Étiquette : gènes

Étude sur le potentiel de durée de vie maximale chez les mammifères : Gènes, cerveau et longévité

Une étude récente a examiné les différences de potentiel de durée de vie maximale parmi diverses espèces de mammifères. Les chercheurs ont trouvé des associations entre l’expansion de la taille des familles de gènes, le potentiel de durée de vie maximale et la taille relative du cerveau. Ils ont également étudié les caractéristiques génomiques liées à l’évolution de la durée de vie. Le potentiel de durée de vie maximale est défini comme l’âge de décès du plus vieil individu jamais enregistré dans une espèce, tant à l’état sauvage qu’en captivité, où les risques de décès dus à la prédation ou à des ressources limitées ne sont pas présents. Les facteurs biologiques intrinsèques déterminent ce potentiel, qui varie considérablement parmi les mammifères, allant de moins d’un an pour certaines espèces de musaraignes à deux cents ans pour les baleines boréales. Les différences génétiques de ces espèces ont été étudiées pour examiner les processus biologiques sous-jacents qui conduisent à de telles différences de durée de vie. Des travaux antérieurs ont identifié des changements dans les gènes liés à la réparation de l’ADN, à la régulation du cycle cellulaire, au cancer et au vieillissement chez les baleines boréales, ainsi qu’une expansion des familles de gènes associées à la réparation de l’ADN et à la suppression des tumeurs chez les éléphants. Cette étude sur les différences génétiques et les processus moléculaires connexes pourrait être utile pour le développement d’interventions de longévité. Certaines études ont exploré comment le potentiel de durée de vie maximale est influencé par des différences d’expression génique, la taille des familles de gènes et des mesures génomiques similaires. Ces études ont souligné que l’évolution de la taille des familles de gènes joue un rôle essentiel dans le potentiel de durée de vie maximale. Les familles de gènes se forment lorsqu’un gène unique est dupliqué. Dans ce cas, la copie supplémentaire a plus de liberté pour évoluer, car la copie originale produit la protéine nécessaire à l’organisme. La seconde copie peut devenir un pseudogène, accumulant tant de mutations qu’elle cesse de fonctionner correctement, ou elle peut muter pour devenir une protéine similaire à l’originale mais avec une fonction légèrement différente, donnant ainsi à l’organisme un potentiel avantage évolutif. Ce processus peut se répéter plusieurs fois, créant une famille de gènes similaires mais quelque peu différents. Des études sur les baleines boréales et les rats-taupes nus suggèrent que certaines de ces duplications sont liées à une longévité accrue de ces animaux. Dans cette étude, les chercheurs ont élargi ces observations et comparé l’impact de la taille des familles de gènes sur le potentiel de durée de vie maximale dans plusieurs espèces de mammifères. Les chercheurs ont réalisé une analyse bioinformatique de 4 136 familles de gènes dans 46 espèces de mammifères entièrement séquencées. Ils ont trouvé une association entre le potentiel de durée de vie maximale et l’expansion de 236 familles de gènes. Ils ont ensuite testé des facteurs confondants potentiels, qui peuvent influencer les résultats, tels que la taille relative du cerveau, la masse corporelle, le temps de gestation et l’âge à la maturité sexuelle. Seule la taille relative du cerveau a été trouvée pour influencer l’association entre l’expansion des familles de gènes et le potentiel de durée de vie maximale. Ces résultats sont conformes à des recherches antérieures suggérant que l’évolution de cerveaux plus gros est liée au potentiel de durée de vie maximale. Les chercheurs ont également observé que les groupes de gènes liés au potentiel de durée de vie maximale et ceux liés à la taille du cerveau contenaient également plus probablement des gènes liés aux fonctions immunitaires. Ils discutent que le système immunitaire peut avoir un impact positif sur une durée de vie plus longue de plusieurs manières, par exemple en éliminant les cellules sénescentes, les agents infectieux et potentiellement les cellules cancéreuses. Cependant, ces résultats n’ont pas d’interprétation simple, car l’analyse de sensibilité des chercheurs a indiqué que la plupart des espèces incluses dans l’étude ont un effet négligeable sur les résultats. Des effets plus importants ont été observés pour quelques espèces, suggérant que bien qu’une espèce ne soit pas à l’origine des résultats, elles peuvent être influencées par des groupes d’animaux (taxons) qui ont des valeurs extrêmes. Les chercheurs ont émis l’hypothèse que l’expansion des familles de gènes associée à l’évolution du potentiel de durée de vie maximale pourrait être liée à la quantité de produit génétique disponible dans la cellule (dosage génétique) ou à la diversité des transcrits géniques. La diversité des transcrits est liée à un processus appelé épissage alternatif. Les gènes des mammifères sont construits à partir de séquences d’ADN codantes (exons) entrecoupées de séquences d’ADN non codantes (introns). Lorsque l’ADN est transcrit en ARN lors de la production de protéines, les introns sont éliminés et les exons sont reliés. Cependant, les exons ne sont pas toujours épissés dans le même ordre, et parfois, certains exons sont omis, créant des versions alternatives de protéines qui proviennent du même gène. En comparant les gènes associés au potentiel de durée de vie maximale chez l’homme avec d’autres gènes de référence, les chercheurs ont révélé des niveaux d’expression génique plus élevés et un plus grand nombre de transcrits uniques parmi les gènes associés au potentiel de durée de vie maximale. Cependant, les auteurs avertissent que ces résultats doivent également être interprétés avec prudence, car ils sont uniquement basés sur des données humaines et que de telles observations pourraient ne pas être précises pour d’autres espèces ; des études futures doivent approfondir la signification évolutive de cette observation. Les chercheurs ont rassemblé des données provenant d’études antérieures qui avaient identifié différents gènes associés au vieillissement. Ils les ont divisés en groupes de gènes liés à des processus associés au vieillissement, des gènes dont l’expression est dépendante de l’âge, des gènes manuellement curés associés au vieillissement ou à la longévité, des cibles d’interventions modifiant la longévité et des gènes associés à la durée de vie. La comparaison des gènes liés aux processus liés à l’âge avec les gènes associés au potentiel de durée de vie maximale a montré que ce dernier groupe est significativement enrichi en gènes liés à la réparation de l’ADN et à l’inflammation ; cependant, les gènes associés à l’autophagie étaient sous-représentés. Parmi les gènes dont l’expression est dépendante de l’âge, les chercheurs ont observé soit une sous-représentation parmi les gènes associés au potentiel de durée de vie maximale, soit n’ont pas trouvé de sous-représentation ou de sur-représentation, selon la base de données et si leur activité augmentait ou diminuait avec l’âge. Les gènes manuellement curés pour la sénescence cellulaire et la longévité, ainsi que les gènes qui répondent à des interventions modifiant la longévité telles que la restriction calorique et les médicaments prolongateurs de vie, étaient significativement sous-représentés parmi les gènes associés au potentiel de durée de vie maximale. Seuls les gènes ayant des variantes génétiques associées aux centenaires humains et les gènes avec une évolution protéique plus rapide dans des espèces ayant un potentiel de durée de vie maximale plus élevé étaient sur-représentés parmi les gènes associés au potentiel de durée de vie maximale. En général, il y avait un chevauchement limité entre les listes de gènes uniques de cette étude et celles d’études précédentes. Cependant, il existe un chevauchement concernant les fonctions et les processus dans lesquels ces gènes sont impliqués. Les chercheurs ont identifié ce chevauchement dans les fonctions du système immunitaire, les dommages et la réparation de l’ADN, l’apoptose, l’autophagie, la sénescence et les cibles de médicaments prolongateurs de vie. Ils concluent que « bien que différentes études puissent identifier des ensembles de gènes distincts, elles mettent souvent en lumière les mêmes voies biologiques, renforçant l’importance de ces processus dans la longévité ». Bien que cette étude ne permette pas d’établir une causalité mais seulement des associations, ses résultats aident à comprendre la base évolutive d’une durée de vie plus longue et à identifier les processus génétiques et moléculaires qui augmentent le potentiel de durée de vie maximale. Source : https://www.lifespan.io/news/why-some-mammals-live-much-longer-than-others/?utm_source=rss&utm_medium=rss&utm_campaign=why-some-mammals-live-much-longer-than-others

Découverte de cibles médicamenteuses pour la longévité à travers l’analyse des bases de données génétiques

Des chercheurs publiant dans Aging Cell ont utilisé de grandes bases de données pour découvrir une relation causale entre plusieurs gènes et le risque de mortalité globale, identifiant ainsi un nouveau potentiel cible dans ce processus. Dans leur étude, ils discutent des bases de données génétiques, qui ont été précédemment utilisées pour déterminer les associations de gènes spécifiques avec la longévité, en particulier dans les cas de longévité extrême. En utilisant des loci de traits quantitatifs moléculaires (QTL), les chercheurs ont pu traduire les gènes en protéines exprimées et en voies biologiques, ce qui leur a permis de mieux comprendre comment certains gènes influencent la durée de vie. L’objectif des chercheurs était d’intégrer plusieurs sources -omiques de manière cohérente, en utilisant des techniques statistiques avancées et une analyse approfondie des interactions protéiques pour découvrir des cibles médicamenteuses potentielles pour la longévité. Ils ont trouvé plusieurs protéines susceptibles d’étendre la durée de vie, mais également d’autres qui ont des effets inverses. L’étude a utilisé trois métriques : la durée de vie parentale, le fait d’être dans le top 1% et le top 10% de longévité, les deux derniers groupes ayant des milliers de points de données. Comme prévu, des corrélations génétiques fortes ont été établies entre la durée de vie globale et la longévité extrême. En raison du grand nombre de gènes et de protéines testés, la valeur p standard de 0,05 était insuffisante. Les chercheurs ont donc analysé plus de 500 protéines avec une valeur p basse et ont identifié 14 protéines avec des valeurs p extrêmement petites, suggérant qu’elles ont des effets liés à la longévité. En examinant l’expression plasmatique, ils ont trouvé que de nombreuses voies génétiques associées augmentent considérablement la probabilité de causes de décès courantes. Par exemple, HYKK est lié au cancer du poumon, NRG1 au AVC, et d’autres gènes sont liés à des problèmes métaboliques et à la pression artérielle. Un gène, PDAP1, s’est distingué comme particulièrement dangereux. Une forte expression de PDAP1 était corrélée à une probabilité accrue de mortalité, les personnes âgées de 60 ans et plus avec une haute expression vivant presque un an de moins que celles avec une faible expression. Des horloges épigénétiques ont corroboré cette découverte. Les chercheurs ont ensuite examiné PDAP1 dans un contexte cellulaire et ont trouvé qu’il a une causalité bidirectionnelle avec la sénescence. L’introduction de PDAP1 dans des fibroblastes a induit une sénescence de manière dose-dépendante. En réduisant l’expression de PDAP1, les chercheurs ont pu prolonger la limite de Hayflick des cellules. Bien que cette étude ait été basée sur des bases de données génétiques larges et des cellules, sans implication animale, il est clair que PDAP1 mérite d’être exploré davantage comme cible médicamenteuse potentielle. Si ce protéine peut être régulée à la baisse chez les humains, cela pourrait ralentir la sénescence, aider à la métabolisme et prolonger la durée de vie. Des modèles précliniques et des essais cliniques pourraient déterminer la faisabilité de cette approche. Source : https://www.lifespan.io/news/researchers-use-big-data-to-find-a-longevity-target/?utm_source=rss&utm_medium=rss&utm_campaign=researchers-use-big-data-to-find-a-longevity-target

L’impact de la structure de l’ADN sur la longévité : Perspectives et découvertes

La structure de l’ADN dans le noyau cellulaire joue un rôle essentiel dans la transcription des gènes et, par conséquent, dans la production d’ARN et de protéines. Ce processus est influencé par la configuration de l’ADN nucléaire, qui peut être modifiée par des facteurs tels que la méthylation et les modifications des protéines histones, affectant ainsi l’accessibilité des régions de l’ADN. Les chercheurs explorent des perspectives moins courantes sur la structure de l’ADN, notamment en lien avec le vieillissement et la longévité, grâce à des techniques de spectroscopie qui permettent de visualiser des variantes structurelles de l’ADN. Bien que l’ADN soit souvent présenté sous la forme de la double hélice B, il existe aussi des formes A et Z qui ont des implications significatives pour la stabilité et la flexibilité de l’ADN, ainsi que pour les interactions avec les protéines. Une étude récente a examiné la relation entre les changements conformels de l’ADN et la durée de vie de deux espèces de rongeurs : le rat aveugle anatolien et le rat commun. Les résultats montrent que les transitions entre les formes B et A, ainsi que Z, étaient plus fréquentes chez le rat aveugle, suggérant un lien entre la structure unique de son ADN et sa longévité. Malgré ces découvertes, il n’existe pas encore de lien direct établi entre les modifications structurales de l’ADN et les dommages associés au vieillissement, limitant les applications potentielles pour le développement de thérapies de rajeunissement. Les implications de ces recherches soulignent la nécessité de mieux comprendre comment les variations dans les conformations de l’ADN et leurs composantes pourraient influencer la longévité des organismes, en ouvrant de nouvelles voies de recherche sur les aspects biomoléculaires du vieillissement. Source : https://www.fightaging.org/archives/2025/04/structural-features-of-dna-differ-between-short-lived-rats-and-long-lived-blind-mole-rats/

Impact des Changements Épigénétiques Liés à l’Âge sur la Mémoire et la Plasticité Synaptique

Cette discussion porte sur la pertinence des changements liés à l’âge dans la régulation épigénétique de l’expression génétique par rapport à la fonction de la mémoire. Le comportement d’une cellule est déterminé par la structure de l’ADN nucléaire, qui détermine quelles régions sont accessibles à la machinerie de transcription responsable de la production de molécules d’ARN. Cette structure est façonnée par des mécanismes épigénétiques, tels que l’ajout de groupes méthyles à des sites spécifiques sur le génome et l’ajout de groupes acétyles aux protéines histones autour desquelles l’ADN est enroulé.

La formation de la mémoire est associée à des modifications constantes des réseaux neuronaux et de l’expression des gènes de plasticité synaptique en réponse à divers stimuli environnementaux et expériences. La dysrégulation de l’expression des gènes de plasticité synaptique affecte la mémoire pendant le vieillissement et les maladies neurodégénératives. Des modifications covalentes, telles que la méthylation de l’ADN et l’acétylation des histones, régulent la transcription des gènes de plasticité synaptique. Des changements dans ces marques épigénétiques sont corrélés avec des altérations de l’expression des gènes de plasticité synaptique et de la formation de la mémoire au cours du vieillissement.

Ces modifications épigénétiques, à leur tour, sont régulées par la physiologie et le métabolisme. Les hormones stéroïdiennes, comme l’œstrogène, et des métabolites, tels que la S-adénosylméthionine et l’acétyl-CoA, impactent directement les niveaux de méthylation de l’ADN et d’acétylation des histones. Ainsi, le déclin des niveaux d’œstrogène ou un déséquilibre de ces métabolites affecte l’expression génique et les fonctions cérébrales sous-jacentes.

Dans cette revue, nous avons discuté de l’importance de la méthylation de l’ADN et de l’acétylation des histones sur les modifications de la chromatine, la régulation de l’expression des gènes de plasticité synaptique et la consolidation de la mémoire, ainsi que la modulation de ces marques épigénétiques par des modificateurs épigénétiques tels que des phytocomposés et des vitamines. De plus, comprendre les mécanismes moléculaires qui modulent ces modifications épigénétiques aidera à développer des approches de récupération. Source : https://www.fightaging.org/archives/2025/02/age-related-epigenetic-changes-impair-memory-function/

Impact de l’âge et de la restriction calorique sur la sarcopénie : une analyse transcriptomique

L’impact du vieillissement sur les changements transcriptionnels dans les cellules est un domaine de recherche important. En examinant le transcriptome des cellules musculaires des rats âgés par rapport à ceux des jeunes et en tenant compte des interventions comme la restriction calorique, les chercheurs ont pu mieux comprendre les mécanismes sous-jacents à la sarcopénie, qui est la perte de masse et de force musculaire liée à l’âge. Cette condition est une cause majeure de handicap chez les personnes âgées et nécessite une étude approfondie. En utilisant le séquençage d’ARN à haut débit, les chercheurs ont isolé l’ARN total des tissus musculaires de rats nourris ad libitum et de ceux soumis à une restriction calorique. Les analyses ont révélé des changements significatifs dans l’expression génique, avec 442 gènes codant pour des protéines étant régulés à la hausse et 377 à la baisse dans les muscles âgés par rapport aux jeunes. Les gènes régulés à la hausse étaient souvent liés à la réponse immunitaire et au repliement des protéines, tandis que ceux régulés à la baisse étaient plus associés à la biologie du développement. La restriction calorique a permis de supprimer 69,7 % des gènes régulés à la hausse et de sauver 57,8 % des gènes régulés à la baisse dans le muscle âgé, tout en identifiant des gènes uniques qui n’étaient pas affectés par le vieillissement. Ces données fournissent des indices importants pour de futures interventions thérapeutiques visant à lutter contre la sarcopénie. Source : https://www.fightaging.org/archives/2025/01/an-epigenetic-view-of-the-benefits-of-calorie-restriction-in-aged-rats/

Impact du vieillissement et du sexe sur l’expression génique des monocytes et l’inflammation liée aux AVC

Le système immunitaire humain subit des changements significatifs avec l’âge, devenant moins efficace et plus inflammatoire. Ce déclin est complexe et implique de nombreuses populations cellulaires, chacune ayant des comportements et des profils d’expression génique distincts. L’interaction entre ces cellules et d’autres tissus ainsi que des molécules extracellulaires façonne la réponse immunitaire globale. Le vieillissement est lié à une régulation dysfonctionnelle des cellules immunitaires, ce qui contribue à l’apparition de maladies liées à l’âge, telles que les maladies cardiovasculaires, les troubles neurodégénératifs et les syndromes métaboliques. Les monocytes et les macrophages dérivés des monocytes jouent un rôle crucial dans la réponse inflammatoire et influencent le processus de vieillissement, augmentant le risque de maladies inflammatoires. Par exemple, les macrophages dérivés des monocytes sont impliqués dans les accidents vasculaires cérébraux ischémiques, où ils peuvent à la fois aggraver la situation et favoriser la récupération post-AVC. De plus, le sexe biologique des individus influence l’incidence et les résultats des AVC ischémiques, soulignant les différences biologiques entre les hommes et les femmes.

Dans une étude récente, nous avons examiné si l’expression génique des sous-types de monocytes (classiques, intermédiaires et non classiques) dans le sang périphérique humain est influencée par l’âge et le sexe, en se concentrant sur les gènes liés à l’inflammation et à la régénération des tissus après un AVC. L’analyse par cytométrie en flux de 44 échantillons sanguins de volontaires en bonne santé (hommes et femmes âgés de 28 à 98 ans) a révélé que, contrairement à d’autres cellules immunitaires, la proportion de cellules tueuses naturelles (NK) augmentait chez les femmes, tandis que la proportion de cellules B diminuait dans les deux sexes avec l’âge.

En analysant l’expression génique par qPCR, plusieurs gènes ont montré une corrélation différente avec l’âge et le sexe au sein des sous-types de monocytes. Notamment, les gènes ANXA1 et CD36 ont montré une augmentation constante avec l’âge dans tous les types de monocytes, en particulier dans les sous-types intermédiaires et non classiques. D’autres gènes, tels que IL-1β, S100A8, TNFα, CD64, CD33, TGFβ1, TLR8 et CD91, ont été modifiés différemment dans les sous-types de monocytes avec l’âge. La plupart des changements géniques liés à l’âge étaient exprimés de manière différentielle dans les monocytes féminins. Nos données mettent en lumière l’interaction complexe entre l’âge et le sexe dans l’expression des gènes liés à l’inflammation et à la régénération au sein des sous-types de monocytes distincts. Source : https://www.fightaging.org/archives/2025/01/an-assessment-of-inflammatory-regulators-in-monocytes-demonstrates-the-complexity-of-immune-aging/

L’impact de l’exercice physique sur le vieillissement cérébral et l’expression génique

L’un des avantages de la condition physique et de l’activité physique nécessaire pour maintenir cette condition est le ralentissement du vieillissement du cerveau. Bien que les données humaines ne fournissent que des corrélations, des études sur des animaux ont démontré un lien de causalité entre l’exercice physique et l’amélioration de la santé ainsi que le ralentissement des aspects du vieillissement. Les chercheurs ont étudié la biochimie du vieillissement dans les cellules cérébrales et corporelles, révélant une grande différence dans la régulation à la baisse de l’expression génique dans le cerveau par rapport au reste du corps avec l’âge. L’exercice physique peut réduire l’ampleur de ces changements. L’expression des niveaux de nombreux gènes subit des modifications à mesure que les individus vieillissent, le vieillissement étant un facteur principal contribuant aux maladies liées à l’âge. Dans cette étude, les chercheurs ont examiné les gènes du vieillissement en utilisant des données d’ARNseq de 32 tissus humains provenant du projet Genotype-Tissue Expression (GTEx). Les ensembles de données d’ARNseq du Gene Expression Omnibus (GEO) ont été utilisés pour étudier si les gènes du vieillissement provoquent des maladies liées à l’âge ou si des solutions anti-vieillissement pourraient inverser l’expression génique liée au vieillissement. Les altérations du transcriptome liées au vieillissement montrent que le vieillissement cérébral diffère considérablement du vieillissement des autres parties du corps. De plus, les tissus cérébraux ont été divisés en quatre groupes en fonction de leurs altérations du transcriptome liées au vieillissement. De nombreux gènes étaient régulés à la baisse pendant le vieillissement cérébral par rapport au vieillissement des tissus corporels, avec des fonctions enrichies dans la fonction synaptique, l’ubiquitination, la traduction mitochondriale et l’autophagie. L’analyse du transcriptome des maladies liées à l’âge et des solutions de ralentissement du vieillissement a montré que les gènes du vieillissement régulés à la baisse dans l’hippocampe subissaient une régulation à la baisse supplémentaire dans la maladie d’Alzheimer, mais cette régulation à la baisse était efficacement inversée par une activité physique élevée. De plus, la perte de neurones observée pendant le vieillissement a été inversée par une activité physique élevée. Source : https://www.fightaging.org/archives/2025/01/physical-activity-slows-age-related-transcriptomic-changes-in-brain-cells/

Tune Therapeutics : Lever des fonds pour révolutionner l’édition épigénétique des maladies chroniques

Tune Therapeutics, une entreprise d’édition de l’épigénome fondée en 2021, a levé plus de 175 millions de dollars lors d’un financement de série B pour développer sa plateforme de ‘tuning génétique’ et ses programmes thérapeutiques associés. Contrairement aux technologies d’édition de gènes qui modifient l’ADN, Tune se concentre sur la régulation de l’activité des gènes à l’aide de contrôleurs épigénomiques, permettant ainsi de traiter des maladies chroniques tout en préservant l’intégrité de la séquence d’ADN. Cette approche vise à minimiser les risques liés aux dommages à l’ADN et aux effets hors cible, tout en permettant la modulation simultanée de plusieurs gènes, ce qui est particulièrement pertinent pour les maladies complexes liées à l’âge. La société affirme que sa technologie pourrait remplacer les cellules perdues à cause du vieillissement et des maladies, faciliter la réparation des tissus et organes endommagés par l’âge, et traiter des problèmes d’inflammation chronique et de dysfonctionnement immunitaire. Le financement obtenu servira à accélérer le développement des pipelines de Tune, y compris le programme phare Tune-401, un silencieux épigénétique pour l’hépatite B chronique, une maladie qui touche des millions de personnes dans le monde et est la principale cause du cancer du foie. Tune-401 utilise une technologie de nanoparticules lipidiques pour silencer les structures d’ADN nécessaires à la persistance de l’infection. Le programme est actuellement en essais cliniques en Nouvelle-Zélande et à Hong Kong. Dr Charles Gersbach, co-fondateur de Tune, a exprimé sa satisfaction quant aux progrès de l’entreprise et à l’application clinique de l’épi-édition à une maladie chronique commune. La plateforme de Tune, appelée TEMPO, utilise un design modulaire comprenant des domaines de liaison à l’ADN et des effecteurs pour ajuster l’activité des gènes. Elle peut réguler ou silencer des gènes de manière spécifique et durable, en exploitant la mémoire épigénétique innée de la cellule pour des effets durables à partir d’interventions transitoires. À la conférence ASGCT 2023, Tune a démontré une répression durable du gène PCSK9 chez des primates non humains, entraînant une réduction soutenue des niveaux de cholestérol LDL presque deux ans après un seul traitement. Source : https://longevity.technology/news/tune-dials-in-175m-to-advance-epigenetic-editing-therapies/?utm_source=rss&utm_medium=rss&utm_campaign=tune-dials-in-175m-to-advance-epigenetic-editing-therapies