules sont éliminées par le système immunitaire ou par mort cellulaire programmée, évitant ainsi leur accumulation. Ce n’est que plus tard dans la vie, lorsque les niveaux de dommages et de stress cellulaire sont plus élevés, que la création de cellules sénescentes dépasse leur élimination, permettant leur accumulation. La recherche se concentre sur le développement de thérapies sénolytiques visant à détruire sélectivement ces cellules, bien que certaines approches sénostatiques et sénomorphiques soient également explorées pour ralentir leur création ou modifier leur comportement. De nombreuses préoccupations subsistent quant à l’utilisation de thérapies sénolytiques, notamment sur la compréhension des cibles et l’application efficace des thérapies. Les cellules sénescentes jouent un rôle significatif non seulement dans le vieillissement, mais aussi dans la pathogénèse des maladies cardiovasculaires, même à un jeune âge. Des études montrent que l’élimination des cellules sénescentes pourrait ralentir et même inverser le vieillissement, conduisant au développement de médicaments sénolytiques. Bien que ces médicaments montrent des effets thérapeutiques bénéfiques dans des maladies cardiovasculaires telles que les cardiomyopathies et l’athérosclérose, les résultats sont contradictoires, suggérant que les effets des thérapies sont dépendants du contexte. Par exemple, dans des maladies cardiaques comme l’infarctus du myocarde, enlever des cardiomyocytes sénescents peut être nuisible si les cardiomyocytes restants ne sont pas suffisants pour maintenir une fonction cardiaque adéquate. D’autre part, l’élimination de ces cellules peut être bénéfique si les cardiomyocytes restants sont capables de compenser. Les facteurs de sécrétion associés à la sénescence (SASP) peuvent également varier selon les stimuli ayant induit la sénescence, ce qui pourrait influencer les effets des thérapies. Les thérapies anti-sénescence représentent une voie prometteuse pour le traitement des maladies cardiovasculaires liées à l’âge, mais il est essentiel d’être prudent avant d’approuver leur utilisation clinique tant que les rôles des cellules sénescentes dans le développement des maladies ne sont pas bien compris et que la sécurité et l’efficacité des médicaments ne sont pas prouvées dans des essais cliniques bien conçus. Source : https://www.fightaging.org/archives/2025/06/a-cautious-view-of-senolytic-therapies-in-the-context-of-cardiovascular-disease/

Rôle des macrophages dans la régénération cardiaque après infarctus du myocarde

La régénération après une blessure dans le cœur des mammifères est un processus complexe impliquant des interactions entre les cellules immunitaires, les cellules somatiques et les cellules souches. Une attention particulière est portée aux macrophages, des cellules immunitaires innées qui jouent un rôle crucial dans la réparation et la régénération des tissus. La recherche actuelle vise à modifier le comportement des macrophages pour favoriser la réplique des cellules somatiques dans des tissus ayant une faible capacité régénérative, comme le cœur. Cependant, les résultats sont souvent mixtes en raison de la complexité des réactions des macrophages à leur environnement. Dans le cœur, les cardiomyocytes ont une fenêtre de prolifération temporaire qui limite leur capacité à se réparer, aggravant les maladies cardiaques et pouvant mener à une défaillance cardiaque. L’infarctus du myocarde entraîne la mort de cardiomyocytes, déclenchant une réponse immunitaire qui vise à restaurer l’intégrité du tissu. Lorsqu’une blessure myocardique entraîne une perte irréversible de cardiomyocytes, les macrophages qui interviennent ont un phénotype immunitaire unique qui favorise la formation de nouveaux cardiomyocytes. Pendant la régénération, les macrophages dérivés des mononucléaires et les macrophages résidents du cœur procurent des cytokines et des signaux moléculaires qui créent un environnement régénératif, une capacité de plasticité cellulaire essentielle pour la réparation myocardique. Ce processus est similaire à celui observé dans d’autres tissus humains, où les macrophages issus de l’endothélium embryonnaire contribuent à la spécification des monocytes. Cet article examine les nouvelles fonctions des macrophages dans la régénération et la réparation cardiaque après un infarctus du myocarde, ainsi que les avancées récentes et les perspectives sur la transformation phénotypique des macrophages cardiaques. En conclusion, les macrophages jouent un rôle critique dans la régénération, la réparation et le remodelage, représentant à la fois des cibles prometteuses et des défis pour les interventions thérapeutiques cardiovasculaires. Source : https://www.fightaging.org/archives/2025/03/towards-therapies-that-adjust-macrophage-behavior-to-provoke-heart-regeneration/