Étiquette : Génétique

FOXO3 et son rôle dans la régénération cellulaire et la longévité : résultats prometteurs chez les singes âgés

Le gène FOXO3 est reconnu comme un régulateur clé de la longévité, de la résistance au stress et du maintien des cellules souches. Des variantes de ce gène sont associées à une longévité accrue, probablement en raison d’une distribution modifiée des différentes formes de la protéine FOXO3. Une étude récente a permis d’ingénier une lignée cellulaire humaine pluripotente en modifiant favorablement la séquence de FOXO3, ce qui a permis de différencier ces cellules en cellules progénitrices mésenchymateuses. Lors de l’injection de ces cellules dans des singes âgés, une amélioration générale de la santé et des fonctions a été observée, semblable à celle d’une thérapie par cellules souches. Cependant, les mécanismes sous-jacents à ces effets bénéfiques restent incertains, bien que la suppression de l’inflammation chronique liée à l’âge soit suggérée comme un facteur clé. En effet, la plupart des cellules transplantées meurent rapidement, et les effets positifs proviennent principalement des signaux qu’elles produisent, modifiant temporairement le comportement des cellules natives. L’issue la plus fiable observée est une réduction de l’inflammation.

Dans un effort pionnier pour reprogrammer les circuits génétiques liés au vieillissement, des chercheurs ont introduit des mutations phospho-null (S253A et S315A) dans le locus FOXO3. Cela a permis de générer des cellules souches embryonnaires humaines qui, lors de leur différenciation en cellules mésenchymateuses, ont donné naissance à des cellules progénitrices dotées d’une résilience accrue au stress et d’une capacité de renouvellement autonome, désignées sous le nom de cellules résistantes à la sénescence (SRCs).

L’administration intraveineuse de SRCs à des singes cynomolgus âgés sur une période de 44 semaines a entraîné une série de changements réparateurs. Comparées aux cellules mésenchymateuses de type sauvage, les SRCs ont inversé plus efficacement les modifications liées à l’âge dans le cerveau, le système immunitaire, les os, la peau et les tissus reproducteurs. Des évaluations multi-modales, incluant des analyses comportementales, histologiques, transcriptomiques et méthylomiques, ont systématiquement indiqué un renversement de l’âge biologique.

Il est à noter que les singes traités aux SRCs ont montré une amélioration de la fonction cognitive, une restauration de l’architecture corticale et une connectivité hippocampique améliorée. La densité osseuse a augmenté, la dégénérescence parodontal a été atténuée, et les profils transcriptionnels des cellules immunitaires ont évolué vers un état juvénile. Au niveau moléculaire, les horloges d’âge transcriptomiques ont montré un renversement moyen de 3,34 ans grâce aux SRCs, tandis que les horloges de méthylation de l’ADN ont corroboré ces effets dans plusieurs tissus. De plus, une restauration de la santé du système reproducteur a été observée. Chez les singes mâles et femelles, le traitement par SRCs a réduit les marqueurs sénescents, amélioré la préservation des cellules germinales et inversé l’horloge de vieillissement transcriptionnelle dans les ovaires et les testicules. L’analyse transcriptomique unicellulaire a révélé que les ovocytes, les cellules granulosa et les cellules germinales testiculaires ont particulièrement bien répondu, se rajeunissant jusqu’à 5-6 ans. Source : https://www.fightaging.org/archives/2025/08/mesenchymal-progenitor-cells-with-modified-foxo3-improve-health-in-aged-monkeys/

Repurposing de médicaments pour traiter la maladie d’Alzheimer : une approche innovante

Les scientifiques ont utilisé de manière innovante de grandes bases de données de médicaments approuvés par la FDA et des dossiers médicaux électroniques pour identifier des candidats potentiellement efficaces contre la maladie d’Alzheimer. Malgré les milliards de dollars investis dans le développement de médicaments pour Alzheimer, les succès sont très rares. La complexité étiologique de cette maladie, qui résulte d’une accumulation de protéines telles que l’amyloïde-β et les tau, ainsi que d’une neuroinflammation, complique la recherche de traitements. Dans une étude publiée dans la revue Cell, des chercheurs de l’Université de Californie à San Francisco ont analysé les changements d’expression génique dans six types de cellules cérébrales majeures et ont identifié des signatures spécifiques à la maladie d’Alzheimer. Ils ont utilisé la base de données Connectivity Map pour trouver des médicaments existants capables de renverser ces changements d’expression génique. Vingt-cinq médicaments repurposés ont montré des effets significatifs sur les profils d’expression génique associés à la maladie. Deux de ces médicaments, le létrozole et l’irinotécan, ont été sélectionnés pour une thérapie combinée, car ils ont montré un risque significativement plus faible d’Alzheimer dans une analyse des dossiers médicaux électroniques. Pour la validation in vivo, des souris modèles ont été traitées avec ces médicaments pendant trois mois, et seulement le traitement combiné a montré des améliorations significatives de la mémoire. L’effet était également dépendant du sexe, avec des variations observées chez les souris femelles. Les résultats montrent une réduction significative des pathologies liées à la maladie d’Alzheimer, soulignant l’efficacité de l’approche computationnelle des chercheurs pour développer des thérapies basées sur des médicaments déjà approuvés. Source : https://www.lifespan.io/news/fda-approved-drug-combo-rescues-alzheimers-in-mice/?utm_source=rss&utm_medium=rss&utm_campaign=fda-approved-drug-combo-rescues-alzheimers-in-mice

L’impact de la microgravité sur le vieillissement cellulaire : une voie vers la longévité

La vie sur Terre a évolué dans un environnement de gravité omniprésent, et l’absence de gravité, comme dans les conditions de microgravité observées lors de missions spatiales, peut entraîner des dysfonctionnements importants au niveau cellulaire. Les recherches menées sur des astronautes ayant passé de longues périodes en orbite montrent que plus la durée d’exposition est prolongée, plus les effets néfastes s’aggravent. Les changements induits par la microgravité dans le fonctionnement cellulaire et tissulaire sont comparables à ceux de l’âge, bien que la microgravité ne soit pas synonyme de vieillissement. Des conditions telles que les troubles liés à un déficit de réparation de l’ADN ou le diabète de type 2, bien qu’elles impliquent des accumulations de dommages, sont des processus distincts, et il est crucial de ne pas confondre ces mécanismes. Les chercheurs, confrontés à des contraintes budgétaires et temporelles, privilégient les modèles de dégénérescence similaires au vieillissement qui peuvent être établis rapidement, plutôt que d’attendre l’âge des sujets d’étude. L’idée d’utiliser la microgravité comme modèle de vieillissement pourrait sembler coûteuse, mais elle devient abordable lorsque les infrastructures et les capacités de lancement sont financées par d’autres. Les auteurs d’une étude récente soulignent que la microgravité diffère des autres modèles de vieillissement par la possibilité de récupération rapide et le contrôle de l’exposition, facilitant ainsi les recherches sur des sujets humains. Cela pourrait potentiellement mener à des découvertes intéressantes sur la biologie des dysfonctionnements et leur application dans le développement de thérapies anti-vieillissement. Avec le vieillissement de la population, il est impératif de comprendre les mécanismes derrière le déclin des fonctions corporelles, et des modèles de recherche plus courts sont nécessaires. La microgravité pourrait servir de modèle unique pour étudier le vieillissement accéléré, avec des changements similaires observés tant chez les astronautes que chez les populations vieillissantes. Des analyses transcriptomiques ont révélé des différences d’expression génique significatives entre les cellules humaines exposées à la microgravité, avec des gènes associés à la biosynthèse des glycosaminoglycanes, au remodelage de la chromatine, et à l’organisation cytosquelettique qui étaient régulés à la hausse, tandis que d’autres gènes impliqués dans le métabolisme des nucléotides et la communication intercellulaire étaient régulés à la baisse. Ces résultats suggèrent un parallèle entre les processus de vieillissement et les adaptations à la microgravité, qui pourraient éclairer des stratégies pour atténuer les effets du vieillissement et promouvoir la longévité. Source : https://www.fightaging.org/archives/2025/07/microgravity-exposure-as-a-model-for-aging/

La régénération des tissus chez les mammifères : Une étude sur les gènes et l’évolution

Des scientifiques ont examiné les différences entre les espèces de mammifères capables de régénérer le tissu de l’oreille après une blessure et celles qui ne le peuvent pas. Leur étude, publiée dans la revue ‘Science’, met en lumière le potentiel régénératif de certaines espèces de mammifères, comme les lapins, qui peuvent régénérer complètement le tissu de l’oreille externe, contrairement aux souris et rats. Bien que les espèces régénératrices et non régénératrices initient toutes deux le processus de régénération en formant un blastème, la différence réside dans la capacité de maintenir ce processus. Les chercheurs ont identifié que l’incapacité des souris et des rats à maintenir la régénération était due à des différences dans l’expression génique, notamment dans les fibroblastes induits par la blessure (WIFs). En utilisant des techniques avancées comme le séquençage d’ARN à cellule unique, ils ont découvert neuf gènes associés à la régénération (RAGs) dont l’expression variait entre les espèces régénératrices et non régénératrices. Un gène en particulier, Aldh1a2, a montré un potentiel prometteur pour restaurer la régénération de l’oreille chez les souris lorsqu’il était sur-exprimé. Les chercheurs ont également constaté que le traitement systémique des souris avec de l’acide rétinoïque favorisait la régénération de l’oreille, alors que le rétinol n’avait pas cet effet. L’étude s’est ensuite penchée sur la raison évolutive pour laquelle certaines espèces de mammifères ont perdu la capacité d’activer Aldh1a2, découvrant que les lapins possédaient des éléments régulateurs actifs qui favorisent la transcription de ce gène après une blessure. En insérant un régulateur fonctionnel dans le génome des souris, les chercheurs ont pu réactiver la voie de l’acide rétinoïque, transformant la réponse non régénératrice en une réponse similaire à celle des lapins. Les auteurs émettent l’hypothèse que l’évolution de structures spécialisées, comme l’oreille, pourrait avoir conduit à un compromis évolutif où la spécialisation a entravé la capacité de régénération. Cette étude ouvre la voie à des thérapies régénératives en ciblant la voie de l’acide rétinoïque, suggérant qu’il pourrait être possible de réactiver des capacités de régénération latentes dans les tissus humains à l’avenir. Source : https://www.lifespan.io/news/study-discovers-a-mammalian-mechanism-of-tissue-regeneration/?utm_source=rss&utm_medium=rss&utm_campaign=study-discovers-a-mammalian-mechanism-of-tissue-regeneration

Les chiens comme modèles du vieillissement : Une étude sur les marqueurs de sénescence et les thérapies par cellules souches

Une nouvelle étude publiée dans Communications Biology explore les marqueurs du vieillissement chez les chiens et investigue les thérapies par cellules souches, ce qui soulève des questions sur leur pertinence et leur rigueur en matière de recherche translational. Les chercheurs s’appuient sur des modèles canins pour examiner la complexité du vieillissement humain. En combinant la génomique, la protéomique et la métabolomique, l’étude a établi un atlas du vieillissement chez 19 chiens de quatre races, utilisant le séquençage d’ARN à cellule unique et la modélisation des cellules souches pour tracer les signatures systémiques et cellulaires du vieillissement. Les résultats révèlent neuf marqueurs de sénescence des cellules T CD8+ et deux métabolites – le Penitrem A et l’UDP-N-acétylglucosamine – comme des indicateurs robustes du vieillissement. Ces découvertes soulignent l’importance des chiens en tant que modèle pertinent pour le vieillissement humain, notamment en ce qui concerne le déclin du système immunitaire et la recherche de biomarqueurs cliniquement significatifs.

Les chercheurs ont identifié neuf types de cellules sanguines canines qui changent avec l’âge, notamment plusieurs populations de cellules T et myéloïdes, dont quatre présentent des modèles de vieillissement similaires aux données humaines. L’analyse métabolomique a révélé 51 métabolites associés à l’âge, avec une augmentation de l’UDP-N-acétylglucosamine et du Penitrem A. Les cellules souches mésenchymateuses ont été utilisées comme intervention sur douze chiens, certaines modifiées pour surexprimer NMNAT1, une enzyme clé pour la biosynthèse de NAD+. Bien que le traitement ait amélioré des marqueurs biochimiques liés à la fonction hépatique et rénale, des doutes subsistent sur l’ampleur des conclusions, certains experts appelant à la prudence quant à l’interprétation des résultats.

Malgré ces critiques, l’idée que les chiens pourraient servir de modèles translational dans la science du vieillissement est soutenue par certains chercheurs, qui soulignent leur potentiel pour informer sur les mécanismes de vieillissement humain et les interventions susceptibles d’améliorer la longévité. Les chiens, âgés de sept à dix fois plus vite que les humains, permettent d’évaluer les interventions sur des périodes beaucoup plus courtes. Toutefois, pour tirer le meilleur parti des données qu’ils fournissent, il est essentiel de faire preuve de rigueur analytique et de ne pas confondre les signaux précoces avec des résultats définitifs. Source : https://longevity.technology/news/dogs-data-and-the-drive-to-decode-aging/

Lutte contre le Vieillissement : Innovations et Perspectives dans l’Industrie de la Longévité

Fight Aging! est une publication qui se concentre sur la lutte contre les maladies liées à l’âge en utilisant les avancées de la médecine moderne pour contrôler les mécanismes du vieillissement. Le bulletin d’information hebdomadaire est envoyé à des milliers d’abonnés intéressés par ces enjeux. Le fondateur de Fight Aging!, Reason, propose également des services de conseil stratégique aux investisseurs et entrepreneurs du secteur de la longévité. Ces services visent à naviguer dans les complexités de cette industrie en pleine expansion. Le contenu de la newsletter inclut des articles sur des sujets variés tels que l’expansion de la loi sur le droit d’essayer des traitements médicaux non prouvés dans le Montana, les mécanismes de déclin des cellules souches germinales avec l’âge, et les bénéfices de l’alimentation restreinte dans la prolongation de la vie. Plusieurs études sont mises en avant, explorant des sujets critiques comme la thérapie génique Klotho qui a montré une augmentation de 20 % de la durée de vie des souris adultes, la déficience en NAD qui affecte l’efficacité des cellules CAR-T chez les personnes âgées, et les effets bénéfiques du plasma conditionné par l’exercice. D’autres recherches examinent les impacts de la microbiote intestinale sur le vieillissement, le rôle des régulateurs de gènes de détoxification dans l’extension de la durée de vie, et comment la restriction de l’alimentation peut améliorer la santé intestinale et ralentir le vieillissement. La newsletter aborde également des découvertes sur les horloges biologiques de vieillissement, les mécanismes de protection des cellules rétiniennes vieillissantes, et la vulnérabilité accrue du cerveau âgé face à la toxicité d’Amyloïde-β. Enfin, une acquisition par Altos Labs d’une startup centrée sur les sénothérapies souligne l’intérêt croissant pour la recherche sur la sénescence cellulaire. Ensemble, ces articles soulignent les innovations et les défis dans la recherche sur le vieillissement et la quête de moyens pour améliorer la longévité et la qualité de vie des individus. Source : https://www.fightaging.org/archives/2025/06/fight-aging-newsletter-june-2nd-2025/

Les déterminants de la longévité humaine : Analyse des individus vivant longtemps

Au cours des 20 dernières années, une grande quantité de données a été générée concernant la génétique, l’épigénétique, la transcriptomique, la protéomique et divers aspects du métabolisme des individus vivant longtemps. Malgré cela, très peu de variantes génétiques associées à la longévité ont été identifiées, et la plupart des études produisent des associations qui échouent souvent à se reproduire. Les rares associations génétiques qui semblent solides sont de petite taille d’effet. En revanche, le métabolisme et la fonction immunitaire des individus âgés sont plus intéressants. Ces individus vivent longtemps en raison d’un métabolisme et d’un système immunitaire moins dégradés et plus fonctionnels. Cependant, il n’est pas clair si les données abondantes sur ces fonctions moins altérées fourniront des réponses utiles à la question de pourquoi certaines personnes atteignent cet objectif alors que d’autres ne le font pas. Bien que le mode de vie soit important, il existe une variation considérable des résultats entre les individus ayant des modes de vie similaires. Cette variation pourrait être due à des milliers de contributions individuelles, ce qui compliquerait la recherche de bases biochimiques pour créer des thérapies ralentissant le vieillissement.

Les individus vivant longtemps (IVL), définis comme des personnes survivant au-delà de 90 ans, présentent des caractéristiques distinctives telles qu’une morbidité réduite, un retard dans l’apparition de maladies chroniques et des fonctions physiologiques préservées. Les variants nucléaires génomiques clés incluent APOE ε2, protecteur contre les maladies cardiovasculaires et la maladie d’Alzheimer, FOXO3A, lié à la résistance au stress oxydatif et à la réparation de l’ADN, et SIRT6, impliqué dans le maintien du génome. Les haplogroupes mitochondriaux, tels que J et D, sont associés à une réduction du stress oxydatif, tandis que les gènes d’entretien des télomères assurent la stabilité chromosomique. Les études d’association génomique (GWAS) mettent en avant APOE et FOXO3A comme les gènes les plus régulièrement associés à la longévité, soulignant leur rôle essentiel.

Les mécanismes épigénétiques font le lien entre la génétique et l’environnement. Les modèles de méthylation de l’ADN chez les IVL montrent une perte de méthylation liée à l’âge retardée, en particulier dans les régions d’hétérochromatine, ce qui pourrait stabiliser l’intégrité du génome. Les ARN non codants, comme miR-363* et les lncARN, régulent la sénescence cellulaire et l’expression génique, contribuant ainsi à un vieillissement sain. Ces signatures épigénétiques sont corrélées à un âge biologique plus jeune et à un risque de maladie réduit chez les IVL et leur descendance.

Les profils métaboliques chez les IVL sont caractérisés par un métabolisme lipidique favorable, une résistance à l’insuline réduite et une capacité antioxydante améliorée. Des facteurs endocriniens, tels que des niveaux bas d’hormones thyroïdiennes et la préservation des hormones sexuelles, jouent également des rôles protecteurs. Les altérations du système immunitaire chez les IVL incluent une inflammation chronique réduite et une préservation de la fonction des cellules immunitaires. Les centenaires présentent des niveaux d’IL-6 plus bas, des niveaux élevés de TGF-β et d’IL-10 (cytokines anti-inflammatoires), ainsi qu’une prolifération de cellules T maintenue. L’équilibre entre les cellules Th17 pro-inflammatoires et les cellules T régulatrices se déplace vers des états anti-inflammatoires, contribuant à la résistance aux maladies. Les facteurs environnementaux et de mode de vie sont également cruciaux. Le microbiote intestinal des IVL présente une diversité accrue et une richesse en taxa favorables à la santé, qui améliorent la fonction de barrière intestinale et produisent des métabolites anti-vieillissement.

La quête pour déchiffrer les déterminants de la longévité humaine s’est intensifiée avec l’augmentation de l’espérance de vie mondiale. Les IVL, qui dépassent l’espérance de vie moyenne tout en retardant les maladies liées à l’âge, servent de modèle unique pour étudier le vieillissement sain et la longévité. La longévité est un phénotype complexe influencé par des facteurs génétiques et non génétiques. Cet article de revue explore les facteurs génétiques, épigénétiques, métaboliques, immunitaires et environnementaux qui sous-tendent le phénomène de la longévité humaine, avec un accent particulier sur les IVL, tels que les centenaires. En intégrant les résultats des études sur la longévité humaine, cet article met en évidence une grande diversité de facteurs influençant la longévité, allant des polymorphismes génétiques et des modifications épigénétiques aux impacts de l’alimentation et de l’activité physique. Source : https://www.fightaging.org/archives/2025/05/a-high-level-tour-of-the-metabolism-of-long-lived-individuals/

Les éléments transposables et leur impact sur le vieillissement : une exploration des causes et conséquences

Une proportion importante du génome des mammifères est constituée d’éléments transposables, souvent issus d’anciennes infections virales, qui peuvent parfois être réutilisés, mais dont l’utilité est parfois douteuse. Ces séquences sont capables de s’approprier le mécanisme d’expression génétique pour se copier elles-mêmes ou pour générer des particules semblables à des virus, provoquant ainsi une réaction immunitaire innée. Dans la jeunesse, les éléments transposables sont réprimés grâce à des modifications épigénétiques qui rendent ces régions du génome inaccessibles aux machines protéiques responsables de la transcription des séquences en ARN. Cependant, avec l’âge, ces modifications épigénétiques se dégradent, permettant aux éléments transposables de devenir accessibles et actifs, ce qui pourrait engendrer une inflammation et des dommages génétiques, contribuant ainsi à un vieillissement dégénératif. Les chercheurs discutent des relations entre l’activité des éléments transposables et le vieillissement dans un article de revue en libre accès. Bien que l’activité de ces éléments ne soit pas considérée comme une cause fondamentale du vieillissement, elle semble interagir avec d’autres mécanismes et résultats liés à l’âge. Les influences perturbatrices sur les cellules qui provoquent une dérégulation épigénétique peuvent exposer les éléments transposables, dont l’activité peut en retour aggraver ces perturbations, notamment par des signaux inflammatoires issus des réactions immunitaires innées. Les théories modernes du vieillissement se divisent en deux grandes catégories : le modèle de l’erreur/destruction et le modèle programmé. Le modèle d’erreur souligne que le vieillissement résulte principalement de l’accumulation de dommages cellulaires et moléculaires au fil du temps, tandis que le modèle programmé considère le vieillissement comme une partie inhérente et essentielle du cycle de vie, guidée par des mécanismes génétiques et hormonaux. Les avancées dans les techniques de séquençage du génome entier ont permis d’étudier les mécanismes génétiques liés au vieillissement. Les éléments transposables (ET) ont été souvent associés au vieillissement en raison de leur capacité à générer des mutations pouvant perturber les fonctions cellulaires normales. Les ET, qui sont des séquences d’ADN répétitives capables de se déplacer dans le génome, sont classés en deux grandes classes : les rétrotransposons (éléments de classe I) qui se déplacent via un intermédiaire ARN, et les transposons d’ADN (éléments de classe II) qui utilisent un intermédiaire ADN. Les ET sont présents dans presque tous les génomes eucaryotes et procaryotes, représentant souvent une fraction considérable des génomes, bien que leur abondance varie d’une espèce à l’autre. Leur nature mobile et répétitive en fait une source de variation génomique, les événements de transposition entraînant des modifications évidentes du génome. L’idée que les ET pourraient contribuer aux processus de vieillissement à travers des mutations a été proposée pour la première fois dans les années 1980. Le modèle de vieillissement des transposons, introduit en 1990, postule qu’une augmentation exponentielle du nombre de copies d’ET pourrait éventuellement tuer la cellule ou l’organisme en inactivant des gènes essentiels. En effet, l’activation des ET a été démontrée comme affectant la durée de vie dans plusieurs organismes comme les mouches des fruits et les souris, et a récemment été associée à des maladies neurodégénératives, auto-immunes et cancéreuses, qui peuvent à leur tour affecter la durée de vie de l’organisme. Pour atténuer les effets néfastes liés aux ET, leur activité est normalement réprimée par des mécanismes épigénétiques impliquant la méthylation de l’ADN, les modifications des histones et/ou la production de petits ARN. Le vieillissement perturbe ces mécanismes de silenciation des ET, augmentant leur activité. Des exemples documentés montrent que l’expression des ET et parfois leur transposition augmentent avec l’âge dans différents tissus somatiques. Cette revue explore la littérature actuelle démontrant que l’activité des ET peut être associée à la fois aux causes et aux conséquences du vieillissement, conduisant à une hypothèse plus complexe concernant le rôle des ET dans les processus de vieillissement. Source : https://www.fightaging.org/archives/2025/05/a-complex-relationship-between-transposable-elements-and-aging/

Mise à jour des caractéristiques du vieillissement : Vers une médecine gérontologique de précision

L’équipe des Hallmarks of Aging a récemment publié une revue dans la revue Cell, proposant une mise à jour des caractéristiques du vieillissement. Initialement, neuf hallmarks du vieillissement avaient été identifiés en 2013. Dans cette mise à jour de 2023, trois hallmarks supplémentaires ont été ajoutés, portant le total à quatorze. Parmi ces ajouts, on trouve les modifications de la matrice extracellulaire, qui sont bien documentées, ainsi que l’isolement psychosocial, une cause et une conséquence de l’affaiblissement mental et physique lié à l’âge. Les auteurs soulignent que ces hallmarks sont souvent entrelacés, rendant leur utilisation comme biomarqueurs difficile. Par exemple, la restauration de l’autophagie peut avoir des effets en cascade sur la stabilité génomique, la fonction mitochondriale et l’inflammation. Ils proposent donc de considérer ces hallmarks comme des ‘points d’entrée’ pour des recherches multidimensionnelles sur le vieillissement.

En raison de cette complexité, l’équipe de recherche insiste sur l’importance d’une méthode d’évaluation basée sur les gènes, qui permettrait une évaluation plus précise et indépendante des voies moléculaires. Les gènes associés à l’âge peuvent être classés en gerogènes ou gerosuppresseurs, en fonction de leur impact sur le vieillissement. Des données massives sur les biomarqueurs pourraient être analysées par des systèmes d’intelligence artificielle, ce qui pourrait améliorer le diagnostic et l’évaluation des traitements existants. L’isolement localisé du vieillissement, où certains organes vieillissent plus rapidement que d’autres, ainsi que les ‘ageotypes’, ou signatures moléculaires du vieillissement, sont également des sujets de discussion pour une recherche future.

Pour appliquer ces connaissances en pratique clinique, les auteurs proposent une stratégie en trois volets. Premièrement, ils suggèrent une approche de biologie des systèmes utilisant des technologies -omiques pour orienter les traitements. Deuxièmement, ils préconisent d’identifier et de traiter les signes de vieillissement prématuré avant l’apparition de la pathologie clinique. Troisièmement, l’analyse des biomarqueurs devrait permettre de détecter les problèmes spécifiques, comme le cancer, de manière préventive. Bien que certaines de ces évaluations soient déjà courantes, elles sont souvent réalisées par des spécialistes sans approche systémique. Les auteurs insistent sur la nécessité de différencier leur approche des ‘cliniques de longévité’, souvent basées sur des thérapies non éprouvées.

Ils proposent également un cadre pour l’approbation par la FDA de cette approche, qui inclurait des groupes témoins recevant des soins standard comparés à des patients bénéficiant de traitements individualisés basés sur des données multi-omiques. Les critères d’évaluation seraient des différences quantifiables dans les biomarqueurs de vieillissement. Bien que coûteux, ce type d’essai est jugé nécessaire pour faire progresser le traitement du vieillissement. En résumé, cette revue propose un plan pour moderniser la médecine en intégrant les avancées technologiques afin d’étendre la durée de vie en bonne santé des patients. Source : https://www.lifespan.io/news/well-known-researchers-discuss-personalized-aging-treatments/?utm_source=rss&utm_medium=rss&utm_campaign=well-known-researchers-discuss-personalized-aging-treatments

Étude des différences génétiques et de la longévité chez les mammifères

La biologie comparative du vieillissement se concentre sur les différences génétiques qui pourraient expliquer la longévité des espèces. Les recherches menées jusqu’à présent ont révélé que les variations génétiques sont souvent associées à des mécanismes liés au vieillissement, tels que la réparation de l’ADN, la suppression des tumeurs, la capacité régénérative et les mécanismes antioxydants. Cependant, une étude récente a élargi cette recherche pour examiner les différences génétiques entre les espèces de mammifères et a trouvé que ces différences sont plus étroitement liées à la fonction du système immunitaire et à la taille du cerveau par rapport à la taille corporelle seule. Cela remet en question l’idée que la taille corporelle et le métabolisme sont les principaux déterminants de la longévité. Les animaux plus grands ont tendance à vivre plus longtemps, mais des exceptions comme les rats taupes nus et certaines chauves-souris montrent que d’autres mécanismes jouent un rôle crucial. Le système immunitaire, en particulier, pourrait être un facteur déterminant, bien que sa complexité nécessite encore des recherches approfondies. L’étude souligne également que le potentiel de longévité maximale (MLSP) varie considérablement parmi les mammifères, allant de moins d’un an chez certaines espèces de musaraignes à plus de deux cents ans chez les baleines boréales. Contrairement à l’espérance de vie moyenne, qui est influencée par des facteurs externes, le MLSP est considéré comme une limite inhérente à la longévité d’une espèce. Des études comparatives ont établi des liens entre les variations de MLSP et les profils d’expression génique, en mettant en évidence des gènes associés à la réparation de l’ADN, à la réponse immunitaire et à d’autres processus biologiques importants. Une approche de génomique comparative a été utilisée pour identifier ces signatures génomiques, révélant des expansions de familles de gènes en lien avec le MLSP et la taille relative du cerveau. Ces résultats suggèrent que la duplication de gènes liés au système immunitaire pourrait être associée à l’évolution de la longévité chez les mammifères. Source : https://www.fightaging.org/archives/2025/05/correlations-between-maximum-species-life-span-brain-size-and-immune-function/