Étiquette : Cellules souches

Ingénierie Tissulaire pour la Remuscularisation du Cœur : Progrès et Défis

Le cœur est l’un des organes les moins régénératifs chez les mammifères, et les cicatrices qui suivent des blessures, comme celles subies lors d’une crise cardiaque, nuisent à sa fonction. La transplantation de cellules cardiomyocytes pour régénérer le tissu cardiaque cicatrisé est un domaine de recherche actif depuis près de vingt ans. Bien qu’il soit possible de produire des cardiomyocytes adaptés aux patients à partir de cellules souches pluripotentes induites, ces cellules montrent une survie minimale et un rendement médiocre lors de la transplantation. Cependant, le développement de tissus artificiels utilisant des échafaudages à l’échelle nanométrique, permettant la production de fines patchs de muscle cardiaque composés de cardiomyocytes, a amélioré la situation. Après transplantation, un plus grand nombre de cellules survivent, et des améliorations fonctionnelles ont été observées dans des modèles animaux de blessures cardiaques. Les préoccupations récentes ont tourné autour de la question de savoir si la fonction électrique du cœur reste perturbée par l’introduction de nouvelles cellules, provoquant des arythmies ou pire. Toutefois, il semble que même ce problème soit en voie de résolution grâce aux dernières avancées technologiques.

Les cardiomyocytes peuvent être implantés pour remusculariser un cœur défaillant. Les défis incluent une rétention suffisante des cardiomyocytes pour un impact thérapeutique durable sans effets secondaires intolérables, tels que des arythmies et la croissance tumorale. Une étude a été menée pour tester l’hypothèse selon laquelle des greffes de muscle cardiaque ingénié (EHM) dérivées de cellules souches pluripotentes induites et de cellules stromales remuscularisent structurellement et fonctionnellement le cœur chroniquement défaillant sans effets secondaires limitants chez les macaques rhésus.

Après confirmation de l’équivalence in vitro et in vivo d’un modèle de macaque rhésus EHM récemment développé avec une formulation humaine EHM compatible avec les bonnes pratiques de fabrication, une rétention à long terme (jusqu’à 6 mois) et une amélioration dépendante de la dose de la paroi cardiaque ciblée par des greffes EHM composées de 40 à 200 millions de cardiomyocytes/cellules stromales ont été démontrées chez des macaques avec et sans insuffisance cardiaque induite par un infarctus du myocarde. Dans le modèle d’insuffisance cardiaque, des preuves de l’amélioration de la contractilité de la paroi cardiaque ciblée et de la fraction d’éjection, qui sont des mesures de soutien cardiaque local et global, ont été obtenues. Des analyses histopathologiques et par imagerie par résonance magnétique basée sur le gadolinium ont confirmé la rétention cellulaire et la vascularisation fonctionnelle. Aucune arythmie ni croissance tumorale n’ont été observées.

Les données de faisabilité, de sécurité et d’efficacité obtenues ont fourni les bases essentielles pour l’approbation d’un premier essai clinique chez l’homme sur la réparation cardiaque par ingénierie tissulaire. Nos données cliniques ont confirmé la remuscularisation par implantation d’EHM chez un patient souffrant d’insuffisance cardiaque avancée. Source : https://www.fightaging.org/archives/2025/02/an-update-on-engineered-heart-muscle-tissue-applied-as-patches-to-an-injured-heart/

Création d’un pancréas fonctionnel à partir de cellules humaines : Une avancée majeure dans le traitement du diabète de type 1

Dans une étude publiée dans *Cell Reports Medicine*, des chercheurs ont réussi à créer un pancréas fonctionnel à partir de cellules humaines, qui a montré son efficacité chez des souris. Cette recherche se concentre sur les défis des injections d’insuline pour traiter le diabète de type 1, en soulignant que le suivi constant et les injections manuelles ne simulent pas efficacement la réponse du tissu pancréatique. Les cellules bêta, productrices d’insuline, sont limitées par la disponibilité des organes donneurs et nécessitent une suppression du système immunitaire. En s’appuyant sur les connaissances récentes sur la matrice extracellulaire (ECM) et son rôle dans la différenciation des cellules souches, les chercheurs ont développé une méthode innovante pour créer des structures pancréatiques en utilisant des cellules souches pluripotentes induites (iPSCs). Ils ont combiné des cellules islet productrices d’insuline avec des cellules endothéliales dans un rapport de 9 à 1 pour former des sphéroïdes, puis les ont injectés dans des tissus pulmonaires rat décellularisés, favorisant la vascularisation et créant ainsi un pancréas endothelial vascularisé (iVEP) fonctionnel. Les résultats ont montré que l’iVEP offrait une meilleure survie des cellules et une réponse insulinique accrue dans des conditions de glucose élevé, démontrant son efficacité par rapport aux approches antérieures. Dans des souris diabétiques immunodéprimées, tous les sujets recevant l’iVEP ont établi une normoglycémie, tandis que seulement deux souris sur treize ont montré une amélioration avec des sphéroïdes non vascularisés. Les structures iVEP ont établi de nombreuses connexions vasculaires, intégrant efficacement l’implant dans le corps des souris. Les chercheurs ont également constaté que les cellules endothéliales étaient essentielles pour l’intégration des iVEPs dans le système vasculaire. Comparativement aux méthodes précédentes, leur approche offre des avantages significatifs en termes de développement cellulaire, permettant une maturation plus rapide des cellules islet. Bien que la complexité de cette méthode soit supérieure aux produits déjà en essais cliniques, les chercheurs envisagent d’utiliser des organes porcins pour surmonter les limitations de taille des structures dérivées de rats. Cette recherche sur le pancréas a des implications potentielles pour d’autres maladies, en particulier celles liées à l’âge. Bien que la substitution complète d’organes humains par des équivalents bio-ingénierisés ne soit pas encore réalisable, les avancées technologiques continuent de progresser vers des applications cliniques. Source : https://www.lifespan.io/news/creating-a-functional-pancreas-from-human-cells/?utm_source=rss&utm_medium=rss&utm_campaign=creating-a-functional-pancreas-from-human-cells

Réversion Ciblée des Maladies Liées à l’Âge : Un Pas Vers la Longévité

Vers la fin de l’année dernière, un cadre détaillé et structuré connu sous le nom de ‘Dix Niveaux de Longévité’ a été dévoilé pour naviguer dans le domaine croissant de la science de la longévité. Après avoir examiné le Niveau 6, axé sur les interventions cliniques qui contrôlent les facteurs de vieillissement pour prévenir les maladies liées à l’âge, nous nous tournons vers le Niveau 7 : la réversion ciblée des maladies liées à l’âge. Ce niveau concerne les stratégies thérapeutiques visant à arrêter ou à inverser les dommages causés par le vieillissement dans des organes ou tissus spécifiques. Contrairement aux approches préventives, il se concentre sur la restauration de la fonction et de la vitalité des zones déjà affectées par le déclin lié à l’âge. Les techniques telles que les thérapies par cellules souches pluripotentes induites (iPSC) sont en cours de développement pour régénérer les tissus dans des organes clés, offrant la possibilité de rajeunir les fonctions cardiaque, hépatique ou cérébrale en remplaçant les cellules endommagées par des cellules saines. De plus, le reprogrammation cellulaire partielle vise à inverser le vieillissement cellulaire sans altérer l’identité de la cellule, promouvant ainsi la régénération d’organes entiers in vivo. Le domaine de la réversion ciblée des maladies liées à l’âge présente des opportunités d’investissement intéressantes, en particulier pour les entreprises qui sont à la pointe de la reprogrammation cellulaire partielle. Ces entreprises cherchent à rajeunir les cellules dans des tissus spécifiques, restaurant ainsi la fonction des organes et inversant la progression des maladies. Les investisseurs s’intéressent de plus en plus aux biotechnologies capables de réinitialiser en toute sécurité l’âge cellulaire sans compromettre l’identité cellulaire, car ces approches promettent de traiter une gamme de maladies liées à l’âge. Le potentiel de rendements élevés est significatif, étant donné l’impact transformateur que ces thérapies pourraient avoir sur les soins de santé et le vieillissement. Plusieurs entreprises actives à ce niveau incluent Cellvie, qui se concentre sur la transplantation mitochondriale thérapeutique, Altos Labs, qui vise à inverser le vieillissement cellulaire, Longeveron, qui développe des thérapies à base de cellules souches mésenchymateuses pour traiter des maladies liées à l’âge, Shift Bioscience, qui utilise l’apprentissage machine pour développer des thérapies de reprogrammation cellulaire, Retro Biosciences, qui développe des thérapies préventives pour des maladies comme la maladie d’Alzheimer, et Telocyte, qui recherche un potentiel remède contre la maladie d’Alzheimer en ciblant la cause sous-jacente du vieillissement cellulaire. Les avancées au Niveau 7 de la réversion ciblée des maladies liées à l’âge représentent un saut significatif dans la science de la longévité. En se concentrant sur la restauration de la fonction dans des organes et tissus spécifiques, ces thérapies promettent non seulement d’étendre la durée de vie, mais aussi d’améliorer la qualité de vie dans les années ultérieures. Ce développement souligne l’importance croissante des interventions thérapeutiques ciblées dans la lutte contre les effets du vieillissement et les maladies qui en découlent. Source : https://longevity.technology/news/ten-levels-of-longevity-7-targeted-aging-disease-reversal/

L’Impact des Télomères sur le Vieillissement et les Maladies Associées

Les télomères sont des structures de répétitions de séquences d’ADN situées aux extrémités des chromosomes. Chaque division cellulaire entraîne une légère perte de la longueur des télomères, conduisant les cellules présentant des télomères très courts à devenir sénescentes ou à subir une mort cellulaire programmée. Ce processus fait partie des mécanismes qui contribuent à la limite de Hayflick, qui régule le nombre de divisions que peuvent effectuer les cellules somatiques, garantissant ainsi le renouvellement des cellules somatiques qui composent les tissus. La longueur moyenne des télomères diminue avec l’âge, mais cela ne se manifeste clairement que dans des populations d’étude importantes. Elle est considérée comme un indicateur flou de la diminution de la fonction des cellules souches et d’un stress de réplication accru résultant des mécanismes causatifs du vieillissement. En général, la longueur des télomères est mesurée dans les leucocytes, et non dans des échantillons de tissus, car les cellules immunitaires montrent une dynamique de réplication et de remplacement différente de celle des cellules des tissus. La longueur des télomères dans un échantillon de cellules immunitaires peut varier quotidiennement en fonction de l’infection, du stress psychologique et d’autres facteurs qui influencent le comportement du système immunitaire, ce qui en fait un biomarqueur peu fiable du vieillissement pour un individu. Cependant, des corrélations peuvent être observées dans de grandes populations d’étude. Les télomères des leucocytes, qui reflètent la longueur des télomères dans les globules blancs, sont un marqueur reconnu du vieillissement biologique. Ils se raccourcissent progressivement avec l’âge, réduisant leur capacité à protéger le matériel génétique des chromosomes, ce qui entraîne un vieillissement cellulaire et une susceptibilité accrue aux maladies liées à l’âge. La longueur des télomères est influencée par des facteurs immuables tels que la génétique, l’ascendance et le sexe, ainsi que par des facteurs modifiables tels que le mode de vie et les stress environnementaux, y compris la pollution. Une étude récente utilisant des données de plus de 356 000 participants du UK Biobank a examiné la relation entre la longueur des télomères et le risque d’accidents vasculaires cérébraux, de démence et de dépression tardive. Les participants ont fourni des échantillons de sang pour analyser la longueur des télomères et ont passé une évaluation du Brain Care Score, qui mesure des facteurs modifiables. Après un suivi médian de 12 ans, il a été constaté que les personnes ayant la plus courte longueur de télomères avaient un risque accru d’accident vasculaire cérébral de 8 %, un risque de démence de 19 % et un risque de dépression tardive de 14 %. En somme, par rapport aux participants ayant des télomères plus longs, ceux ayant les plus courts avaient un risque supérieur de 11 % de développer au moins une des maladies cérébrales liées à l’âge étudiées. Source : https://www.fightaging.org/archives/2025/02/shorter-average-telomere-length-in-white-blood-cells-correlates-with-increased-dementia-risk/

L’impact des dommages à l’ADN sur le vieillissement : mutations et modifications épigénétiques

Le texte explore la relation complexe entre les dommages à l’ADN nucléaire stochastiques et le vieillissement dégénératif. Il met en évidence que la plupart des mutations se produisent dans des zones non fonctionnelles du génome, principalement dans des cellules somatiques proches de la limite de Hayflick, ce qui limite leur impact sur le vieillissement. Une théorie suggère que seules les mutations dans les cellules souches ont un rôle significatif, car elles se propagent lentement dans les lignées cellulaires somatiques, un phénomène connu sous le nom de mosaïcisme somatique. Bien qu’il existe des preuves suggérant que le mosaïcisme somatique peut contribuer à certaines dysfonctions liées à l’âge, ces preuves sont limitées. Une autre perspective, moins étayée mais intrigante, propose que la réparation des cassures double brin de l’ADN modifie les mécanismes moléculaires qui contrôlent la structure de l’ADN nucléaire, entraînant des changements épigénétiques caractéristiques du vieillissement dans chaque cellule. Un article de recherche récent aborde une nouvelle façon dont les dommages à l’ADN peuvent influencer les changements épigénétiques, en montrant que les mutations au niveau des sites CpG affectent non seulement la méthylation à ces sites, mais aussi à proximité, modifiant ainsi l’expression de nombreux gènes de manière prévisible. Deux théories dominantes concernant le vieillissement et l’ADN sont discutées : la théorie des mutations somatiques, qui postule que le vieillissement résulte de l’accumulation de mutations aléatoires, et la théorie de l’horloge épigénétique, qui suggère que le vieillissement découle des modifications épigénétiques. Des chercheurs ont analysé les données de 9 331 patients et ont trouvé une corrélation prévisible entre les mutations génétiques et les modifications épigénétiques, montrant qu’une seule mutation peut entraîner de nombreux changements épigénétiques à travers le génome. Les horloges épigénétiques, basées sur les marques de méthylation de l’ADN, ont été utilisées pour prédire l’âge calendaire, et les résultats suggèrent un lien étroit entre l’accumulation de mutations somatiques sporadiques et les changements de méthylation observés au cours de la vie. Source : https://www.fightaging.org/archives/2025/01/evidence-for-mutational-damage-as-a-cause-of-age-related-epigenetic-change/

Impact du Vieillissement sur la Fonction Musculaire et Stratégies de Préservation

Avec l’avancée en âge, la masse musculaire et la force musculaire diminuent progressivement, entraînant des conditions telles que la sarcopénie et la dynapénie. Il est intéressant de noter qu’une part importante des effets observés du vieillissement sur la fonction musculaire dans les populations plus riches est évitable, en raison de notre époque moderne de confort et de machines de transport. Nous faisons beaucoup moins d’exercice que nos ancêtres, qui évoluaient dans un environnement de chasse et de cueillette, où l’effort physique quotidien était la norme. Les chasseurs-cueilleurs contemporains montrent moins de maladies cardiaques et conservent mieux leur masse musculaire et leur fonction par rapport à ceux d’entre nous qui utilisent des voitures pour se rendre au travail ou faire des courses. Le principe est simple : plus vous utilisez vos muscles, mieux ils se portent.

Cependant, même les athlètes finissent par céder aux effets du vieillissement. De nombreuses contributions au vieillissement musculaire sont bien connues, y compris la perte de la fonction des cellules souches, la dysfonction mitochondriale, l’inflammation et les modifications néfastes au niveau des jonctions neuromusculaires. Cette situation illustre le vieillissement dans son ensemble : il existe peu de compréhension des contributions les plus importantes, de la façon dont elles interagissent entre elles et de la hiérarchie entre les mécanismes. Chaque mécanisme offre un potentiel illimité de recherche exploratoire dans la biochimie cellulaire. Parfois, la recherche fondamentale peut aboutir à des thérapies efficaces.

Le vieillissement s’accompagne d’une diminution de la masse musculaire, de la force et de la fonction physique, ce qui est connu sous le nom de sarcopénie. L’inactivité musculaire, souvent causée par une diminution de l’activité physique, une hospitalisation ou des maladies, entraîne une dégradation rapide de la masse musculaire chez les personnes âgées et accélère la sarcopénie. Pour préserver la masse musculaire, il est recommandé de consommer des protéines à des niveaux beaucoup plus élevés que les apports recommandés actuels, ainsi que de participer à des exercices de résistance et d’aérobic.

Les adaptations physiologiques des muscles accompagnent souvent les changements observables dans l’indépendance physique des personnes âgées. Les adaptations des fibres musculaires comprennent une réduction de la taille et du nombre des fibres de type 2, une perte d’unités motrices, une sensibilité réduite au calcium, une élasticité diminuée et des ponts croisés affaiblis. La fonction et la structure mitochondriales se détériorent avec l’âge et sont aggravées par l’inactivité et les états pathologiques, mais peuvent être améliorées par l’exercice. Les adaptations du tissu conjonctif intramusculaire avec l’âge sont évidentes dans les modèles animaux, mais les adaptations du tissu collagène chez les humains vieillissants sont moins claires. Nous savons que le réservoir de cellules satellites musculaires diminue avec l’âge, ce qui réduit la capacité de réparation et de régénération musculaire. Enfin, un état pro-inflammatoire associé à l’âge a des impacts néfastes sur les muscles. Cette revue vise à mettre en lumière les adaptations physiologiques qui régissent le vieillissement musculaire et leur atténuation potentielle par l’exercice, l’activité physique et la nutrition. Source : https://www.fightaging.org/archives/2025/01/reviewing-the-mechanisms-of-muscle-aging/

L’avenir des thérapies cellulaires selon Yuta Lee : prévention et défis réglementaires

Yuta Lee, fondateur et PDG d’Accelerated Biosciences, se positionne comme une voix influente dans le domaine des thérapies cellulaires, notamment en ce qui concerne les cellules souches trophoblastiques humaines (hTSCs). Lors du Founders Longevity Forum à Singapour, il aborde le potentiel des thérapies cellulaires pour améliorer la santé et la longévité, tout en soulignant les défis réglementaires associés à l’approbation des thérapies anti-âge. Lee fait valoir que l’industrie des cellules souches devrait connaître une croissance significative, atteignant plus de 56 milliards de dollars d’ici 2032, en raison de l’évolution des traitements vers des solutions curatives plutôt que palliatives. Il évoque également l’importance de la prévention dans le cadre des soins de santé, notant que l’approche actuelle est axée sur le traitement des maladies une fois qu’elles se sont manifestées. Les obstacles réglementaires, tels que le fait que le vieillissement ne soit pas reconnu comme une indication par les agences comme la FDA ou l’EMA, compliquent la recherche de financements pour des thérapeutiques préventives. Lee et son équipe collaborent avec le National Institute on Aging pour utiliser les exosomes dérivés des hTSCs dans le cadre d’études précliniques sur la sénescence cellulaire, une caractéristique du vieillissement. Leurs travaux visent à démontrer que ces exosomes peuvent atténuer les phénotypes sécrétoires associés à la sénescence, contribuant ainsi à traiter des conditions telles que l’hypertension résistante et le psoriasis. Lee est optimiste quant à l’avenir de ces thérapies et à leur potentiel pour transformer les soins de santé en se concentrant sur la prévention plutôt que sur le traitement des maladies établies. Une fois les études précliniques terminées, il prévoit de soumettre leurs résultats à la FDA pour commencer les essais cliniques. Cette recherche pourrait non seulement avoir un impact sur le marché américain, mais aussi ouvrir des portes à une utilisation mondiale des thérapies développées. Source : https://longevity.technology/news/longevity-really-resides-in-prevention/?utm_source=rss&utm_medium=rss&utm_campaign=longevity-really-resides-in-prevention

Rajeunissement biologique : Nouvelles et avancées de décembre

La saison des fêtes est terminée et la nouvelle année commence, marquant un retour à la discussion sur un sujet essentiel : le rajeunissement biologique. En décembre, plusieurs événements et recherches notables ont été mis en avant dans le domaine de la longévité. Dans le cadre des nouvelles du LEAF, un éditorial a été publié pour récapituler les moments forts de l’année écoulée et partager les perspectives pour l’avenir. Des interviews avec des experts tels que Mehmood Khan ont éclairé les politiques de vieillissement et l’importance de la collaboration dans le secteur de la santé. Des recherches récentes ont mis en lumière des questions comme la capacité de l’IA à prédire la longévité, ainsi que les meilleures interventions de la conférence Longevity Summit 2024, qui a rassemblé des chercheurs et investisseurs autour des avancées dans le domaine de la longévité. D’autres études ont exploré les traitements pour l’inflammaging, l’impact du resvératrol et de la vitamine C sur le stress oxydatif post-ménopause, et l’efficacité de l’IA dans le raisonnement diagnostique. Des avancées ont été notées concernant la fragmentation mitochondriale et sa relation avec la faiblesse musculaire, ainsi que des découvertes sur les cellules sénescentes et leur rôle protecteur dans la fonction de la vessie. Les recherches sur l’extension de la durée reproductive chez les singes à l’aide de cellules souches et les approches sénolytiques pour favoriser la cicatrisation des plaies ont également été mises en avant. Des études variées ont exploré le vieillissement épigénétique chez les champions olympiques, l’impact de l’activité physique et du sommeil sur la performance cognitive des personnes âgées, ainsi que les effets de l’alimentation sur les troubles cognitifs. De plus, plusieurs nouvelles entreprises et collaborations dans le domaine de la longévité ont été annoncées, soulignant l’engagement croissant envers la recherche et le développement de traitements anti-âge. Un événement majeur, le Vitalist Bay, est prévu pour le printemps prochain, promettant d’être l’un des plus importants rassemblements autour de la longévité. Ce panorama met en évidence l’intérêt croissant pour le rajeunissement biologique et les diverses initiatives en cours pour promouvoir une vie plus longue et en meilleure santé.

Impact des mutations de l’ADN mitochondrial sur le vieillissement et la régénération cellulaire

Les mitochondries sont les centrales électriques de la cellule, les descendants lointains de bactéries symbiotiques qui portent leur propre petit génome circulaire, distinct de celui du noyau cellulaire. Le génome mitochondrial est plus sujet aux dommages et moins bien réparé que le génome nucléaire, et les mutations de l’ADN mitochondrial sont considérées comme importantes dans le processus de vieillissement. Les mutations de délétion peuvent créer des mitochondries brisées qui surpassent leurs pairs intacts pour prendre le contrôle d’une cellule, créant un petit nombre de cellules dysfonctionnelles nocives. Les mutations ponctuelles moins sévères sont plus courantes, mais les preuves sont contradictoires quant à la mesure dans laquelle cette forme de dommage contribue à la dysfonction mitochondriale liée au vieillissement. D’où l’intérêt de générer un modèle cellulaire de dommages mitochondriaux similaires au vieillissement, pour permettre de meilleures études sur la dysfonction qu’ils génèrent.