Étiquette : cerveau

L’Environnement Local du Cerveau comme Facteur Clé du Vieillissement des Microglies

Une nouvelle étude préliminaire de Calico a révélé que l’environnement local du cerveau est le principal moteur du vieillissement des microglies. Après avoir été transplantées dans des cerveaux âgés, des cellules jeunes ont adopté des caractéristiques de vieillesse, mais leur susceptibilité à ces signaux pouvait être désactivée. Le vieillissement cérébral est un facteur limitant majeur dans le domaine de la longévité, car, bien que le corps puisse être rajeuni par le remplacement de ses différentes parties et organes, le cerveau, qui contient nos souvenirs et notre personnalité, ne peut pas simplement être remplacé. Cela rend le rajeunissement du cerveau essentiel pour parvenir à une extension significative de la durée de vie. Des études ont montré que les cellules de soutien, appelées glies, vieillissent plus rapidement que les neurones, les microglies, cellules immunitaires spécialisées du cerveau, étant particulièrement affectées par le vieillissement. Ces microglies âgées développent souvent un phénotype pro-inflammatoire qui est soupçonné de conduire à la neurodégénérescence. Une question cruciale est de savoir si le vieillissement des microglies est dû à un processus intrinsèque préprogrammé ou s’il est induit par des signaux provenant de leur environnement détérioré. L’étude de Calico visait à tester ces effets intrinsèques et environnementaux en remplaçant les microglies par des cellules myéloïdes de donneurs dans des cerveaux jeunes et âgés. Les chercheurs ont développé une méthode pour remplacer les microglies natives chez des souris par de nouvelles cellules myéloïdes dérivées de la moelle osseuse de souris donneuses. Ils ont d’abord produit un pool de cellules souches hématopoïétiques (CSH) provenant de jeunes souris femelles, génétiquement modifiées pour produire deux protéines supplémentaires. La niche de moelle osseuse des souris receveuses âgées a ensuite été épuisée pour faire de la place aux cellules souches donneuses. Les chercheurs ont également dû éliminer les microglies âgées en ajoutant un médicament inhibant CSF1R, une protéine cruciale pour la survie des microglies. Une fois que les microglies originales ont disparu, les cellules myéloïdes dérivées des donneurs ont pu entrer dans le cerveau, où elles se sont installées et sont devenues des cellules semblables à des microglies. Lors de l’examen de ce qui se passe lorsque des cellules jeunes et saines sont placées dans un cerveau âgé, il est apparu que l’environnement joue un rôle dominant. Les cellules jeunes dans des cerveaux âgés ont rapidement commencé à adopter des caractéristiques de vieillesse, notamment dans le cervelet, en adoptant des schémas d’expression génique âgés. Les chercheurs ont défini une « signature de vieillissement accéléré du cervelet » (CAAS), une empreinte moléculaire de 403 gènes, et ont observé que les cellules jeunes dans le cerveau âgé acquéraient cette signature. Pour confirmer que l’environnement cérébral pouvait non seulement vieillir des cellules jeunes mais aussi rajeunir des cellules âgées, les chercheurs ont effectué une transplantation inverse. Lorsque des cellules provenant de souris âgées ont été transplantées dans des cerveaux jeunes, elles ont montré un rajeunissement transcriptionnel et morphologique. En comparant les profils d’expression génique des microglies provenant de cerveaux jeunes et âgés, les chercheurs ont constaté un schéma moléculaire puissant, une réponse pro-inflammatoire accrue des interférons. Pour voir si l’atténuation de la réponse aux interférons pouvait empêcher le vieillissement des microglies, l’équipe a décidé de supprimer Stat1, un régulateur maître bien connu de cette voie de signalisation. En utilisant leur plateforme d’édition Cas9, les chercheurs ont produit des cellules jeunes déficientes en Stat1 et ont répété leur protocole de repopulation. Contrairement à l’expérience précédente, ces cellules étaient largement protégées du vieillissement rapide observé précédemment : elles ont résisté aux signaux de vieillissement de l’environnement et n’ont pas activé la signature CAAS. Les chercheurs ont voulu savoir quel type de cellules produisait ces signaux de vieillissement. Pour la réponse aux interférons, il s’est avéré que les coupables étaient des cellules tueuses naturelles (NK) plutôt que des cellules T, qui étaient initialement suspectées. L’épuisement des cellules NK chez des souris âgées a atténué la réponse aux interférons liée à l’âge dans les microglies. Les résultats sont clairs : l’environnement local du cerveau stimule le vieillissement des microglies, avec les cellules NK agissant comme un déclencheur en amont inattendu. Crucialement, cela peut être bloqué, car la délétion de Stat1 protège les cellules jeunes des signaux pro-vieillissants. Cela remet en question les idées simples de « rajeunissement par remplacement ». Ce n’est que le début, et les chercheurs utilisent maintenant cette plateforme pour cartographier d’autres axes de signalisation pro-vieillissants, espérant que leur nouveau système de CSH évolutif sera une ressource puissante pour le domaine, permettant des dépistages in vivo futurs pour trouver de nouvelles cibles pour la neuro-inflammation. Source : https://www.lifespan.io/news/microglial-aging-is-determined-by-their-environment/?utm_source=rss&utm_medium=rss&utm_campaign=microglial-aging-is-determined-by-their-environment

Les Différences dans le Vieillissement des Organes et leurs Implications pour la Santé et la Longévité

Une étude récente a exploré les différences dans la vitesse de vieillissement des organes. Les chercheurs ont élaboré des modèles capables de prédire les risques de maladies et de mortalité en se basant sur des protéines spécifiques à chaque organe présentes dans le plasma. Étant donné que chaque organe du corps humain est unique, leur vieillissement varie également, certains organes, comme le système reproducteur féminin, cessant de fonctionner correctement plus tôt dans la vie. Cette étude a estimé l’âge biologique de 11 organes, dont le tissu adipeux, les artères, le cerveau, le cœur, le tissu immunitaire, l’intestin, les reins, le foie, les poumons, les muscles et le pancréas, en analysant près de 3000 protéines dans le plasma de plus de 44 000 personnes âgées de 40 à 70 ans. Les chercheurs ont trouvé des différences spécifiques au vieillissement des organes qui étaient faiblement corrélées entre elles, suggérant que les organes vieillissent à des rythmes différents. Grâce à ces estimations, ils ont pu prédire les futures maladies pour des organes spécifiques, comme l’association significative entre le vieillissement cardiaque et la fibrillation auriculaire, ainsi que le vieillissement cérébral et la maladie d’Alzheimer. Les chercheurs ont aussi identifié des ‘extrêmes vieillissants’ et des ‘organes extrêmement jeunes’, constatant que les personnes avec plusieurs organes vieillissants avaient un risque accru de maladies, tandis que celles avec des organes jeunes étaient protégées contre de nombreuses affections. En particulier, un vieillissement extrême du cerveau augmentait le risque de la maladie d’Alzheimer de 3,1 fois, alors qu’un cerveau jeune réduisait le risque de 74 %, indépendamment de l’âge, du sexe et des gènes associés. L’étude a également révélé que l’âge biologique des organes était lié au risque de mortalité, le vieillissement cérébral ayant les propriétés prédictives les plus puissantes, suggérant que le cerveau pourrait être un régulateur central de la durée de vie humaine. Il a été observé qu’un organe vieillissant augmentait le risque de décès de 1,5 à 3 fois, et avoir plusieurs organes âgés augmentait ce risque de manière exponentielle. Fait surprenant, des organes jeunes ne semblaient pas protéger contre le risque de mortalité. Les chercheurs ont également étudié 18 facteurs de style de vie, comme l’alimentation, l’alcool, le tabagisme, l’exercice et le sommeil. Ils ont trouvé des associations entre l’accélération du vieillissement des organes et des habitudes de vie néfastes comme le tabagisme et la consommation d’alcool, tandis que des organes jeunes étaient associés à des comportements sains comme l’exercice régulier et une meilleure alimentation. Les chercheurs ont remarqué que le traitement par œstrogènes pouvait influencer le vieillissement des organes chez les femmes, en lien avec la ménopause. Ils souhaitent approfondir leur recherche en définissant la séquence de vieillissement des organes et en examinant les différences spécifiques entre les sexes. L’objectif est d’utiliser ces outils pour surveiller la santé des organes et tester des interventions médicales spécifiques pour améliorer la longévité. Source : https://www.lifespan.io/news/organ-specific-aging-analysis-reveals-disease-connections/?utm_source=rss&utm_medium=rss&utm_campaign=organ-specific-aging-analysis-reveals-disease-connections

L’impact du vieillissement sur le système immunitaire du cerveau et les macrophages dérivés des monocytes

Le système immunitaire du cerveau est distinct de celui du reste du corps, bien que des recherches récentes montrent que des cellules immunitaires du corps peuvent pénétrer dans le cerveau, surtout en vieillissant. Ce phénomène est lié à une défaillance croissante de la barrière hémato-encéphalique, qui contrôle le passage des cellules et des molécules entre le sang et le cerveau. Lorsque cette barrière est compromise, cela peut entraîner une inflammation persistante dans le tissu cérébral. Les microglies, des macrophages cérébraux, sont présentes depuis l’embryogenèse et constituent un compartiment cellulaire autonome. Des macrophages dérivés de monocytes (MoMΦs) s’accumulent dans le cerveau de souris âgées, adoptant une morphologie et des profils d’expression similaires à ceux des microglies. Contrairement à ces dernières, les MoMΦs dérivent des cellules souches hématopoïétiques et sont soumis à des mutations somatiques liées à l’hématopoïèse clonale associée à l’âge. Des études utilisant un modèle chimérique ont démontré que l’expression d’une variante humaine de l’hématopoïèse clonale rendait les MoMg pathogènes et favorisait des déficits moteurs semblables à ceux de troubles parkinsoniens atypiques. En somme, les MoMg se diffusent progressivement dans le cerveau des souris âgées en bonne santé et, lorsqu’ils portent une mutation somatique, peuvent entraîner des pathologies cérébrales. Source : https://www.fightaging.org/archives/2025/05/macrophages-accumulate-in-the-aging-brain-to-promote-dysfunction/

Nouvelle initiative de recherche au Royaume-Uni sur le lien entre santé intestinale, vieillissement cérébral et résilience immunitaire

Une nouvelle initiative de recherche au Royaume-Uni, intitulée UK Gut-Immunology-Brain Axis Network+, a été lancée avec un financement de 4,5 millions de livres sterling pour explorer les interactions entre le microbiote intestinal, le cerveau et le système immunitaire. Dirigée par le professeur Jonathan Swann de l’Université de Southampton, cette initiative vise à rassembler des chercheurs de différentes disciplines pour mieux comprendre comment des facteurs de style de vie, tels que l’alimentation, le sommeil et le stress, influencent la microbiote intestinale et, par conséquent, la santé cognitive et émotionnelle tout au long de la vie. Le réseau se concentre sur la compréhension des mécanismes biologiques sous-jacents à l’axe intestin-cerveau-immunité, un système reconnu comme essentiel dans le fonctionnement cognitif et la résilience face aux maladies chroniques, ce qui a des implications importantes pour la durée et la qualité de vie. En intégrant des experts de plusieurs institutions, dont les universités de Southampton, Cambridge et King’s College Londres, le réseau vise à aborder des défis de santé publique clés, tels que les maladies neurodégénératives et les troubles de la santé mentale, de plus en plus liés à la santé microbienne intestinale. Le professeur Anne Ferguson-Smith, présidente exécutive du BBSRC, a souligné l’importance de ces recherches pour améliorer notre compréhension des interactions entre les systèmes biologiques, ce qui pourrait mener à de nouvelles stratégies basées sur des preuves pour améliorer le bien-être à tous les stades de la vie. Le projet adopte une approche axée sur les facteurs de style de vie modifiables, en examinant comment des interventions alimentaires peuvent influencer positivement la composition et l’activité du microbiote intestinal, ce qui pourrait améliorer l’humeur, la cognition et la fonction métabolique. Le professeur Swann a ajouté que la santé intestinale et les microbes qui y résident peuvent influencer notre humeur et nos capacités cognitives. Le réseau s’engage également à rendre ses découvertes applicables à la santé publique, en développant des modèles expérimentaux plus représentatifs de la biologie humaine et en favorisant la collaboration entre les secteurs académique, clinique et industriel. En ciblant des systèmes biologiques interconnectés, le réseau propose un modèle plus intégré du vieillissement humain et de la résilience, en s’alignant sur les tendances actuelles en matière de science de la longévité, axées sur la personnalisation et la prévention. Bien que beaucoup reste à prouver, le Network+ pourrait éclairer les signatures microbiennes subtiles qui influencent nos pensées, nos émotions et notre vieillissement, apportant ainsi un nouveau niveau de sophistication aux interventions visant à prolonger la vie tout en préservant la fonction cognitive et physiologique tout au long du vieillissement. Source : https://longevity.technology/news/uk-research-network-explores-the-gut-brain-immune-connection/